xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 034f90b3)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * next_sqnum - get next sequence number.
54  * @ubi: UBI device description object
55  *
56  * This function returns next sequence number to use, which is just the current
57  * global sequence counter value. It also increases the global sequence
58  * counter.
59  */
60 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
61 {
62 	unsigned long long sqnum;
63 
64 	spin_lock(&ubi->ltree_lock);
65 	sqnum = ubi->global_sqnum++;
66 	spin_unlock(&ubi->ltree_lock);
67 
68 	return sqnum;
69 }
70 
71 /**
72  * ubi_get_compat - get compatibility flags of a volume.
73  * @ubi: UBI device description object
74  * @vol_id: volume ID
75  *
76  * This function returns compatibility flags for an internal volume. User
77  * volumes have no compatibility flags, so %0 is returned.
78  */
79 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
80 {
81 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
82 		return UBI_LAYOUT_VOLUME_COMPAT;
83 	return 0;
84 }
85 
86 /**
87  * ltree_lookup - look up the lock tree.
88  * @ubi: UBI device description object
89  * @vol_id: volume ID
90  * @lnum: logical eraseblock number
91  *
92  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
93  * object if the logical eraseblock is locked and %NULL if it is not.
94  * @ubi->ltree_lock has to be locked.
95  */
96 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
97 					    int lnum)
98 {
99 	struct rb_node *p;
100 
101 	p = ubi->ltree.rb_node;
102 	while (p) {
103 		struct ubi_ltree_entry *le;
104 
105 		le = rb_entry(p, struct ubi_ltree_entry, rb);
106 
107 		if (vol_id < le->vol_id)
108 			p = p->rb_left;
109 		else if (vol_id > le->vol_id)
110 			p = p->rb_right;
111 		else {
112 			if (lnum < le->lnum)
113 				p = p->rb_left;
114 			else if (lnum > le->lnum)
115 				p = p->rb_right;
116 			else
117 				return le;
118 		}
119 	}
120 
121 	return NULL;
122 }
123 
124 /**
125  * ltree_add_entry - add new entry to the lock tree.
126  * @ubi: UBI device description object
127  * @vol_id: volume ID
128  * @lnum: logical eraseblock number
129  *
130  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
131  * lock tree. If such entry is already there, its usage counter is increased.
132  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
133  * failed.
134  */
135 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
136 					       int vol_id, int lnum)
137 {
138 	struct ubi_ltree_entry *le, *le1, *le_free;
139 
140 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
141 	if (!le)
142 		return ERR_PTR(-ENOMEM);
143 
144 	le->users = 0;
145 	init_rwsem(&le->mutex);
146 	le->vol_id = vol_id;
147 	le->lnum = lnum;
148 
149 	spin_lock(&ubi->ltree_lock);
150 	le1 = ltree_lookup(ubi, vol_id, lnum);
151 
152 	if (le1) {
153 		/*
154 		 * This logical eraseblock is already locked. The newly
155 		 * allocated lock entry is not needed.
156 		 */
157 		le_free = le;
158 		le = le1;
159 	} else {
160 		struct rb_node **p, *parent = NULL;
161 
162 		/*
163 		 * No lock entry, add the newly allocated one to the
164 		 * @ubi->ltree RB-tree.
165 		 */
166 		le_free = NULL;
167 
168 		p = &ubi->ltree.rb_node;
169 		while (*p) {
170 			parent = *p;
171 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
172 
173 			if (vol_id < le1->vol_id)
174 				p = &(*p)->rb_left;
175 			else if (vol_id > le1->vol_id)
176 				p = &(*p)->rb_right;
177 			else {
178 				ubi_assert(lnum != le1->lnum);
179 				if (lnum < le1->lnum)
180 					p = &(*p)->rb_left;
181 				else
182 					p = &(*p)->rb_right;
183 			}
184 		}
185 
186 		rb_link_node(&le->rb, parent, p);
187 		rb_insert_color(&le->rb, &ubi->ltree);
188 	}
189 	le->users += 1;
190 	spin_unlock(&ubi->ltree_lock);
191 
192 	kfree(le_free);
193 	return le;
194 }
195 
196 /**
197  * leb_read_lock - lock logical eraseblock for reading.
198  * @ubi: UBI device description object
199  * @vol_id: volume ID
200  * @lnum: logical eraseblock number
201  *
202  * This function locks a logical eraseblock for reading. Returns zero in case
203  * of success and a negative error code in case of failure.
204  */
205 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
206 {
207 	struct ubi_ltree_entry *le;
208 
209 	le = ltree_add_entry(ubi, vol_id, lnum);
210 	if (IS_ERR(le))
211 		return PTR_ERR(le);
212 	down_read(&le->mutex);
213 	return 0;
214 }
215 
216 /**
217  * leb_read_unlock - unlock logical eraseblock.
218  * @ubi: UBI device description object
219  * @vol_id: volume ID
220  * @lnum: logical eraseblock number
221  */
222 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
223 {
224 	struct ubi_ltree_entry *le;
225 
226 	spin_lock(&ubi->ltree_lock);
227 	le = ltree_lookup(ubi, vol_id, lnum);
228 	le->users -= 1;
229 	ubi_assert(le->users >= 0);
230 	up_read(&le->mutex);
231 	if (le->users == 0) {
232 		rb_erase(&le->rb, &ubi->ltree);
233 		kfree(le);
234 	}
235 	spin_unlock(&ubi->ltree_lock);
236 }
237 
238 /**
239  * leb_write_lock - lock logical eraseblock for writing.
240  * @ubi: UBI device description object
241  * @vol_id: volume ID
242  * @lnum: logical eraseblock number
243  *
244  * This function locks a logical eraseblock for writing. Returns zero in case
245  * of success and a negative error code in case of failure.
246  */
247 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
248 {
249 	struct ubi_ltree_entry *le;
250 
251 	le = ltree_add_entry(ubi, vol_id, lnum);
252 	if (IS_ERR(le))
253 		return PTR_ERR(le);
254 	down_write(&le->mutex);
255 	return 0;
256 }
257 
258 /**
259  * leb_write_lock - lock logical eraseblock for writing.
260  * @ubi: UBI device description object
261  * @vol_id: volume ID
262  * @lnum: logical eraseblock number
263  *
264  * This function locks a logical eraseblock for writing if there is no
265  * contention and does nothing if there is contention. Returns %0 in case of
266  * success, %1 in case of contention, and and a negative error code in case of
267  * failure.
268  */
269 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
270 {
271 	struct ubi_ltree_entry *le;
272 
273 	le = ltree_add_entry(ubi, vol_id, lnum);
274 	if (IS_ERR(le))
275 		return PTR_ERR(le);
276 	if (down_write_trylock(&le->mutex))
277 		return 0;
278 
279 	/* Contention, cancel */
280 	spin_lock(&ubi->ltree_lock);
281 	le->users -= 1;
282 	ubi_assert(le->users >= 0);
283 	if (le->users == 0) {
284 		rb_erase(&le->rb, &ubi->ltree);
285 		kfree(le);
286 	}
287 	spin_unlock(&ubi->ltree_lock);
288 
289 	return 1;
290 }
291 
292 /**
293  * leb_write_unlock - unlock logical eraseblock.
294  * @ubi: UBI device description object
295  * @vol_id: volume ID
296  * @lnum: logical eraseblock number
297  */
298 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
299 {
300 	struct ubi_ltree_entry *le;
301 
302 	spin_lock(&ubi->ltree_lock);
303 	le = ltree_lookup(ubi, vol_id, lnum);
304 	le->users -= 1;
305 	ubi_assert(le->users >= 0);
306 	up_write(&le->mutex);
307 	if (le->users == 0) {
308 		rb_erase(&le->rb, &ubi->ltree);
309 		kfree(le);
310 	}
311 	spin_unlock(&ubi->ltree_lock);
312 }
313 
314 /**
315  * ubi_eba_unmap_leb - un-map logical eraseblock.
316  * @ubi: UBI device description object
317  * @vol: volume description object
318  * @lnum: logical eraseblock number
319  *
320  * This function un-maps logical eraseblock @lnum and schedules corresponding
321  * physical eraseblock for erasure. Returns zero in case of success and a
322  * negative error code in case of failure.
323  */
324 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
325 		      int lnum)
326 {
327 	int err, pnum, vol_id = vol->vol_id;
328 
329 	if (ubi->ro_mode)
330 		return -EROFS;
331 
332 	err = leb_write_lock(ubi, vol_id, lnum);
333 	if (err)
334 		return err;
335 
336 	pnum = vol->eba_tbl[lnum];
337 	if (pnum < 0)
338 		/* This logical eraseblock is already unmapped */
339 		goto out_unlock;
340 
341 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
342 
343 	down_read(&ubi->fm_sem);
344 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
345 	up_read(&ubi->fm_sem);
346 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
347 
348 out_unlock:
349 	leb_write_unlock(ubi, vol_id, lnum);
350 	return err;
351 }
352 
353 /**
354  * ubi_eba_read_leb - read data.
355  * @ubi: UBI device description object
356  * @vol: volume description object
357  * @lnum: logical eraseblock number
358  * @buf: buffer to store the read data
359  * @offset: offset from where to read
360  * @len: how many bytes to read
361  * @check: data CRC check flag
362  *
363  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
364  * bytes. The @check flag only makes sense for static volumes and forces
365  * eraseblock data CRC checking.
366  *
367  * In case of success this function returns zero. In case of a static volume,
368  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
369  * returned for any volume type if an ECC error was detected by the MTD device
370  * driver. Other negative error cored may be returned in case of other errors.
371  */
372 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
373 		     void *buf, int offset, int len, int check)
374 {
375 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
376 	struct ubi_vid_hdr *vid_hdr;
377 	uint32_t uninitialized_var(crc);
378 
379 	err = leb_read_lock(ubi, vol_id, lnum);
380 	if (err)
381 		return err;
382 
383 	pnum = vol->eba_tbl[lnum];
384 	if (pnum < 0) {
385 		/*
386 		 * The logical eraseblock is not mapped, fill the whole buffer
387 		 * with 0xFF bytes. The exception is static volumes for which
388 		 * it is an error to read unmapped logical eraseblocks.
389 		 */
390 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
391 			len, offset, vol_id, lnum);
392 		leb_read_unlock(ubi, vol_id, lnum);
393 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
394 		memset(buf, 0xFF, len);
395 		return 0;
396 	}
397 
398 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
399 		len, offset, vol_id, lnum, pnum);
400 
401 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
402 		check = 0;
403 
404 retry:
405 	if (check) {
406 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
407 		if (!vid_hdr) {
408 			err = -ENOMEM;
409 			goto out_unlock;
410 		}
411 
412 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
413 		if (err && err != UBI_IO_BITFLIPS) {
414 			if (err > 0) {
415 				/*
416 				 * The header is either absent or corrupted.
417 				 * The former case means there is a bug -
418 				 * switch to read-only mode just in case.
419 				 * The latter case means a real corruption - we
420 				 * may try to recover data. FIXME: but this is
421 				 * not implemented.
422 				 */
423 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
424 				    err == UBI_IO_BAD_HDR) {
425 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
426 						 pnum, vol_id, lnum);
427 					err = -EBADMSG;
428 				} else {
429 					err = -EINVAL;
430 					ubi_ro_mode(ubi);
431 				}
432 			}
433 			goto out_free;
434 		} else if (err == UBI_IO_BITFLIPS)
435 			scrub = 1;
436 
437 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
438 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
439 
440 		crc = be32_to_cpu(vid_hdr->data_crc);
441 		ubi_free_vid_hdr(ubi, vid_hdr);
442 	}
443 
444 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
445 	if (err) {
446 		if (err == UBI_IO_BITFLIPS)
447 			scrub = 1;
448 		else if (mtd_is_eccerr(err)) {
449 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
450 				goto out_unlock;
451 			scrub = 1;
452 			if (!check) {
453 				ubi_msg(ubi, "force data checking");
454 				check = 1;
455 				goto retry;
456 			}
457 		} else
458 			goto out_unlock;
459 	}
460 
461 	if (check) {
462 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
463 		if (crc1 != crc) {
464 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
465 				 crc1, crc);
466 			err = -EBADMSG;
467 			goto out_unlock;
468 		}
469 	}
470 
471 	if (scrub)
472 		err = ubi_wl_scrub_peb(ubi, pnum);
473 
474 	leb_read_unlock(ubi, vol_id, lnum);
475 	return err;
476 
477 out_free:
478 	ubi_free_vid_hdr(ubi, vid_hdr);
479 out_unlock:
480 	leb_read_unlock(ubi, vol_id, lnum);
481 	return err;
482 }
483 
484 /**
485  * ubi_eba_read_leb_sg - read data into a scatter gather list.
486  * @ubi: UBI device description object
487  * @vol: volume description object
488  * @lnum: logical eraseblock number
489  * @sgl: UBI scatter gather list to store the read data
490  * @offset: offset from where to read
491  * @len: how many bytes to read
492  * @check: data CRC check flag
493  *
494  * This function works exactly like ubi_eba_read_leb(). But instead of
495  * storing the read data into a buffer it writes to an UBI scatter gather
496  * list.
497  */
498 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
499 			struct ubi_sgl *sgl, int lnum, int offset, int len,
500 			int check)
501 {
502 	int to_read;
503 	int ret;
504 	struct scatterlist *sg;
505 
506 	for (;;) {
507 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
508 		sg = &sgl->sg[sgl->list_pos];
509 		if (len < sg->length - sgl->page_pos)
510 			to_read = len;
511 		else
512 			to_read = sg->length - sgl->page_pos;
513 
514 		ret = ubi_eba_read_leb(ubi, vol, lnum,
515 				       sg_virt(sg) + sgl->page_pos, offset,
516 				       to_read, check);
517 		if (ret < 0)
518 			return ret;
519 
520 		offset += to_read;
521 		len -= to_read;
522 		if (!len) {
523 			sgl->page_pos += to_read;
524 			if (sgl->page_pos == sg->length) {
525 				sgl->list_pos++;
526 				sgl->page_pos = 0;
527 			}
528 
529 			break;
530 		}
531 
532 		sgl->list_pos++;
533 		sgl->page_pos = 0;
534 	}
535 
536 	return ret;
537 }
538 
539 /**
540  * recover_peb - recover from write failure.
541  * @ubi: UBI device description object
542  * @pnum: the physical eraseblock to recover
543  * @vol_id: volume ID
544  * @lnum: logical eraseblock number
545  * @buf: data which was not written because of the write failure
546  * @offset: offset of the failed write
547  * @len: how many bytes should have been written
548  *
549  * This function is called in case of a write failure and moves all good data
550  * from the potentially bad physical eraseblock to a good physical eraseblock.
551  * This function also writes the data which was not written due to the failure.
552  * Returns new physical eraseblock number in case of success, and a negative
553  * error code in case of failure.
554  */
555 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
556 		       const void *buf, int offset, int len)
557 {
558 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
559 	struct ubi_volume *vol = ubi->volumes[idx];
560 	struct ubi_vid_hdr *vid_hdr;
561 
562 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
563 	if (!vid_hdr)
564 		return -ENOMEM;
565 
566 retry:
567 	new_pnum = ubi_wl_get_peb(ubi);
568 	if (new_pnum < 0) {
569 		ubi_free_vid_hdr(ubi, vid_hdr);
570 		return new_pnum;
571 	}
572 
573 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
574 		pnum, new_pnum);
575 
576 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
577 	if (err && err != UBI_IO_BITFLIPS) {
578 		if (err > 0)
579 			err = -EIO;
580 		goto out_put;
581 	}
582 
583 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
584 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
585 	if (err)
586 		goto write_error;
587 
588 	data_size = offset + len;
589 	mutex_lock(&ubi->buf_mutex);
590 	memset(ubi->peb_buf + offset, 0xFF, len);
591 
592 	/* Read everything before the area where the write failure happened */
593 	if (offset > 0) {
594 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
595 		if (err && err != UBI_IO_BITFLIPS)
596 			goto out_unlock;
597 	}
598 
599 	memcpy(ubi->peb_buf + offset, buf, len);
600 
601 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
602 	if (err) {
603 		mutex_unlock(&ubi->buf_mutex);
604 		goto write_error;
605 	}
606 
607 	mutex_unlock(&ubi->buf_mutex);
608 	ubi_free_vid_hdr(ubi, vid_hdr);
609 
610 	down_read(&ubi->fm_sem);
611 	vol->eba_tbl[lnum] = new_pnum;
612 	up_read(&ubi->fm_sem);
613 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
614 
615 	ubi_msg(ubi, "data was successfully recovered");
616 	return 0;
617 
618 out_unlock:
619 	mutex_unlock(&ubi->buf_mutex);
620 out_put:
621 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
622 	ubi_free_vid_hdr(ubi, vid_hdr);
623 	return err;
624 
625 write_error:
626 	/*
627 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
628 	 * get another one.
629 	 */
630 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
631 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
632 	if (++tries > UBI_IO_RETRIES) {
633 		ubi_free_vid_hdr(ubi, vid_hdr);
634 		return err;
635 	}
636 	ubi_msg(ubi, "try again");
637 	goto retry;
638 }
639 
640 /**
641  * ubi_eba_write_leb - write data to dynamic volume.
642  * @ubi: UBI device description object
643  * @vol: volume description object
644  * @lnum: logical eraseblock number
645  * @buf: the data to write
646  * @offset: offset within the logical eraseblock where to write
647  * @len: how many bytes to write
648  *
649  * This function writes data to logical eraseblock @lnum of a dynamic volume
650  * @vol. Returns zero in case of success and a negative error code in case
651  * of failure. In case of error, it is possible that something was still
652  * written to the flash media, but may be some garbage.
653  */
654 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
655 		      const void *buf, int offset, int len)
656 {
657 	int err, pnum, tries = 0, vol_id = vol->vol_id;
658 	struct ubi_vid_hdr *vid_hdr;
659 
660 	if (ubi->ro_mode)
661 		return -EROFS;
662 
663 	err = leb_write_lock(ubi, vol_id, lnum);
664 	if (err)
665 		return err;
666 
667 	pnum = vol->eba_tbl[lnum];
668 	if (pnum >= 0) {
669 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
670 			len, offset, vol_id, lnum, pnum);
671 
672 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
673 		if (err) {
674 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
675 			if (err == -EIO && ubi->bad_allowed)
676 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
677 						  offset, len);
678 			if (err)
679 				ubi_ro_mode(ubi);
680 		}
681 		leb_write_unlock(ubi, vol_id, lnum);
682 		return err;
683 	}
684 
685 	/*
686 	 * The logical eraseblock is not mapped. We have to get a free physical
687 	 * eraseblock and write the volume identifier header there first.
688 	 */
689 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
690 	if (!vid_hdr) {
691 		leb_write_unlock(ubi, vol_id, lnum);
692 		return -ENOMEM;
693 	}
694 
695 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
696 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
697 	vid_hdr->vol_id = cpu_to_be32(vol_id);
698 	vid_hdr->lnum = cpu_to_be32(lnum);
699 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
700 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
701 
702 retry:
703 	pnum = ubi_wl_get_peb(ubi);
704 	if (pnum < 0) {
705 		ubi_free_vid_hdr(ubi, vid_hdr);
706 		leb_write_unlock(ubi, vol_id, lnum);
707 		return pnum;
708 	}
709 
710 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
711 		len, offset, vol_id, lnum, pnum);
712 
713 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
714 	if (err) {
715 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
716 			 vol_id, lnum, pnum);
717 		goto write_error;
718 	}
719 
720 	if (len) {
721 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
722 		if (err) {
723 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
724 				 len, offset, vol_id, lnum, pnum);
725 			goto write_error;
726 		}
727 	}
728 
729 	down_read(&ubi->fm_sem);
730 	vol->eba_tbl[lnum] = pnum;
731 	up_read(&ubi->fm_sem);
732 
733 	leb_write_unlock(ubi, vol_id, lnum);
734 	ubi_free_vid_hdr(ubi, vid_hdr);
735 	return 0;
736 
737 write_error:
738 	if (err != -EIO || !ubi->bad_allowed) {
739 		ubi_ro_mode(ubi);
740 		leb_write_unlock(ubi, vol_id, lnum);
741 		ubi_free_vid_hdr(ubi, vid_hdr);
742 		return err;
743 	}
744 
745 	/*
746 	 * Fortunately, this is the first write operation to this physical
747 	 * eraseblock, so just put it and request a new one. We assume that if
748 	 * this physical eraseblock went bad, the erase code will handle that.
749 	 */
750 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
751 	if (err || ++tries > UBI_IO_RETRIES) {
752 		ubi_ro_mode(ubi);
753 		leb_write_unlock(ubi, vol_id, lnum);
754 		ubi_free_vid_hdr(ubi, vid_hdr);
755 		return err;
756 	}
757 
758 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
759 	ubi_msg(ubi, "try another PEB");
760 	goto retry;
761 }
762 
763 /**
764  * ubi_eba_write_leb_st - write data to static volume.
765  * @ubi: UBI device description object
766  * @vol: volume description object
767  * @lnum: logical eraseblock number
768  * @buf: data to write
769  * @len: how many bytes to write
770  * @used_ebs: how many logical eraseblocks will this volume contain
771  *
772  * This function writes data to logical eraseblock @lnum of static volume
773  * @vol. The @used_ebs argument should contain total number of logical
774  * eraseblock in this static volume.
775  *
776  * When writing to the last logical eraseblock, the @len argument doesn't have
777  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
778  * to the real data size, although the @buf buffer has to contain the
779  * alignment. In all other cases, @len has to be aligned.
780  *
781  * It is prohibited to write more than once to logical eraseblocks of static
782  * volumes. This function returns zero in case of success and a negative error
783  * code in case of failure.
784  */
785 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
786 			 int lnum, const void *buf, int len, int used_ebs)
787 {
788 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
789 	struct ubi_vid_hdr *vid_hdr;
790 	uint32_t crc;
791 
792 	if (ubi->ro_mode)
793 		return -EROFS;
794 
795 	if (lnum == used_ebs - 1)
796 		/* If this is the last LEB @len may be unaligned */
797 		len = ALIGN(data_size, ubi->min_io_size);
798 	else
799 		ubi_assert(!(len & (ubi->min_io_size - 1)));
800 
801 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
802 	if (!vid_hdr)
803 		return -ENOMEM;
804 
805 	err = leb_write_lock(ubi, vol_id, lnum);
806 	if (err) {
807 		ubi_free_vid_hdr(ubi, vid_hdr);
808 		return err;
809 	}
810 
811 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
812 	vid_hdr->vol_id = cpu_to_be32(vol_id);
813 	vid_hdr->lnum = cpu_to_be32(lnum);
814 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
815 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
816 
817 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
818 	vid_hdr->vol_type = UBI_VID_STATIC;
819 	vid_hdr->data_size = cpu_to_be32(data_size);
820 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
821 	vid_hdr->data_crc = cpu_to_be32(crc);
822 
823 retry:
824 	pnum = ubi_wl_get_peb(ubi);
825 	if (pnum < 0) {
826 		ubi_free_vid_hdr(ubi, vid_hdr);
827 		leb_write_unlock(ubi, vol_id, lnum);
828 		return pnum;
829 	}
830 
831 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
832 		len, vol_id, lnum, pnum, used_ebs);
833 
834 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
835 	if (err) {
836 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
837 			 vol_id, lnum, pnum);
838 		goto write_error;
839 	}
840 
841 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
842 	if (err) {
843 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
844 			 len, pnum);
845 		goto write_error;
846 	}
847 
848 	ubi_assert(vol->eba_tbl[lnum] < 0);
849 	down_read(&ubi->fm_sem);
850 	vol->eba_tbl[lnum] = pnum;
851 	up_read(&ubi->fm_sem);
852 
853 	leb_write_unlock(ubi, vol_id, lnum);
854 	ubi_free_vid_hdr(ubi, vid_hdr);
855 	return 0;
856 
857 write_error:
858 	if (err != -EIO || !ubi->bad_allowed) {
859 		/*
860 		 * This flash device does not admit of bad eraseblocks or
861 		 * something nasty and unexpected happened. Switch to read-only
862 		 * mode just in case.
863 		 */
864 		ubi_ro_mode(ubi);
865 		leb_write_unlock(ubi, vol_id, lnum);
866 		ubi_free_vid_hdr(ubi, vid_hdr);
867 		return err;
868 	}
869 
870 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
871 	if (err || ++tries > UBI_IO_RETRIES) {
872 		ubi_ro_mode(ubi);
873 		leb_write_unlock(ubi, vol_id, lnum);
874 		ubi_free_vid_hdr(ubi, vid_hdr);
875 		return err;
876 	}
877 
878 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
879 	ubi_msg(ubi, "try another PEB");
880 	goto retry;
881 }
882 
883 /*
884  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
885  * @ubi: UBI device description object
886  * @vol: volume description object
887  * @lnum: logical eraseblock number
888  * @buf: data to write
889  * @len: how many bytes to write
890  *
891  * This function changes the contents of a logical eraseblock atomically. @buf
892  * has to contain new logical eraseblock data, and @len - the length of the
893  * data, which has to be aligned. This function guarantees that in case of an
894  * unclean reboot the old contents is preserved. Returns zero in case of
895  * success and a negative error code in case of failure.
896  *
897  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
898  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
899  */
900 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
901 			      int lnum, const void *buf, int len)
902 {
903 	int err, pnum, tries = 0, vol_id = vol->vol_id;
904 	struct ubi_vid_hdr *vid_hdr;
905 	uint32_t crc;
906 
907 	if (ubi->ro_mode)
908 		return -EROFS;
909 
910 	if (len == 0) {
911 		/*
912 		 * Special case when data length is zero. In this case the LEB
913 		 * has to be unmapped and mapped somewhere else.
914 		 */
915 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
916 		if (err)
917 			return err;
918 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
919 	}
920 
921 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
922 	if (!vid_hdr)
923 		return -ENOMEM;
924 
925 	mutex_lock(&ubi->alc_mutex);
926 	err = leb_write_lock(ubi, vol_id, lnum);
927 	if (err)
928 		goto out_mutex;
929 
930 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
931 	vid_hdr->vol_id = cpu_to_be32(vol_id);
932 	vid_hdr->lnum = cpu_to_be32(lnum);
933 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
934 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
935 
936 	crc = crc32(UBI_CRC32_INIT, buf, len);
937 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
938 	vid_hdr->data_size = cpu_to_be32(len);
939 	vid_hdr->copy_flag = 1;
940 	vid_hdr->data_crc = cpu_to_be32(crc);
941 
942 retry:
943 	pnum = ubi_wl_get_peb(ubi);
944 	if (pnum < 0) {
945 		err = pnum;
946 		goto out_leb_unlock;
947 	}
948 
949 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
950 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
951 
952 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
953 	if (err) {
954 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
955 			 vol_id, lnum, pnum);
956 		goto write_error;
957 	}
958 
959 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
960 	if (err) {
961 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
962 			 len, pnum);
963 		goto write_error;
964 	}
965 
966 	if (vol->eba_tbl[lnum] >= 0) {
967 		err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
968 		if (err)
969 			goto out_leb_unlock;
970 	}
971 
972 	down_read(&ubi->fm_sem);
973 	vol->eba_tbl[lnum] = pnum;
974 	up_read(&ubi->fm_sem);
975 
976 out_leb_unlock:
977 	leb_write_unlock(ubi, vol_id, lnum);
978 out_mutex:
979 	mutex_unlock(&ubi->alc_mutex);
980 	ubi_free_vid_hdr(ubi, vid_hdr);
981 	return err;
982 
983 write_error:
984 	if (err != -EIO || !ubi->bad_allowed) {
985 		/*
986 		 * This flash device does not admit of bad eraseblocks or
987 		 * something nasty and unexpected happened. Switch to read-only
988 		 * mode just in case.
989 		 */
990 		ubi_ro_mode(ubi);
991 		goto out_leb_unlock;
992 	}
993 
994 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
995 	if (err || ++tries > UBI_IO_RETRIES) {
996 		ubi_ro_mode(ubi);
997 		goto out_leb_unlock;
998 	}
999 
1000 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1001 	ubi_msg(ubi, "try another PEB");
1002 	goto retry;
1003 }
1004 
1005 /**
1006  * is_error_sane - check whether a read error is sane.
1007  * @err: code of the error happened during reading
1008  *
1009  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1010  * cannot read data from the target PEB (an error @err happened). If the error
1011  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1012  * fatal and UBI will be switched to R/O mode later.
1013  *
1014  * The idea is that we try not to switch to R/O mode if the read error is
1015  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1016  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1017  * mode, simply because we do not know what happened at the MTD level, and we
1018  * cannot handle this. E.g., the underlying driver may have become crazy, and
1019  * it is safer to switch to R/O mode to preserve the data.
1020  *
1021  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1022  * which we have just written.
1023  */
1024 static int is_error_sane(int err)
1025 {
1026 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1027 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1028 		return 0;
1029 	return 1;
1030 }
1031 
1032 /**
1033  * ubi_eba_copy_leb - copy logical eraseblock.
1034  * @ubi: UBI device description object
1035  * @from: physical eraseblock number from where to copy
1036  * @to: physical eraseblock number where to copy
1037  * @vid_hdr: VID header of the @from physical eraseblock
1038  *
1039  * This function copies logical eraseblock from physical eraseblock @from to
1040  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1041  * function. Returns:
1042  *   o %0 in case of success;
1043  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1044  *   o a negative error code in case of failure.
1045  */
1046 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1047 		     struct ubi_vid_hdr *vid_hdr)
1048 {
1049 	int err, vol_id, lnum, data_size, aldata_size, idx;
1050 	struct ubi_volume *vol;
1051 	uint32_t crc;
1052 
1053 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1054 	lnum = be32_to_cpu(vid_hdr->lnum);
1055 
1056 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1057 
1058 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1059 		data_size = be32_to_cpu(vid_hdr->data_size);
1060 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1061 	} else
1062 		data_size = aldata_size =
1063 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1064 
1065 	idx = vol_id2idx(ubi, vol_id);
1066 	spin_lock(&ubi->volumes_lock);
1067 	/*
1068 	 * Note, we may race with volume deletion, which means that the volume
1069 	 * this logical eraseblock belongs to might be being deleted. Since the
1070 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1071 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1072 	 */
1073 	vol = ubi->volumes[idx];
1074 	spin_unlock(&ubi->volumes_lock);
1075 	if (!vol) {
1076 		/* No need to do further work, cancel */
1077 		dbg_wl("volume %d is being removed, cancel", vol_id);
1078 		return MOVE_CANCEL_RACE;
1079 	}
1080 
1081 	/*
1082 	 * We do not want anybody to write to this logical eraseblock while we
1083 	 * are moving it, so lock it.
1084 	 *
1085 	 * Note, we are using non-waiting locking here, because we cannot sleep
1086 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1087 	 * unmapping the LEB which is mapped to the PEB we are going to move
1088 	 * (@from). This task locks the LEB and goes sleep in the
1089 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1090 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1091 	 * LEB is already locked, we just do not move it and return
1092 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1093 	 * we do not know the reasons of the contention - it may be just a
1094 	 * normal I/O on this LEB, so we want to re-try.
1095 	 */
1096 	err = leb_write_trylock(ubi, vol_id, lnum);
1097 	if (err) {
1098 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1099 		return MOVE_RETRY;
1100 	}
1101 
1102 	/*
1103 	 * The LEB might have been put meanwhile, and the task which put it is
1104 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1105 	 * cancel it.
1106 	 */
1107 	if (vol->eba_tbl[lnum] != from) {
1108 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1109 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1110 		err = MOVE_CANCEL_RACE;
1111 		goto out_unlock_leb;
1112 	}
1113 
1114 	/*
1115 	 * OK, now the LEB is locked and we can safely start moving it. Since
1116 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1117 	 * with some other functions - we lock the buffer by taking the
1118 	 * @ubi->buf_mutex.
1119 	 */
1120 	mutex_lock(&ubi->buf_mutex);
1121 	dbg_wl("read %d bytes of data", aldata_size);
1122 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1123 	if (err && err != UBI_IO_BITFLIPS) {
1124 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1125 			 err, from);
1126 		err = MOVE_SOURCE_RD_ERR;
1127 		goto out_unlock_buf;
1128 	}
1129 
1130 	/*
1131 	 * Now we have got to calculate how much data we have to copy. In
1132 	 * case of a static volume it is fairly easy - the VID header contains
1133 	 * the data size. In case of a dynamic volume it is more difficult - we
1134 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1135 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1136 	 * may have some side-effects. And not only this. It is important not
1137 	 * to include those 0xFFs to CRC because later the they may be filled
1138 	 * by data.
1139 	 */
1140 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1141 		aldata_size = data_size =
1142 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1143 
1144 	cond_resched();
1145 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1146 	cond_resched();
1147 
1148 	/*
1149 	 * It may turn out to be that the whole @from physical eraseblock
1150 	 * contains only 0xFF bytes. Then we have to only write the VID header
1151 	 * and do not write any data. This also means we should not set
1152 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1153 	 */
1154 	if (data_size > 0) {
1155 		vid_hdr->copy_flag = 1;
1156 		vid_hdr->data_size = cpu_to_be32(data_size);
1157 		vid_hdr->data_crc = cpu_to_be32(crc);
1158 	}
1159 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1160 
1161 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1162 	if (err) {
1163 		if (err == -EIO)
1164 			err = MOVE_TARGET_WR_ERR;
1165 		goto out_unlock_buf;
1166 	}
1167 
1168 	cond_resched();
1169 
1170 	/* Read the VID header back and check if it was written correctly */
1171 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1172 	if (err) {
1173 		if (err != UBI_IO_BITFLIPS) {
1174 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1175 				 err, to);
1176 			if (is_error_sane(err))
1177 				err = MOVE_TARGET_RD_ERR;
1178 		} else
1179 			err = MOVE_TARGET_BITFLIPS;
1180 		goto out_unlock_buf;
1181 	}
1182 
1183 	if (data_size > 0) {
1184 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1185 		if (err) {
1186 			if (err == -EIO)
1187 				err = MOVE_TARGET_WR_ERR;
1188 			goto out_unlock_buf;
1189 		}
1190 
1191 		cond_resched();
1192 
1193 		/*
1194 		 * We've written the data and are going to read it back to make
1195 		 * sure it was written correctly.
1196 		 */
1197 		memset(ubi->peb_buf, 0xFF, aldata_size);
1198 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1199 		if (err) {
1200 			if (err != UBI_IO_BITFLIPS) {
1201 				ubi_warn(ubi, "error %d while reading data back from PEB %d",
1202 					 err, to);
1203 				if (is_error_sane(err))
1204 					err = MOVE_TARGET_RD_ERR;
1205 			} else
1206 				err = MOVE_TARGET_BITFLIPS;
1207 			goto out_unlock_buf;
1208 		}
1209 
1210 		cond_resched();
1211 
1212 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1213 			ubi_warn(ubi, "read data back from PEB %d and it is different",
1214 				 to);
1215 			err = -EINVAL;
1216 			goto out_unlock_buf;
1217 		}
1218 	}
1219 
1220 	ubi_assert(vol->eba_tbl[lnum] == from);
1221 	down_read(&ubi->fm_sem);
1222 	vol->eba_tbl[lnum] = to;
1223 	up_read(&ubi->fm_sem);
1224 
1225 out_unlock_buf:
1226 	mutex_unlock(&ubi->buf_mutex);
1227 out_unlock_leb:
1228 	leb_write_unlock(ubi, vol_id, lnum);
1229 	return err;
1230 }
1231 
1232 /**
1233  * print_rsvd_warning - warn about not having enough reserved PEBs.
1234  * @ubi: UBI device description object
1235  *
1236  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1237  * cannot reserve enough PEBs for bad block handling. This function makes a
1238  * decision whether we have to print a warning or not. The algorithm is as
1239  * follows:
1240  *   o if this is a new UBI image, then just print the warning
1241  *   o if this is an UBI image which has already been used for some time, print
1242  *     a warning only if we can reserve less than 10% of the expected amount of
1243  *     the reserved PEB.
1244  *
1245  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1246  * of PEBs becomes smaller, which is normal and we do not want to scare users
1247  * with a warning every time they attach the MTD device. This was an issue
1248  * reported by real users.
1249  */
1250 static void print_rsvd_warning(struct ubi_device *ubi,
1251 			       struct ubi_attach_info *ai)
1252 {
1253 	/*
1254 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1255 	 * large number to distinguish between newly flashed and used images.
1256 	 */
1257 	if (ai->max_sqnum > (1 << 18)) {
1258 		int min = ubi->beb_rsvd_level / 10;
1259 
1260 		if (!min)
1261 			min = 1;
1262 		if (ubi->beb_rsvd_pebs > min)
1263 			return;
1264 	}
1265 
1266 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1267 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1268 	if (ubi->corr_peb_count)
1269 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1270 			 ubi->corr_peb_count);
1271 }
1272 
1273 /**
1274  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1275  * @ubi: UBI device description object
1276  * @ai_fastmap: UBI attach info object created by fastmap
1277  * @ai_scan: UBI attach info object created by scanning
1278  *
1279  * Returns < 0 in case of an internal error, 0 otherwise.
1280  * If a bad EBA table entry was found it will be printed out and
1281  * ubi_assert() triggers.
1282  */
1283 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1284 		   struct ubi_attach_info *ai_scan)
1285 {
1286 	int i, j, num_volumes, ret = 0;
1287 	int **scan_eba, **fm_eba;
1288 	struct ubi_ainf_volume *av;
1289 	struct ubi_volume *vol;
1290 	struct ubi_ainf_peb *aeb;
1291 	struct rb_node *rb;
1292 
1293 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1294 
1295 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1296 	if (!scan_eba)
1297 		return -ENOMEM;
1298 
1299 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1300 	if (!fm_eba) {
1301 		kfree(scan_eba);
1302 		return -ENOMEM;
1303 	}
1304 
1305 	for (i = 0; i < num_volumes; i++) {
1306 		vol = ubi->volumes[i];
1307 		if (!vol)
1308 			continue;
1309 
1310 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1311 				      GFP_KERNEL);
1312 		if (!scan_eba[i]) {
1313 			ret = -ENOMEM;
1314 			goto out_free;
1315 		}
1316 
1317 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1318 				    GFP_KERNEL);
1319 		if (!fm_eba[i]) {
1320 			ret = -ENOMEM;
1321 			goto out_free;
1322 		}
1323 
1324 		for (j = 0; j < vol->reserved_pebs; j++)
1325 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1326 
1327 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1328 		if (!av)
1329 			continue;
1330 
1331 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1332 			scan_eba[i][aeb->lnum] = aeb->pnum;
1333 
1334 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1335 		if (!av)
1336 			continue;
1337 
1338 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1339 			fm_eba[i][aeb->lnum] = aeb->pnum;
1340 
1341 		for (j = 0; j < vol->reserved_pebs; j++) {
1342 			if (scan_eba[i][j] != fm_eba[i][j]) {
1343 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1344 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1345 					continue;
1346 
1347 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1348 					vol->vol_id, i, fm_eba[i][j],
1349 					scan_eba[i][j]);
1350 				ubi_assert(0);
1351 			}
1352 		}
1353 	}
1354 
1355 out_free:
1356 	for (i = 0; i < num_volumes; i++) {
1357 		if (!ubi->volumes[i])
1358 			continue;
1359 
1360 		kfree(scan_eba[i]);
1361 		kfree(fm_eba[i]);
1362 	}
1363 
1364 	kfree(scan_eba);
1365 	kfree(fm_eba);
1366 	return ret;
1367 }
1368 
1369 /**
1370  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1371  * @ubi: UBI device description object
1372  * @ai: attaching information
1373  *
1374  * This function returns zero in case of success and a negative error code in
1375  * case of failure.
1376  */
1377 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1378 {
1379 	int i, j, err, num_volumes;
1380 	struct ubi_ainf_volume *av;
1381 	struct ubi_volume *vol;
1382 	struct ubi_ainf_peb *aeb;
1383 	struct rb_node *rb;
1384 
1385 	dbg_eba("initialize EBA sub-system");
1386 
1387 	spin_lock_init(&ubi->ltree_lock);
1388 	mutex_init(&ubi->alc_mutex);
1389 	ubi->ltree = RB_ROOT;
1390 
1391 	ubi->global_sqnum = ai->max_sqnum + 1;
1392 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1393 
1394 	for (i = 0; i < num_volumes; i++) {
1395 		vol = ubi->volumes[i];
1396 		if (!vol)
1397 			continue;
1398 
1399 		cond_resched();
1400 
1401 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1402 				       GFP_KERNEL);
1403 		if (!vol->eba_tbl) {
1404 			err = -ENOMEM;
1405 			goto out_free;
1406 		}
1407 
1408 		for (j = 0; j < vol->reserved_pebs; j++)
1409 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1410 
1411 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1412 		if (!av)
1413 			continue;
1414 
1415 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1416 			if (aeb->lnum >= vol->reserved_pebs)
1417 				/*
1418 				 * This may happen in case of an unclean reboot
1419 				 * during re-size.
1420 				 */
1421 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1422 			vol->eba_tbl[aeb->lnum] = aeb->pnum;
1423 		}
1424 	}
1425 
1426 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1427 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1428 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1429 		if (ubi->corr_peb_count)
1430 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1431 				ubi->corr_peb_count);
1432 		err = -ENOSPC;
1433 		goto out_free;
1434 	}
1435 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1436 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1437 
1438 	if (ubi->bad_allowed) {
1439 		ubi_calculate_reserved(ubi);
1440 
1441 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1442 			/* No enough free physical eraseblocks */
1443 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1444 			print_rsvd_warning(ubi, ai);
1445 		} else
1446 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1447 
1448 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1449 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1450 	}
1451 
1452 	dbg_eba("EBA sub-system is initialized");
1453 	return 0;
1454 
1455 out_free:
1456 	for (i = 0; i < num_volumes; i++) {
1457 		if (!ubi->volumes[i])
1458 			continue;
1459 		kfree(ubi->volumes[i]->eba_tbl);
1460 		ubi->volumes[i]->eba_tbl = NULL;
1461 	}
1462 	return err;
1463 }
1464