xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 4949009e)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	down_read(&ubi->fm_sem);
344 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 	up_read(&ubi->fm_sem);
346 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347 
348 out_unlock:
349 	leb_write_unlock(ubi, vol_id, lnum);
350 	return err;
351 }
352 
353 /**
354  * ubi_eba_read_leb - read data.
355  * @ubi: UBI device description object
356  * @vol: volume description object
357  * @lnum: logical eraseblock number
358  * @buf: buffer to store the read data
359  * @offset: offset from where to read
360  * @len: how many bytes to read
361  * @check: data CRC check flag
362  *
363  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364  * bytes. The @check flag only makes sense for static volumes and forces
365  * eraseblock data CRC checking.
366  *
367  * In case of success this function returns zero. In case of a static volume,
368  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369  * returned for any volume type if an ECC error was detected by the MTD device
370  * driver. Other negative error cored may be returned in case of other errors.
371  */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 		     void *buf, int offset, int len, int check)
374 {
375 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 	struct ubi_vid_hdr *vid_hdr;
377 	uint32_t uninitialized_var(crc);
378 
379 	err = leb_read_lock(ubi, vol_id, lnum);
380 	if (err)
381 		return err;
382 
383 	pnum = vol->eba_tbl[lnum];
384 	if (pnum < 0) {
385 		/*
386 		 * The logical eraseblock is not mapped, fill the whole buffer
387 		 * with 0xFF bytes. The exception is static volumes for which
388 		 * it is an error to read unmapped logical eraseblocks.
389 		 */
390 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 			len, offset, vol_id, lnum);
392 		leb_read_unlock(ubi, vol_id, lnum);
393 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 		memset(buf, 0xFF, len);
395 		return 0;
396 	}
397 
398 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 		len, offset, vol_id, lnum, pnum);
400 
401 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 		check = 0;
403 
404 retry:
405 	if (check) {
406 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 		if (!vid_hdr) {
408 			err = -ENOMEM;
409 			goto out_unlock;
410 		}
411 
412 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 		if (err && err != UBI_IO_BITFLIPS) {
414 			if (err > 0) {
415 				/*
416 				 * The header is either absent or corrupted.
417 				 * The former case means there is a bug -
418 				 * switch to read-only mode just in case.
419 				 * The latter case means a real corruption - we
420 				 * may try to recover data. FIXME: but this is
421 				 * not implemented.
422 				 */
423 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 				    err == UBI_IO_BAD_HDR) {
425 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 						 pnum, vol_id, lnum);
427 					err = -EBADMSG;
428 				} else
429 					ubi_ro_mode(ubi);
430 			}
431 			goto out_free;
432 		} else if (err == UBI_IO_BITFLIPS)
433 			scrub = 1;
434 
435 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
436 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
437 
438 		crc = be32_to_cpu(vid_hdr->data_crc);
439 		ubi_free_vid_hdr(ubi, vid_hdr);
440 	}
441 
442 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
443 	if (err) {
444 		if (err == UBI_IO_BITFLIPS)
445 			scrub = 1;
446 		else if (mtd_is_eccerr(err)) {
447 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
448 				goto out_unlock;
449 			scrub = 1;
450 			if (!check) {
451 				ubi_msg(ubi, "force data checking");
452 				check = 1;
453 				goto retry;
454 			}
455 		} else
456 			goto out_unlock;
457 	}
458 
459 	if (check) {
460 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
461 		if (crc1 != crc) {
462 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
463 				 crc1, crc);
464 			err = -EBADMSG;
465 			goto out_unlock;
466 		}
467 	}
468 
469 	if (scrub)
470 		err = ubi_wl_scrub_peb(ubi, pnum);
471 
472 	leb_read_unlock(ubi, vol_id, lnum);
473 	return err;
474 
475 out_free:
476 	ubi_free_vid_hdr(ubi, vid_hdr);
477 out_unlock:
478 	leb_read_unlock(ubi, vol_id, lnum);
479 	return err;
480 }
481 
482 /**
483  * recover_peb - recover from write failure.
484  * @ubi: UBI device description object
485  * @pnum: the physical eraseblock to recover
486  * @vol_id: volume ID
487  * @lnum: logical eraseblock number
488  * @buf: data which was not written because of the write failure
489  * @offset: offset of the failed write
490  * @len: how many bytes should have been written
491  *
492  * This function is called in case of a write failure and moves all good data
493  * from the potentially bad physical eraseblock to a good physical eraseblock.
494  * This function also writes the data which was not written due to the failure.
495  * Returns new physical eraseblock number in case of success, and a negative
496  * error code in case of failure.
497  */
498 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
499 		       const void *buf, int offset, int len)
500 {
501 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
502 	struct ubi_volume *vol = ubi->volumes[idx];
503 	struct ubi_vid_hdr *vid_hdr;
504 
505 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
506 	if (!vid_hdr)
507 		return -ENOMEM;
508 
509 retry:
510 	new_pnum = ubi_wl_get_peb(ubi);
511 	if (new_pnum < 0) {
512 		ubi_free_vid_hdr(ubi, vid_hdr);
513 		return new_pnum;
514 	}
515 
516 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
517 		pnum, new_pnum);
518 
519 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
520 	if (err && err != UBI_IO_BITFLIPS) {
521 		if (err > 0)
522 			err = -EIO;
523 		goto out_put;
524 	}
525 
526 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
527 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
528 	if (err)
529 		goto write_error;
530 
531 	data_size = offset + len;
532 	mutex_lock(&ubi->buf_mutex);
533 	memset(ubi->peb_buf + offset, 0xFF, len);
534 
535 	/* Read everything before the area where the write failure happened */
536 	if (offset > 0) {
537 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
538 		if (err && err != UBI_IO_BITFLIPS)
539 			goto out_unlock;
540 	}
541 
542 	memcpy(ubi->peb_buf + offset, buf, len);
543 
544 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
545 	if (err) {
546 		mutex_unlock(&ubi->buf_mutex);
547 		goto write_error;
548 	}
549 
550 	mutex_unlock(&ubi->buf_mutex);
551 	ubi_free_vid_hdr(ubi, vid_hdr);
552 
553 	down_read(&ubi->fm_sem);
554 	vol->eba_tbl[lnum] = new_pnum;
555 	up_read(&ubi->fm_sem);
556 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
557 
558 	ubi_msg(ubi, "data was successfully recovered");
559 	return 0;
560 
561 out_unlock:
562 	mutex_unlock(&ubi->buf_mutex);
563 out_put:
564 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
565 	ubi_free_vid_hdr(ubi, vid_hdr);
566 	return err;
567 
568 write_error:
569 	/*
570 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
571 	 * get another one.
572 	 */
573 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
574 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
575 	if (++tries > UBI_IO_RETRIES) {
576 		ubi_free_vid_hdr(ubi, vid_hdr);
577 		return err;
578 	}
579 	ubi_msg(ubi, "try again");
580 	goto retry;
581 }
582 
583 /**
584  * ubi_eba_write_leb - write data to dynamic volume.
585  * @ubi: UBI device description object
586  * @vol: volume description object
587  * @lnum: logical eraseblock number
588  * @buf: the data to write
589  * @offset: offset within the logical eraseblock where to write
590  * @len: how many bytes to write
591  *
592  * This function writes data to logical eraseblock @lnum of a dynamic volume
593  * @vol. Returns zero in case of success and a negative error code in case
594  * of failure. In case of error, it is possible that something was still
595  * written to the flash media, but may be some garbage.
596  */
597 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
598 		      const void *buf, int offset, int len)
599 {
600 	int err, pnum, tries = 0, vol_id = vol->vol_id;
601 	struct ubi_vid_hdr *vid_hdr;
602 
603 	if (ubi->ro_mode)
604 		return -EROFS;
605 
606 	err = leb_write_lock(ubi, vol_id, lnum);
607 	if (err)
608 		return err;
609 
610 	pnum = vol->eba_tbl[lnum];
611 	if (pnum >= 0) {
612 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
613 			len, offset, vol_id, lnum, pnum);
614 
615 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
616 		if (err) {
617 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
618 			if (err == -EIO && ubi->bad_allowed)
619 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
620 						  offset, len);
621 			if (err)
622 				ubi_ro_mode(ubi);
623 		}
624 		leb_write_unlock(ubi, vol_id, lnum);
625 		return err;
626 	}
627 
628 	/*
629 	 * The logical eraseblock is not mapped. We have to get a free physical
630 	 * eraseblock and write the volume identifier header there first.
631 	 */
632 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
633 	if (!vid_hdr) {
634 		leb_write_unlock(ubi, vol_id, lnum);
635 		return -ENOMEM;
636 	}
637 
638 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
639 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
640 	vid_hdr->vol_id = cpu_to_be32(vol_id);
641 	vid_hdr->lnum = cpu_to_be32(lnum);
642 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
643 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
644 
645 retry:
646 	pnum = ubi_wl_get_peb(ubi);
647 	if (pnum < 0) {
648 		ubi_free_vid_hdr(ubi, vid_hdr);
649 		leb_write_unlock(ubi, vol_id, lnum);
650 		return pnum;
651 	}
652 
653 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
654 		len, offset, vol_id, lnum, pnum);
655 
656 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
657 	if (err) {
658 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
659 			 vol_id, lnum, pnum);
660 		goto write_error;
661 	}
662 
663 	if (len) {
664 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
665 		if (err) {
666 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
667 				 len, offset, vol_id, lnum, pnum);
668 			goto write_error;
669 		}
670 	}
671 
672 	down_read(&ubi->fm_sem);
673 	vol->eba_tbl[lnum] = pnum;
674 	up_read(&ubi->fm_sem);
675 
676 	leb_write_unlock(ubi, vol_id, lnum);
677 	ubi_free_vid_hdr(ubi, vid_hdr);
678 	return 0;
679 
680 write_error:
681 	if (err != -EIO || !ubi->bad_allowed) {
682 		ubi_ro_mode(ubi);
683 		leb_write_unlock(ubi, vol_id, lnum);
684 		ubi_free_vid_hdr(ubi, vid_hdr);
685 		return err;
686 	}
687 
688 	/*
689 	 * Fortunately, this is the first write operation to this physical
690 	 * eraseblock, so just put it and request a new one. We assume that if
691 	 * this physical eraseblock went bad, the erase code will handle that.
692 	 */
693 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
694 	if (err || ++tries > UBI_IO_RETRIES) {
695 		ubi_ro_mode(ubi);
696 		leb_write_unlock(ubi, vol_id, lnum);
697 		ubi_free_vid_hdr(ubi, vid_hdr);
698 		return err;
699 	}
700 
701 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
702 	ubi_msg(ubi, "try another PEB");
703 	goto retry;
704 }
705 
706 /**
707  * ubi_eba_write_leb_st - write data to static volume.
708  * @ubi: UBI device description object
709  * @vol: volume description object
710  * @lnum: logical eraseblock number
711  * @buf: data to write
712  * @len: how many bytes to write
713  * @used_ebs: how many logical eraseblocks will this volume contain
714  *
715  * This function writes data to logical eraseblock @lnum of static volume
716  * @vol. The @used_ebs argument should contain total number of logical
717  * eraseblock in this static volume.
718  *
719  * When writing to the last logical eraseblock, the @len argument doesn't have
720  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
721  * to the real data size, although the @buf buffer has to contain the
722  * alignment. In all other cases, @len has to be aligned.
723  *
724  * It is prohibited to write more than once to logical eraseblocks of static
725  * volumes. This function returns zero in case of success and a negative error
726  * code in case of failure.
727  */
728 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
729 			 int lnum, const void *buf, int len, int used_ebs)
730 {
731 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
732 	struct ubi_vid_hdr *vid_hdr;
733 	uint32_t crc;
734 
735 	if (ubi->ro_mode)
736 		return -EROFS;
737 
738 	if (lnum == used_ebs - 1)
739 		/* If this is the last LEB @len may be unaligned */
740 		len = ALIGN(data_size, ubi->min_io_size);
741 	else
742 		ubi_assert(!(len & (ubi->min_io_size - 1)));
743 
744 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
745 	if (!vid_hdr)
746 		return -ENOMEM;
747 
748 	err = leb_write_lock(ubi, vol_id, lnum);
749 	if (err) {
750 		ubi_free_vid_hdr(ubi, vid_hdr);
751 		return err;
752 	}
753 
754 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
755 	vid_hdr->vol_id = cpu_to_be32(vol_id);
756 	vid_hdr->lnum = cpu_to_be32(lnum);
757 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
758 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
759 
760 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
761 	vid_hdr->vol_type = UBI_VID_STATIC;
762 	vid_hdr->data_size = cpu_to_be32(data_size);
763 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
764 	vid_hdr->data_crc = cpu_to_be32(crc);
765 
766 retry:
767 	pnum = ubi_wl_get_peb(ubi);
768 	if (pnum < 0) {
769 		ubi_free_vid_hdr(ubi, vid_hdr);
770 		leb_write_unlock(ubi, vol_id, lnum);
771 		return pnum;
772 	}
773 
774 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
775 		len, vol_id, lnum, pnum, used_ebs);
776 
777 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
778 	if (err) {
779 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
780 			 vol_id, lnum, pnum);
781 		goto write_error;
782 	}
783 
784 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
785 	if (err) {
786 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
787 			 len, pnum);
788 		goto write_error;
789 	}
790 
791 	ubi_assert(vol->eba_tbl[lnum] < 0);
792 	down_read(&ubi->fm_sem);
793 	vol->eba_tbl[lnum] = pnum;
794 	up_read(&ubi->fm_sem);
795 
796 	leb_write_unlock(ubi, vol_id, lnum);
797 	ubi_free_vid_hdr(ubi, vid_hdr);
798 	return 0;
799 
800 write_error:
801 	if (err != -EIO || !ubi->bad_allowed) {
802 		/*
803 		 * This flash device does not admit of bad eraseblocks or
804 		 * something nasty and unexpected happened. Switch to read-only
805 		 * mode just in case.
806 		 */
807 		ubi_ro_mode(ubi);
808 		leb_write_unlock(ubi, vol_id, lnum);
809 		ubi_free_vid_hdr(ubi, vid_hdr);
810 		return err;
811 	}
812 
813 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
814 	if (err || ++tries > UBI_IO_RETRIES) {
815 		ubi_ro_mode(ubi);
816 		leb_write_unlock(ubi, vol_id, lnum);
817 		ubi_free_vid_hdr(ubi, vid_hdr);
818 		return err;
819 	}
820 
821 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
822 	ubi_msg(ubi, "try another PEB");
823 	goto retry;
824 }
825 
826 /*
827  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
828  * @ubi: UBI device description object
829  * @vol: volume description object
830  * @lnum: logical eraseblock number
831  * @buf: data to write
832  * @len: how many bytes to write
833  *
834  * This function changes the contents of a logical eraseblock atomically. @buf
835  * has to contain new logical eraseblock data, and @len - the length of the
836  * data, which has to be aligned. This function guarantees that in case of an
837  * unclean reboot the old contents is preserved. Returns zero in case of
838  * success and a negative error code in case of failure.
839  *
840  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
841  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
842  */
843 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
844 			      int lnum, const void *buf, int len)
845 {
846 	int err, pnum, tries = 0, vol_id = vol->vol_id;
847 	struct ubi_vid_hdr *vid_hdr;
848 	uint32_t crc;
849 
850 	if (ubi->ro_mode)
851 		return -EROFS;
852 
853 	if (len == 0) {
854 		/*
855 		 * Special case when data length is zero. In this case the LEB
856 		 * has to be unmapped and mapped somewhere else.
857 		 */
858 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
859 		if (err)
860 			return err;
861 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
862 	}
863 
864 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
865 	if (!vid_hdr)
866 		return -ENOMEM;
867 
868 	mutex_lock(&ubi->alc_mutex);
869 	err = leb_write_lock(ubi, vol_id, lnum);
870 	if (err)
871 		goto out_mutex;
872 
873 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
874 	vid_hdr->vol_id = cpu_to_be32(vol_id);
875 	vid_hdr->lnum = cpu_to_be32(lnum);
876 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
877 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
878 
879 	crc = crc32(UBI_CRC32_INIT, buf, len);
880 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
881 	vid_hdr->data_size = cpu_to_be32(len);
882 	vid_hdr->copy_flag = 1;
883 	vid_hdr->data_crc = cpu_to_be32(crc);
884 
885 retry:
886 	pnum = ubi_wl_get_peb(ubi);
887 	if (pnum < 0) {
888 		err = pnum;
889 		goto out_leb_unlock;
890 	}
891 
892 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
893 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
894 
895 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
896 	if (err) {
897 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
898 			 vol_id, lnum, pnum);
899 		goto write_error;
900 	}
901 
902 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
903 	if (err) {
904 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
905 			 len, pnum);
906 		goto write_error;
907 	}
908 
909 	if (vol->eba_tbl[lnum] >= 0) {
910 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
911 		if (err)
912 			goto out_leb_unlock;
913 	}
914 
915 	down_read(&ubi->fm_sem);
916 	vol->eba_tbl[lnum] = pnum;
917 	up_read(&ubi->fm_sem);
918 
919 out_leb_unlock:
920 	leb_write_unlock(ubi, vol_id, lnum);
921 out_mutex:
922 	mutex_unlock(&ubi->alc_mutex);
923 	ubi_free_vid_hdr(ubi, vid_hdr);
924 	return err;
925 
926 write_error:
927 	if (err != -EIO || !ubi->bad_allowed) {
928 		/*
929 		 * This flash device does not admit of bad eraseblocks or
930 		 * something nasty and unexpected happened. Switch to read-only
931 		 * mode just in case.
932 		 */
933 		ubi_ro_mode(ubi);
934 		goto out_leb_unlock;
935 	}
936 
937 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
938 	if (err || ++tries > UBI_IO_RETRIES) {
939 		ubi_ro_mode(ubi);
940 		goto out_leb_unlock;
941 	}
942 
943 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
944 	ubi_msg(ubi, "try another PEB");
945 	goto retry;
946 }
947 
948 /**
949  * is_error_sane - check whether a read error is sane.
950  * @err: code of the error happened during reading
951  *
952  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
953  * cannot read data from the target PEB (an error @err happened). If the error
954  * code is sane, then we treat this error as non-fatal. Otherwise the error is
955  * fatal and UBI will be switched to R/O mode later.
956  *
957  * The idea is that we try not to switch to R/O mode if the read error is
958  * something which suggests there was a real read problem. E.g., %-EIO. Or a
959  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
960  * mode, simply because we do not know what happened at the MTD level, and we
961  * cannot handle this. E.g., the underlying driver may have become crazy, and
962  * it is safer to switch to R/O mode to preserve the data.
963  *
964  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
965  * which we have just written.
966  */
967 static int is_error_sane(int err)
968 {
969 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
970 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
971 		return 0;
972 	return 1;
973 }
974 
975 /**
976  * ubi_eba_copy_leb - copy logical eraseblock.
977  * @ubi: UBI device description object
978  * @from: physical eraseblock number from where to copy
979  * @to: physical eraseblock number where to copy
980  * @vid_hdr: VID header of the @from physical eraseblock
981  *
982  * This function copies logical eraseblock from physical eraseblock @from to
983  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
984  * function. Returns:
985  *   o %0 in case of success;
986  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
987  *   o a negative error code in case of failure.
988  */
989 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
990 		     struct ubi_vid_hdr *vid_hdr)
991 {
992 	int err, vol_id, lnum, data_size, aldata_size, idx;
993 	struct ubi_volume *vol;
994 	uint32_t crc;
995 
996 	vol_id = be32_to_cpu(vid_hdr->vol_id);
997 	lnum = be32_to_cpu(vid_hdr->lnum);
998 
999 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1000 
1001 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1002 		data_size = be32_to_cpu(vid_hdr->data_size);
1003 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1004 	} else
1005 		data_size = aldata_size =
1006 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1007 
1008 	idx = vol_id2idx(ubi, vol_id);
1009 	spin_lock(&ubi->volumes_lock);
1010 	/*
1011 	 * Note, we may race with volume deletion, which means that the volume
1012 	 * this logical eraseblock belongs to might be being deleted. Since the
1013 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1014 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1015 	 */
1016 	vol = ubi->volumes[idx];
1017 	spin_unlock(&ubi->volumes_lock);
1018 	if (!vol) {
1019 		/* No need to do further work, cancel */
1020 		dbg_wl("volume %d is being removed, cancel", vol_id);
1021 		return MOVE_CANCEL_RACE;
1022 	}
1023 
1024 	/*
1025 	 * We do not want anybody to write to this logical eraseblock while we
1026 	 * are moving it, so lock it.
1027 	 *
1028 	 * Note, we are using non-waiting locking here, because we cannot sleep
1029 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1030 	 * unmapping the LEB which is mapped to the PEB we are going to move
1031 	 * (@from). This task locks the LEB and goes sleep in the
1032 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1033 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1034 	 * LEB is already locked, we just do not move it and return
1035 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1036 	 * we do not know the reasons of the contention - it may be just a
1037 	 * normal I/O on this LEB, so we want to re-try.
1038 	 */
1039 	err = leb_write_trylock(ubi, vol_id, lnum);
1040 	if (err) {
1041 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1042 		return MOVE_RETRY;
1043 	}
1044 
1045 	/*
1046 	 * The LEB might have been put meanwhile, and the task which put it is
1047 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1048 	 * cancel it.
1049 	 */
1050 	if (vol->eba_tbl[lnum] != from) {
1051 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1052 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1053 		err = MOVE_CANCEL_RACE;
1054 		goto out_unlock_leb;
1055 	}
1056 
1057 	/*
1058 	 * OK, now the LEB is locked and we can safely start moving it. Since
1059 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1060 	 * with some other functions - we lock the buffer by taking the
1061 	 * @ubi->buf_mutex.
1062 	 */
1063 	mutex_lock(&ubi->buf_mutex);
1064 	dbg_wl("read %d bytes of data", aldata_size);
1065 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1066 	if (err && err != UBI_IO_BITFLIPS) {
1067 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1068 			 err, from);
1069 		err = MOVE_SOURCE_RD_ERR;
1070 		goto out_unlock_buf;
1071 	}
1072 
1073 	/*
1074 	 * Now we have got to calculate how much data we have to copy. In
1075 	 * case of a static volume it is fairly easy - the VID header contains
1076 	 * the data size. In case of a dynamic volume it is more difficult - we
1077 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1078 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1079 	 * may have some side-effects. And not only this. It is important not
1080 	 * to include those 0xFFs to CRC because later the they may be filled
1081 	 * by data.
1082 	 */
1083 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1084 		aldata_size = data_size =
1085 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1086 
1087 	cond_resched();
1088 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1089 	cond_resched();
1090 
1091 	/*
1092 	 * It may turn out to be that the whole @from physical eraseblock
1093 	 * contains only 0xFF bytes. Then we have to only write the VID header
1094 	 * and do not write any data. This also means we should not set
1095 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1096 	 */
1097 	if (data_size > 0) {
1098 		vid_hdr->copy_flag = 1;
1099 		vid_hdr->data_size = cpu_to_be32(data_size);
1100 		vid_hdr->data_crc = cpu_to_be32(crc);
1101 	}
1102 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1103 
1104 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1105 	if (err) {
1106 		if (err == -EIO)
1107 			err = MOVE_TARGET_WR_ERR;
1108 		goto out_unlock_buf;
1109 	}
1110 
1111 	cond_resched();
1112 
1113 	/* Read the VID header back and check if it was written correctly */
1114 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1115 	if (err) {
1116 		if (err != UBI_IO_BITFLIPS) {
1117 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1118 				 err, to);
1119 			if (is_error_sane(err))
1120 				err = MOVE_TARGET_RD_ERR;
1121 		} else
1122 			err = MOVE_TARGET_BITFLIPS;
1123 		goto out_unlock_buf;
1124 	}
1125 
1126 	if (data_size > 0) {
1127 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1128 		if (err) {
1129 			if (err == -EIO)
1130 				err = MOVE_TARGET_WR_ERR;
1131 			goto out_unlock_buf;
1132 		}
1133 
1134 		cond_resched();
1135 
1136 		/*
1137 		 * We've written the data and are going to read it back to make
1138 		 * sure it was written correctly.
1139 		 */
1140 		memset(ubi->peb_buf, 0xFF, aldata_size);
1141 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1142 		if (err) {
1143 			if (err != UBI_IO_BITFLIPS) {
1144 				ubi_warn(ubi, "error %d while reading data back from PEB %d",
1145 					 err, to);
1146 				if (is_error_sane(err))
1147 					err = MOVE_TARGET_RD_ERR;
1148 			} else
1149 				err = MOVE_TARGET_BITFLIPS;
1150 			goto out_unlock_buf;
1151 		}
1152 
1153 		cond_resched();
1154 
1155 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1156 			ubi_warn(ubi, "read data back from PEB %d and it is different",
1157 				 to);
1158 			err = -EINVAL;
1159 			goto out_unlock_buf;
1160 		}
1161 	}
1162 
1163 	ubi_assert(vol->eba_tbl[lnum] == from);
1164 	down_read(&ubi->fm_sem);
1165 	vol->eba_tbl[lnum] = to;
1166 	up_read(&ubi->fm_sem);
1167 
1168 out_unlock_buf:
1169 	mutex_unlock(&ubi->buf_mutex);
1170 out_unlock_leb:
1171 	leb_write_unlock(ubi, vol_id, lnum);
1172 	return err;
1173 }
1174 
1175 /**
1176  * print_rsvd_warning - warn about not having enough reserved PEBs.
1177  * @ubi: UBI device description object
1178  *
1179  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1180  * cannot reserve enough PEBs for bad block handling. This function makes a
1181  * decision whether we have to print a warning or not. The algorithm is as
1182  * follows:
1183  *   o if this is a new UBI image, then just print the warning
1184  *   o if this is an UBI image which has already been used for some time, print
1185  *     a warning only if we can reserve less than 10% of the expected amount of
1186  *     the reserved PEB.
1187  *
1188  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1189  * of PEBs becomes smaller, which is normal and we do not want to scare users
1190  * with a warning every time they attach the MTD device. This was an issue
1191  * reported by real users.
1192  */
1193 static void print_rsvd_warning(struct ubi_device *ubi,
1194 			       struct ubi_attach_info *ai)
1195 {
1196 	/*
1197 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1198 	 * large number to distinguish between newly flashed and used images.
1199 	 */
1200 	if (ai->max_sqnum > (1 << 18)) {
1201 		int min = ubi->beb_rsvd_level / 10;
1202 
1203 		if (!min)
1204 			min = 1;
1205 		if (ubi->beb_rsvd_pebs > min)
1206 			return;
1207 	}
1208 
1209 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1210 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1211 	if (ubi->corr_peb_count)
1212 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1213 			 ubi->corr_peb_count);
1214 }
1215 
1216 /**
1217  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1218  * @ubi: UBI device description object
1219  * @ai_fastmap: UBI attach info object created by fastmap
1220  * @ai_scan: UBI attach info object created by scanning
1221  *
1222  * Returns < 0 in case of an internal error, 0 otherwise.
1223  * If a bad EBA table entry was found it will be printed out and
1224  * ubi_assert() triggers.
1225  */
1226 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1227 		   struct ubi_attach_info *ai_scan)
1228 {
1229 	int i, j, num_volumes, ret = 0;
1230 	int **scan_eba, **fm_eba;
1231 	struct ubi_ainf_volume *av;
1232 	struct ubi_volume *vol;
1233 	struct ubi_ainf_peb *aeb;
1234 	struct rb_node *rb;
1235 
1236 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1237 
1238 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1239 	if (!scan_eba)
1240 		return -ENOMEM;
1241 
1242 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1243 	if (!fm_eba) {
1244 		kfree(scan_eba);
1245 		return -ENOMEM;
1246 	}
1247 
1248 	for (i = 0; i < num_volumes; i++) {
1249 		vol = ubi->volumes[i];
1250 		if (!vol)
1251 			continue;
1252 
1253 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1254 				      GFP_KERNEL);
1255 		if (!scan_eba[i]) {
1256 			ret = -ENOMEM;
1257 			goto out_free;
1258 		}
1259 
1260 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1261 				    GFP_KERNEL);
1262 		if (!fm_eba[i]) {
1263 			ret = -ENOMEM;
1264 			goto out_free;
1265 		}
1266 
1267 		for (j = 0; j < vol->reserved_pebs; j++)
1268 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1269 
1270 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1271 		if (!av)
1272 			continue;
1273 
1274 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1275 			scan_eba[i][aeb->lnum] = aeb->pnum;
1276 
1277 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1278 		if (!av)
1279 			continue;
1280 
1281 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1282 			fm_eba[i][aeb->lnum] = aeb->pnum;
1283 
1284 		for (j = 0; j < vol->reserved_pebs; j++) {
1285 			if (scan_eba[i][j] != fm_eba[i][j]) {
1286 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1287 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1288 					continue;
1289 
1290 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1291 					vol->vol_id, i, fm_eba[i][j],
1292 					scan_eba[i][j]);
1293 				ubi_assert(0);
1294 			}
1295 		}
1296 	}
1297 
1298 out_free:
1299 	for (i = 0; i < num_volumes; i++) {
1300 		if (!ubi->volumes[i])
1301 			continue;
1302 
1303 		kfree(scan_eba[i]);
1304 		kfree(fm_eba[i]);
1305 	}
1306 
1307 	kfree(scan_eba);
1308 	kfree(fm_eba);
1309 	return ret;
1310 }
1311 
1312 /**
1313  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1314  * @ubi: UBI device description object
1315  * @ai: attaching information
1316  *
1317  * This function returns zero in case of success and a negative error code in
1318  * case of failure.
1319  */
1320 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1321 {
1322 	int i, j, err, num_volumes;
1323 	struct ubi_ainf_volume *av;
1324 	struct ubi_volume *vol;
1325 	struct ubi_ainf_peb *aeb;
1326 	struct rb_node *rb;
1327 
1328 	dbg_eba("initialize EBA sub-system");
1329 
1330 	spin_lock_init(&ubi->ltree_lock);
1331 	mutex_init(&ubi->alc_mutex);
1332 	ubi->ltree = RB_ROOT;
1333 
1334 	ubi->global_sqnum = ai->max_sqnum + 1;
1335 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1336 
1337 	for (i = 0; i < num_volumes; i++) {
1338 		vol = ubi->volumes[i];
1339 		if (!vol)
1340 			continue;
1341 
1342 		cond_resched();
1343 
1344 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1345 				       GFP_KERNEL);
1346 		if (!vol->eba_tbl) {
1347 			err = -ENOMEM;
1348 			goto out_free;
1349 		}
1350 
1351 		for (j = 0; j < vol->reserved_pebs; j++)
1352 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1353 
1354 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1355 		if (!av)
1356 			continue;
1357 
1358 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1359 			if (aeb->lnum >= vol->reserved_pebs)
1360 				/*
1361 				 * This may happen in case of an unclean reboot
1362 				 * during re-size.
1363 				 */
1364 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1365 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
1366 		}
1367 	}
1368 
1369 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1370 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1371 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1372 		if (ubi->corr_peb_count)
1373 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1374 				ubi->corr_peb_count);
1375 		err = -ENOSPC;
1376 		goto out_free;
1377 	}
1378 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1379 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1380 
1381 	if (ubi->bad_allowed) {
1382 		ubi_calculate_reserved(ubi);
1383 
1384 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1385 			/* No enough free physical eraseblocks */
1386 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1387 			print_rsvd_warning(ubi, ai);
1388 		} else
1389 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1390 
1391 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1392 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1393 	}
1394 
1395 	dbg_eba("EBA sub-system is initialized");
1396 	return 0;
1397 
1398 out_free:
1399 	for (i = 0; i < num_volumes; i++) {
1400 		if (!ubi->volumes[i])
1401 			continue;
1402 		kfree(ubi->volumes[i]->eba_tbl);
1403 		ubi->volumes[i]->eba_tbl = NULL;
1404 	}
1405 	return err;
1406 }
1407