1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 108 static ssize_t version_show(struct class *class, struct class_attribute *attr, 109 char *buf) 110 { 111 return sprintf(buf, "%d\n", UBI_VERSION); 112 } 113 static CLASS_ATTR_RO(version); 114 115 static struct attribute *ubi_class_attrs[] = { 116 &class_attr_version.attr, 117 NULL, 118 }; 119 ATTRIBUTE_GROUPS(ubi_class); 120 121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 122 struct class ubi_class = { 123 .name = UBI_NAME_STR, 124 .owner = THIS_MODULE, 125 .class_groups = ubi_class_groups, 126 }; 127 128 static ssize_t dev_attribute_show(struct device *dev, 129 struct device_attribute *attr, char *buf); 130 131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 132 static struct device_attribute dev_eraseblock_size = 133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_avail_eraseblocks = 135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_total_eraseblocks = 137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_volumes_count = 139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_max_ec = 141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_reserved_for_bad = 143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_bad_peb_count = 145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_max_vol_count = 147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_min_io_size = 149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_bgt_enabled = 151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_mtd_num = 153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 154 static struct device_attribute dev_ro_mode = 155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 156 157 /** 158 * ubi_volume_notify - send a volume change notification. 159 * @ubi: UBI device description object 160 * @vol: volume description object of the changed volume 161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 162 * 163 * This is a helper function which notifies all subscribers about a volume 164 * change event (creation, removal, re-sizing, re-naming, updating). Returns 165 * zero in case of success and a negative error code in case of failure. 166 */ 167 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 168 { 169 int ret; 170 struct ubi_notification nt; 171 172 ubi_do_get_device_info(ubi, &nt.di); 173 ubi_do_get_volume_info(ubi, vol, &nt.vi); 174 175 switch (ntype) { 176 case UBI_VOLUME_ADDED: 177 case UBI_VOLUME_REMOVED: 178 case UBI_VOLUME_RESIZED: 179 case UBI_VOLUME_RENAMED: 180 ret = ubi_update_fastmap(ubi); 181 if (ret) 182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 183 } 184 185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 186 } 187 188 /** 189 * ubi_notify_all - send a notification to all volumes. 190 * @ubi: UBI device description object 191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 192 * @nb: the notifier to call 193 * 194 * This function walks all volumes of UBI device @ubi and sends the @ntype 195 * notification for each volume. If @nb is %NULL, then all registered notifiers 196 * are called, otherwise only the @nb notifier is called. Returns the number of 197 * sent notifications. 198 */ 199 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 200 { 201 struct ubi_notification nt; 202 int i, count = 0; 203 204 ubi_do_get_device_info(ubi, &nt.di); 205 206 mutex_lock(&ubi->device_mutex); 207 for (i = 0; i < ubi->vtbl_slots; i++) { 208 /* 209 * Since the @ubi->device is locked, and we are not going to 210 * change @ubi->volumes, we do not have to lock 211 * @ubi->volumes_lock. 212 */ 213 if (!ubi->volumes[i]) 214 continue; 215 216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 217 if (nb) 218 nb->notifier_call(nb, ntype, &nt); 219 else 220 blocking_notifier_call_chain(&ubi_notifiers, ntype, 221 &nt); 222 count += 1; 223 } 224 mutex_unlock(&ubi->device_mutex); 225 226 return count; 227 } 228 229 /** 230 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 231 * @nb: the notifier to call 232 * 233 * This function walks all UBI devices and volumes and sends the 234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 235 * registered notifiers are called, otherwise only the @nb notifier is called. 236 * Returns the number of sent notifications. 237 */ 238 int ubi_enumerate_volumes(struct notifier_block *nb) 239 { 240 int i, count = 0; 241 242 /* 243 * Since the @ubi_devices_mutex is locked, and we are not going to 244 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 245 */ 246 for (i = 0; i < UBI_MAX_DEVICES; i++) { 247 struct ubi_device *ubi = ubi_devices[i]; 248 249 if (!ubi) 250 continue; 251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 252 } 253 254 return count; 255 } 256 257 /** 258 * ubi_get_device - get UBI device. 259 * @ubi_num: UBI device number 260 * 261 * This function returns UBI device description object for UBI device number 262 * @ubi_num, or %NULL if the device does not exist. This function increases the 263 * device reference count to prevent removal of the device. In other words, the 264 * device cannot be removed if its reference count is not zero. 265 */ 266 struct ubi_device *ubi_get_device(int ubi_num) 267 { 268 struct ubi_device *ubi; 269 270 spin_lock(&ubi_devices_lock); 271 ubi = ubi_devices[ubi_num]; 272 if (ubi) { 273 ubi_assert(ubi->ref_count >= 0); 274 ubi->ref_count += 1; 275 get_device(&ubi->dev); 276 } 277 spin_unlock(&ubi_devices_lock); 278 279 return ubi; 280 } 281 282 /** 283 * ubi_put_device - drop an UBI device reference. 284 * @ubi: UBI device description object 285 */ 286 void ubi_put_device(struct ubi_device *ubi) 287 { 288 spin_lock(&ubi_devices_lock); 289 ubi->ref_count -= 1; 290 put_device(&ubi->dev); 291 spin_unlock(&ubi_devices_lock); 292 } 293 294 /** 295 * ubi_get_by_major - get UBI device by character device major number. 296 * @major: major number 297 * 298 * This function is similar to 'ubi_get_device()', but it searches the device 299 * by its major number. 300 */ 301 struct ubi_device *ubi_get_by_major(int major) 302 { 303 int i; 304 struct ubi_device *ubi; 305 306 spin_lock(&ubi_devices_lock); 307 for (i = 0; i < UBI_MAX_DEVICES; i++) { 308 ubi = ubi_devices[i]; 309 if (ubi && MAJOR(ubi->cdev.dev) == major) { 310 ubi_assert(ubi->ref_count >= 0); 311 ubi->ref_count += 1; 312 get_device(&ubi->dev); 313 spin_unlock(&ubi_devices_lock); 314 return ubi; 315 } 316 } 317 spin_unlock(&ubi_devices_lock); 318 319 return NULL; 320 } 321 322 /** 323 * ubi_major2num - get UBI device number by character device major number. 324 * @major: major number 325 * 326 * This function searches UBI device number object by its major number. If UBI 327 * device was not found, this function returns -ENODEV, otherwise the UBI device 328 * number is returned. 329 */ 330 int ubi_major2num(int major) 331 { 332 int i, ubi_num = -ENODEV; 333 334 spin_lock(&ubi_devices_lock); 335 for (i = 0; i < UBI_MAX_DEVICES; i++) { 336 struct ubi_device *ubi = ubi_devices[i]; 337 338 if (ubi && MAJOR(ubi->cdev.dev) == major) { 339 ubi_num = ubi->ubi_num; 340 break; 341 } 342 } 343 spin_unlock(&ubi_devices_lock); 344 345 return ubi_num; 346 } 347 348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 349 static ssize_t dev_attribute_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 ssize_t ret; 353 struct ubi_device *ubi; 354 355 /* 356 * The below code looks weird, but it actually makes sense. We get the 357 * UBI device reference from the contained 'struct ubi_device'. But it 358 * is unclear if the device was removed or not yet. Indeed, if the 359 * device was removed before we increased its reference count, 360 * 'ubi_get_device()' will return -ENODEV and we fail. 361 * 362 * Remember, 'struct ubi_device' is freed in the release function, so 363 * we still can use 'ubi->ubi_num'. 364 */ 365 ubi = container_of(dev, struct ubi_device, dev); 366 ubi = ubi_get_device(ubi->ubi_num); 367 if (!ubi) 368 return -ENODEV; 369 370 if (attr == &dev_eraseblock_size) 371 ret = sprintf(buf, "%d\n", ubi->leb_size); 372 else if (attr == &dev_avail_eraseblocks) 373 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 374 else if (attr == &dev_total_eraseblocks) 375 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 376 else if (attr == &dev_volumes_count) 377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 378 else if (attr == &dev_max_ec) 379 ret = sprintf(buf, "%d\n", ubi->max_ec); 380 else if (attr == &dev_reserved_for_bad) 381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 382 else if (attr == &dev_bad_peb_count) 383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 384 else if (attr == &dev_max_vol_count) 385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 386 else if (attr == &dev_min_io_size) 387 ret = sprintf(buf, "%d\n", ubi->min_io_size); 388 else if (attr == &dev_bgt_enabled) 389 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 390 else if (attr == &dev_mtd_num) 391 ret = sprintf(buf, "%d\n", ubi->mtd->index); 392 else if (attr == &dev_ro_mode) 393 ret = sprintf(buf, "%d\n", ubi->ro_mode); 394 else 395 ret = -EINVAL; 396 397 ubi_put_device(ubi); 398 return ret; 399 } 400 401 static struct attribute *ubi_dev_attrs[] = { 402 &dev_eraseblock_size.attr, 403 &dev_avail_eraseblocks.attr, 404 &dev_total_eraseblocks.attr, 405 &dev_volumes_count.attr, 406 &dev_max_ec.attr, 407 &dev_reserved_for_bad.attr, 408 &dev_bad_peb_count.attr, 409 &dev_max_vol_count.attr, 410 &dev_min_io_size.attr, 411 &dev_bgt_enabled.attr, 412 &dev_mtd_num.attr, 413 &dev_ro_mode.attr, 414 NULL 415 }; 416 ATTRIBUTE_GROUPS(ubi_dev); 417 418 static void dev_release(struct device *dev) 419 { 420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 421 422 kfree(ubi); 423 } 424 425 /** 426 * kill_volumes - destroy all user volumes. 427 * @ubi: UBI device description object 428 */ 429 static void kill_volumes(struct ubi_device *ubi) 430 { 431 int i; 432 433 for (i = 0; i < ubi->vtbl_slots; i++) 434 if (ubi->volumes[i]) 435 ubi_free_volume(ubi, ubi->volumes[i]); 436 } 437 438 /** 439 * uif_init - initialize user interfaces for an UBI device. 440 * @ubi: UBI device description object 441 * 442 * This function initializes various user interfaces for an UBI device. If the 443 * initialization fails at an early stage, this function frees all the 444 * resources it allocated, returns an error. 445 * 446 * This function returns zero in case of success and a negative error code in 447 * case of failure. 448 */ 449 static int uif_init(struct ubi_device *ubi) 450 { 451 int i, err; 452 dev_t dev; 453 454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 455 456 /* 457 * Major numbers for the UBI character devices are allocated 458 * dynamically. Major numbers of volume character devices are 459 * equivalent to ones of the corresponding UBI character device. Minor 460 * numbers of UBI character devices are 0, while minor numbers of 461 * volume character devices start from 1. Thus, we allocate one major 462 * number and ubi->vtbl_slots + 1 minor numbers. 463 */ 464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 465 if (err) { 466 ubi_err(ubi, "cannot register UBI character devices"); 467 return err; 468 } 469 470 ubi->dev.devt = dev; 471 472 ubi_assert(MINOR(dev) == 0); 473 cdev_init(&ubi->cdev, &ubi_cdev_operations); 474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 475 ubi->cdev.owner = THIS_MODULE; 476 477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 478 err = cdev_device_add(&ubi->cdev, &ubi->dev); 479 if (err) 480 goto out_unreg; 481 482 for (i = 0; i < ubi->vtbl_slots; i++) 483 if (ubi->volumes[i]) { 484 err = ubi_add_volume(ubi, ubi->volumes[i]); 485 if (err) { 486 ubi_err(ubi, "cannot add volume %d", i); 487 goto out_volumes; 488 } 489 } 490 491 return 0; 492 493 out_volumes: 494 kill_volumes(ubi); 495 cdev_device_del(&ubi->cdev, &ubi->dev); 496 out_unreg: 497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 498 ubi_err(ubi, "cannot initialize UBI %s, error %d", 499 ubi->ubi_name, err); 500 return err; 501 } 502 503 /** 504 * uif_close - close user interfaces for an UBI device. 505 * @ubi: UBI device description object 506 * 507 * Note, since this function un-registers UBI volume device objects (@vol->dev), 508 * the memory allocated voe the volumes is freed as well (in the release 509 * function). 510 */ 511 static void uif_close(struct ubi_device *ubi) 512 { 513 kill_volumes(ubi); 514 cdev_device_del(&ubi->cdev, &ubi->dev); 515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 516 } 517 518 /** 519 * ubi_free_internal_volumes - free internal volumes. 520 * @ubi: UBI device description object 521 */ 522 void ubi_free_internal_volumes(struct ubi_device *ubi) 523 { 524 int i; 525 526 for (i = ubi->vtbl_slots; 527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 528 ubi_eba_replace_table(ubi->volumes[i], NULL); 529 kfree(ubi->volumes[i]); 530 } 531 } 532 533 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 534 { 535 int limit, device_pebs; 536 uint64_t device_size; 537 538 if (!max_beb_per1024) { 539 /* 540 * Since max_beb_per1024 has not been set by the user in either 541 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 542 * limit if it is supported by the device. 543 */ 544 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 545 if (limit < 0) 546 return 0; 547 return limit; 548 } 549 550 /* 551 * Here we are using size of the entire flash chip and 552 * not just the MTD partition size because the maximum 553 * number of bad eraseblocks is a percentage of the 554 * whole device and bad eraseblocks are not fairly 555 * distributed over the flash chip. So the worst case 556 * is that all the bad eraseblocks of the chip are in 557 * the MTD partition we are attaching (ubi->mtd). 558 */ 559 device_size = mtd_get_device_size(ubi->mtd); 560 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 561 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 562 563 /* Round it up */ 564 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 565 limit += 1; 566 567 return limit; 568 } 569 570 /** 571 * io_init - initialize I/O sub-system for a given UBI device. 572 * @ubi: UBI device description object 573 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 574 * 575 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 576 * assumed: 577 * o EC header is always at offset zero - this cannot be changed; 578 * o VID header starts just after the EC header at the closest address 579 * aligned to @io->hdrs_min_io_size; 580 * o data starts just after the VID header at the closest address aligned to 581 * @io->min_io_size 582 * 583 * This function returns zero in case of success and a negative error code in 584 * case of failure. 585 */ 586 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 587 { 588 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 589 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 590 591 if (ubi->mtd->numeraseregions != 0) { 592 /* 593 * Some flashes have several erase regions. Different regions 594 * may have different eraseblock size and other 595 * characteristics. It looks like mostly multi-region flashes 596 * have one "main" region and one or more small regions to 597 * store boot loader code or boot parameters or whatever. I 598 * guess we should just pick the largest region. But this is 599 * not implemented. 600 */ 601 ubi_err(ubi, "multiple regions, not implemented"); 602 return -EINVAL; 603 } 604 605 if (ubi->vid_hdr_offset < 0) 606 return -EINVAL; 607 608 /* 609 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 610 * physical eraseblocks maximum. 611 */ 612 613 ubi->peb_size = ubi->mtd->erasesize; 614 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 615 ubi->flash_size = ubi->mtd->size; 616 617 if (mtd_can_have_bb(ubi->mtd)) { 618 ubi->bad_allowed = 1; 619 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 620 } 621 622 if (ubi->mtd->type == MTD_NORFLASH) { 623 ubi_assert(ubi->mtd->writesize == 1); 624 ubi->nor_flash = 1; 625 } 626 627 ubi->min_io_size = ubi->mtd->writesize; 628 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 629 630 /* 631 * Make sure minimal I/O unit is power of 2. Note, there is no 632 * fundamental reason for this assumption. It is just an optimization 633 * which allows us to avoid costly division operations. 634 */ 635 if (!is_power_of_2(ubi->min_io_size)) { 636 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 637 ubi->min_io_size); 638 return -EINVAL; 639 } 640 641 ubi_assert(ubi->hdrs_min_io_size > 0); 642 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 643 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 644 645 ubi->max_write_size = ubi->mtd->writebufsize; 646 /* 647 * Maximum write size has to be greater or equivalent to min. I/O 648 * size, and be multiple of min. I/O size. 649 */ 650 if (ubi->max_write_size < ubi->min_io_size || 651 ubi->max_write_size % ubi->min_io_size || 652 !is_power_of_2(ubi->max_write_size)) { 653 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 654 ubi->max_write_size, ubi->min_io_size); 655 return -EINVAL; 656 } 657 658 /* Calculate default aligned sizes of EC and VID headers */ 659 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 660 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 661 662 dbg_gen("min_io_size %d", ubi->min_io_size); 663 dbg_gen("max_write_size %d", ubi->max_write_size); 664 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 665 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 666 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 667 668 if (ubi->vid_hdr_offset == 0) 669 /* Default offset */ 670 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 671 ubi->ec_hdr_alsize; 672 else { 673 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 674 ~(ubi->hdrs_min_io_size - 1); 675 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 676 ubi->vid_hdr_aloffset; 677 } 678 679 /* Similar for the data offset */ 680 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 681 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 682 683 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 684 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 685 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 686 dbg_gen("leb_start %d", ubi->leb_start); 687 688 /* The shift must be aligned to 32-bit boundary */ 689 if (ubi->vid_hdr_shift % 4) { 690 ubi_err(ubi, "unaligned VID header shift %d", 691 ubi->vid_hdr_shift); 692 return -EINVAL; 693 } 694 695 /* Check sanity */ 696 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 697 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 698 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 699 ubi->leb_start & (ubi->min_io_size - 1)) { 700 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 701 ubi->vid_hdr_offset, ubi->leb_start); 702 return -EINVAL; 703 } 704 705 /* 706 * Set maximum amount of physical erroneous eraseblocks to be 10%. 707 * Erroneous PEB are those which have read errors. 708 */ 709 ubi->max_erroneous = ubi->peb_count / 10; 710 if (ubi->max_erroneous < 16) 711 ubi->max_erroneous = 16; 712 dbg_gen("max_erroneous %d", ubi->max_erroneous); 713 714 /* 715 * It may happen that EC and VID headers are situated in one minimal 716 * I/O unit. In this case we can only accept this UBI image in 717 * read-only mode. 718 */ 719 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 720 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 721 ubi->ro_mode = 1; 722 } 723 724 ubi->leb_size = ubi->peb_size - ubi->leb_start; 725 726 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 727 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 728 ubi->mtd->index); 729 ubi->ro_mode = 1; 730 } 731 732 /* 733 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 734 * unfortunately, MTD does not provide this information. We should loop 735 * over all physical eraseblocks and invoke mtd->block_is_bad() for 736 * each physical eraseblock. So, we leave @ubi->bad_peb_count 737 * uninitialized so far. 738 */ 739 740 return 0; 741 } 742 743 /** 744 * autoresize - re-size the volume which has the "auto-resize" flag set. 745 * @ubi: UBI device description object 746 * @vol_id: ID of the volume to re-size 747 * 748 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 749 * the volume table to the largest possible size. See comments in ubi-header.h 750 * for more description of the flag. Returns zero in case of success and a 751 * negative error code in case of failure. 752 */ 753 static int autoresize(struct ubi_device *ubi, int vol_id) 754 { 755 struct ubi_volume_desc desc; 756 struct ubi_volume *vol = ubi->volumes[vol_id]; 757 int err, old_reserved_pebs = vol->reserved_pebs; 758 759 if (ubi->ro_mode) { 760 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 761 return 0; 762 } 763 764 /* 765 * Clear the auto-resize flag in the volume in-memory copy of the 766 * volume table, and 'ubi_resize_volume()' will propagate this change 767 * to the flash. 768 */ 769 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 770 771 if (ubi->avail_pebs == 0) { 772 struct ubi_vtbl_record vtbl_rec; 773 774 /* 775 * No available PEBs to re-size the volume, clear the flag on 776 * flash and exit. 777 */ 778 vtbl_rec = ubi->vtbl[vol_id]; 779 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 780 if (err) 781 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 782 vol_id); 783 } else { 784 desc.vol = vol; 785 err = ubi_resize_volume(&desc, 786 old_reserved_pebs + ubi->avail_pebs); 787 if (err) 788 ubi_err(ubi, "cannot auto-resize volume %d", 789 vol_id); 790 } 791 792 if (err) 793 return err; 794 795 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 796 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 797 return 0; 798 } 799 800 /** 801 * ubi_attach_mtd_dev - attach an MTD device. 802 * @mtd: MTD device description object 803 * @ubi_num: number to assign to the new UBI device 804 * @vid_hdr_offset: VID header offset 805 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 806 * 807 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 808 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 809 * which case this function finds a vacant device number and assigns it 810 * automatically. Returns the new UBI device number in case of success and a 811 * negative error code in case of failure. 812 * 813 * Note, the invocations of this function has to be serialized by the 814 * @ubi_devices_mutex. 815 */ 816 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 817 int vid_hdr_offset, int max_beb_per1024) 818 { 819 struct ubi_device *ubi; 820 int i, err; 821 822 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 823 return -EINVAL; 824 825 if (!max_beb_per1024) 826 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 827 828 /* 829 * Check if we already have the same MTD device attached. 830 * 831 * Note, this function assumes that UBI devices creations and deletions 832 * are serialized, so it does not take the &ubi_devices_lock. 833 */ 834 for (i = 0; i < UBI_MAX_DEVICES; i++) { 835 ubi = ubi_devices[i]; 836 if (ubi && mtd->index == ubi->mtd->index) { 837 pr_err("ubi: mtd%d is already attached to ubi%d\n", 838 mtd->index, i); 839 return -EEXIST; 840 } 841 } 842 843 /* 844 * Make sure this MTD device is not emulated on top of an UBI volume 845 * already. Well, generally this recursion works fine, but there are 846 * different problems like the UBI module takes a reference to itself 847 * by attaching (and thus, opening) the emulated MTD device. This 848 * results in inability to unload the module. And in general it makes 849 * no sense to attach emulated MTD devices, so we prohibit this. 850 */ 851 if (mtd->type == MTD_UBIVOLUME) { 852 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 853 mtd->index); 854 return -EINVAL; 855 } 856 857 if (ubi_num == UBI_DEV_NUM_AUTO) { 858 /* Search for an empty slot in the @ubi_devices array */ 859 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 860 if (!ubi_devices[ubi_num]) 861 break; 862 if (ubi_num == UBI_MAX_DEVICES) { 863 pr_err("ubi: only %d UBI devices may be created\n", 864 UBI_MAX_DEVICES); 865 return -ENFILE; 866 } 867 } else { 868 if (ubi_num >= UBI_MAX_DEVICES) 869 return -EINVAL; 870 871 /* Make sure ubi_num is not busy */ 872 if (ubi_devices[ubi_num]) { 873 pr_err("ubi: ubi%i already exists\n", ubi_num); 874 return -EEXIST; 875 } 876 } 877 878 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 879 if (!ubi) 880 return -ENOMEM; 881 882 device_initialize(&ubi->dev); 883 ubi->dev.release = dev_release; 884 ubi->dev.class = &ubi_class; 885 ubi->dev.groups = ubi_dev_groups; 886 887 ubi->mtd = mtd; 888 ubi->ubi_num = ubi_num; 889 ubi->vid_hdr_offset = vid_hdr_offset; 890 ubi->autoresize_vol_id = -1; 891 892 #ifdef CONFIG_MTD_UBI_FASTMAP 893 ubi->fm_pool.used = ubi->fm_pool.size = 0; 894 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 895 896 /* 897 * fm_pool.max_size is 5% of the total number of PEBs but it's also 898 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 899 */ 900 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 901 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 902 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 903 UBI_FM_MIN_POOL_SIZE); 904 905 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 906 ubi->fm_disabled = !fm_autoconvert; 907 if (fm_debug) 908 ubi_enable_dbg_chk_fastmap(ubi); 909 910 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 911 <= UBI_FM_MAX_START) { 912 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 913 UBI_FM_MAX_START); 914 ubi->fm_disabled = 1; 915 } 916 917 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 918 ubi_msg(ubi, "default fastmap WL pool size: %d", 919 ubi->fm_wl_pool.max_size); 920 #else 921 ubi->fm_disabled = 1; 922 #endif 923 mutex_init(&ubi->buf_mutex); 924 mutex_init(&ubi->ckvol_mutex); 925 mutex_init(&ubi->device_mutex); 926 spin_lock_init(&ubi->volumes_lock); 927 init_rwsem(&ubi->fm_protect); 928 init_rwsem(&ubi->fm_eba_sem); 929 930 ubi_msg(ubi, "attaching mtd%d", mtd->index); 931 932 err = io_init(ubi, max_beb_per1024); 933 if (err) 934 goto out_free; 935 936 err = -ENOMEM; 937 ubi->peb_buf = vmalloc(ubi->peb_size); 938 if (!ubi->peb_buf) 939 goto out_free; 940 941 #ifdef CONFIG_MTD_UBI_FASTMAP 942 ubi->fm_size = ubi_calc_fm_size(ubi); 943 ubi->fm_buf = vzalloc(ubi->fm_size); 944 if (!ubi->fm_buf) 945 goto out_free; 946 #endif 947 err = ubi_attach(ubi, 0); 948 if (err) { 949 ubi_err(ubi, "failed to attach mtd%d, error %d", 950 mtd->index, err); 951 goto out_free; 952 } 953 954 if (ubi->autoresize_vol_id != -1) { 955 err = autoresize(ubi, ubi->autoresize_vol_id); 956 if (err) 957 goto out_detach; 958 } 959 960 /* Make device "available" before it becomes accessible via sysfs */ 961 ubi_devices[ubi_num] = ubi; 962 963 err = uif_init(ubi); 964 if (err) 965 goto out_detach; 966 967 err = ubi_debugfs_init_dev(ubi); 968 if (err) 969 goto out_uif; 970 971 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 972 if (IS_ERR(ubi->bgt_thread)) { 973 err = PTR_ERR(ubi->bgt_thread); 974 ubi_err(ubi, "cannot spawn \"%s\", error %d", 975 ubi->bgt_name, err); 976 goto out_debugfs; 977 } 978 979 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 980 mtd->index, mtd->name, ubi->flash_size >> 20); 981 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 982 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 983 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 984 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 985 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 986 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 987 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 988 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 989 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 990 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 991 ubi->vtbl_slots); 992 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 993 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 994 ubi->image_seq); 995 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 996 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 997 998 /* 999 * The below lock makes sure we do not race with 'ubi_thread()' which 1000 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1001 */ 1002 spin_lock(&ubi->wl_lock); 1003 ubi->thread_enabled = 1; 1004 wake_up_process(ubi->bgt_thread); 1005 spin_unlock(&ubi->wl_lock); 1006 1007 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1008 return ubi_num; 1009 1010 out_debugfs: 1011 ubi_debugfs_exit_dev(ubi); 1012 out_uif: 1013 uif_close(ubi); 1014 out_detach: 1015 ubi_devices[ubi_num] = NULL; 1016 ubi_wl_close(ubi); 1017 ubi_free_internal_volumes(ubi); 1018 vfree(ubi->vtbl); 1019 out_free: 1020 vfree(ubi->peb_buf); 1021 vfree(ubi->fm_buf); 1022 put_device(&ubi->dev); 1023 return err; 1024 } 1025 1026 /** 1027 * ubi_detach_mtd_dev - detach an MTD device. 1028 * @ubi_num: UBI device number to detach from 1029 * @anyway: detach MTD even if device reference count is not zero 1030 * 1031 * This function destroys an UBI device number @ubi_num and detaches the 1032 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1033 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1034 * exist. 1035 * 1036 * Note, the invocations of this function has to be serialized by the 1037 * @ubi_devices_mutex. 1038 */ 1039 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1040 { 1041 struct ubi_device *ubi; 1042 1043 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1044 return -EINVAL; 1045 1046 ubi = ubi_get_device(ubi_num); 1047 if (!ubi) 1048 return -EINVAL; 1049 1050 spin_lock(&ubi_devices_lock); 1051 put_device(&ubi->dev); 1052 ubi->ref_count -= 1; 1053 if (ubi->ref_count) { 1054 if (!anyway) { 1055 spin_unlock(&ubi_devices_lock); 1056 return -EBUSY; 1057 } 1058 /* This may only happen if there is a bug */ 1059 ubi_err(ubi, "%s reference count %d, destroy anyway", 1060 ubi->ubi_name, ubi->ref_count); 1061 } 1062 ubi_devices[ubi_num] = NULL; 1063 spin_unlock(&ubi_devices_lock); 1064 1065 ubi_assert(ubi_num == ubi->ubi_num); 1066 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1067 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1068 #ifdef CONFIG_MTD_UBI_FASTMAP 1069 /* If we don't write a new fastmap at detach time we lose all 1070 * EC updates that have been made since the last written fastmap. 1071 * In case of fastmap debugging we omit the update to simulate an 1072 * unclean shutdown. */ 1073 if (!ubi_dbg_chk_fastmap(ubi)) 1074 ubi_update_fastmap(ubi); 1075 #endif 1076 /* 1077 * Before freeing anything, we have to stop the background thread to 1078 * prevent it from doing anything on this device while we are freeing. 1079 */ 1080 if (ubi->bgt_thread) 1081 kthread_stop(ubi->bgt_thread); 1082 1083 ubi_debugfs_exit_dev(ubi); 1084 uif_close(ubi); 1085 1086 ubi_wl_close(ubi); 1087 ubi_free_internal_volumes(ubi); 1088 vfree(ubi->vtbl); 1089 put_mtd_device(ubi->mtd); 1090 vfree(ubi->peb_buf); 1091 vfree(ubi->fm_buf); 1092 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1093 put_device(&ubi->dev); 1094 return 0; 1095 } 1096 1097 /** 1098 * open_mtd_by_chdev - open an MTD device by its character device node path. 1099 * @mtd_dev: MTD character device node path 1100 * 1101 * This helper function opens an MTD device by its character node device path. 1102 * Returns MTD device description object in case of success and a negative 1103 * error code in case of failure. 1104 */ 1105 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1106 { 1107 int err, minor; 1108 struct path path; 1109 struct kstat stat; 1110 1111 /* Probably this is an MTD character device node path */ 1112 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1113 if (err) 1114 return ERR_PTR(err); 1115 1116 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1117 path_put(&path); 1118 if (err) 1119 return ERR_PTR(err); 1120 1121 /* MTD device number is defined by the major / minor numbers */ 1122 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1123 return ERR_PTR(-EINVAL); 1124 1125 minor = MINOR(stat.rdev); 1126 1127 if (minor & 1) 1128 /* 1129 * Just do not think the "/dev/mtdrX" devices support is need, 1130 * so do not support them to avoid doing extra work. 1131 */ 1132 return ERR_PTR(-EINVAL); 1133 1134 return get_mtd_device(NULL, minor / 2); 1135 } 1136 1137 /** 1138 * open_mtd_device - open MTD device by name, character device path, or number. 1139 * @mtd_dev: name, character device node path, or MTD device device number 1140 * 1141 * This function tries to open and MTD device described by @mtd_dev string, 1142 * which is first treated as ASCII MTD device number, and if it is not true, it 1143 * is treated as MTD device name, and if that is also not true, it is treated 1144 * as MTD character device node path. Returns MTD device description object in 1145 * case of success and a negative error code in case of failure. 1146 */ 1147 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1148 { 1149 struct mtd_info *mtd; 1150 int mtd_num; 1151 char *endp; 1152 1153 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1154 if (*endp != '\0' || mtd_dev == endp) { 1155 /* 1156 * This does not look like an ASCII integer, probably this is 1157 * MTD device name. 1158 */ 1159 mtd = get_mtd_device_nm(mtd_dev); 1160 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1161 /* Probably this is an MTD character device node path */ 1162 mtd = open_mtd_by_chdev(mtd_dev); 1163 } else 1164 mtd = get_mtd_device(NULL, mtd_num); 1165 1166 return mtd; 1167 } 1168 1169 static int __init ubi_init(void) 1170 { 1171 int err, i, k; 1172 1173 /* Ensure that EC and VID headers have correct size */ 1174 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1175 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1176 1177 if (mtd_devs > UBI_MAX_DEVICES) { 1178 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1179 UBI_MAX_DEVICES); 1180 return -EINVAL; 1181 } 1182 1183 /* Create base sysfs directory and sysfs files */ 1184 err = class_register(&ubi_class); 1185 if (err < 0) 1186 return err; 1187 1188 err = misc_register(&ubi_ctrl_cdev); 1189 if (err) { 1190 pr_err("UBI error: cannot register device\n"); 1191 goto out; 1192 } 1193 1194 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1195 sizeof(struct ubi_wl_entry), 1196 0, 0, NULL); 1197 if (!ubi_wl_entry_slab) { 1198 err = -ENOMEM; 1199 goto out_dev_unreg; 1200 } 1201 1202 err = ubi_debugfs_init(); 1203 if (err) 1204 goto out_slab; 1205 1206 1207 /* Attach MTD devices */ 1208 for (i = 0; i < mtd_devs; i++) { 1209 struct mtd_dev_param *p = &mtd_dev_param[i]; 1210 struct mtd_info *mtd; 1211 1212 cond_resched(); 1213 1214 mtd = open_mtd_device(p->name); 1215 if (IS_ERR(mtd)) { 1216 err = PTR_ERR(mtd); 1217 pr_err("UBI error: cannot open mtd %s, error %d\n", 1218 p->name, err); 1219 /* See comment below re-ubi_is_module(). */ 1220 if (ubi_is_module()) 1221 goto out_detach; 1222 continue; 1223 } 1224 1225 mutex_lock(&ubi_devices_mutex); 1226 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1227 p->vid_hdr_offs, p->max_beb_per1024); 1228 mutex_unlock(&ubi_devices_mutex); 1229 if (err < 0) { 1230 pr_err("UBI error: cannot attach mtd%d\n", 1231 mtd->index); 1232 put_mtd_device(mtd); 1233 1234 /* 1235 * Originally UBI stopped initializing on any error. 1236 * However, later on it was found out that this 1237 * behavior is not very good when UBI is compiled into 1238 * the kernel and the MTD devices to attach are passed 1239 * through the command line. Indeed, UBI failure 1240 * stopped whole boot sequence. 1241 * 1242 * To fix this, we changed the behavior for the 1243 * non-module case, but preserved the old behavior for 1244 * the module case, just for compatibility. This is a 1245 * little inconsistent, though. 1246 */ 1247 if (ubi_is_module()) 1248 goto out_detach; 1249 } 1250 } 1251 1252 err = ubiblock_init(); 1253 if (err) { 1254 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1255 1256 /* See comment above re-ubi_is_module(). */ 1257 if (ubi_is_module()) 1258 goto out_detach; 1259 } 1260 1261 return 0; 1262 1263 out_detach: 1264 for (k = 0; k < i; k++) 1265 if (ubi_devices[k]) { 1266 mutex_lock(&ubi_devices_mutex); 1267 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1268 mutex_unlock(&ubi_devices_mutex); 1269 } 1270 ubi_debugfs_exit(); 1271 out_slab: 1272 kmem_cache_destroy(ubi_wl_entry_slab); 1273 out_dev_unreg: 1274 misc_deregister(&ubi_ctrl_cdev); 1275 out: 1276 class_unregister(&ubi_class); 1277 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1278 return err; 1279 } 1280 late_initcall(ubi_init); 1281 1282 static void __exit ubi_exit(void) 1283 { 1284 int i; 1285 1286 ubiblock_exit(); 1287 1288 for (i = 0; i < UBI_MAX_DEVICES; i++) 1289 if (ubi_devices[i]) { 1290 mutex_lock(&ubi_devices_mutex); 1291 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1292 mutex_unlock(&ubi_devices_mutex); 1293 } 1294 ubi_debugfs_exit(); 1295 kmem_cache_destroy(ubi_wl_entry_slab); 1296 misc_deregister(&ubi_ctrl_cdev); 1297 class_unregister(&ubi_class); 1298 } 1299 module_exit(ubi_exit); 1300 1301 /** 1302 * bytes_str_to_int - convert a number of bytes string into an integer. 1303 * @str: the string to convert 1304 * 1305 * This function returns positive resulting integer in case of success and a 1306 * negative error code in case of failure. 1307 */ 1308 static int bytes_str_to_int(const char *str) 1309 { 1310 char *endp; 1311 unsigned long result; 1312 1313 result = simple_strtoul(str, &endp, 0); 1314 if (str == endp || result >= INT_MAX) { 1315 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1316 return -EINVAL; 1317 } 1318 1319 switch (*endp) { 1320 case 'G': 1321 result *= 1024; 1322 case 'M': 1323 result *= 1024; 1324 case 'K': 1325 result *= 1024; 1326 if (endp[1] == 'i' && endp[2] == 'B') 1327 endp += 2; 1328 case '\0': 1329 break; 1330 default: 1331 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1332 return -EINVAL; 1333 } 1334 1335 return result; 1336 } 1337 1338 /** 1339 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1340 * @val: the parameter value to parse 1341 * @kp: not used 1342 * 1343 * This function returns zero in case of success and a negative error code in 1344 * case of error. 1345 */ 1346 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1347 { 1348 int i, len; 1349 struct mtd_dev_param *p; 1350 char buf[MTD_PARAM_LEN_MAX]; 1351 char *pbuf = &buf[0]; 1352 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1353 1354 if (!val) 1355 return -EINVAL; 1356 1357 if (mtd_devs == UBI_MAX_DEVICES) { 1358 pr_err("UBI error: too many parameters, max. is %d\n", 1359 UBI_MAX_DEVICES); 1360 return -EINVAL; 1361 } 1362 1363 len = strnlen(val, MTD_PARAM_LEN_MAX); 1364 if (len == MTD_PARAM_LEN_MAX) { 1365 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1366 val, MTD_PARAM_LEN_MAX); 1367 return -EINVAL; 1368 } 1369 1370 if (len == 0) { 1371 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1372 return 0; 1373 } 1374 1375 strcpy(buf, val); 1376 1377 /* Get rid of the final newline */ 1378 if (buf[len - 1] == '\n') 1379 buf[len - 1] = '\0'; 1380 1381 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1382 tokens[i] = strsep(&pbuf, ","); 1383 1384 if (pbuf) { 1385 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1386 return -EINVAL; 1387 } 1388 1389 p = &mtd_dev_param[mtd_devs]; 1390 strcpy(&p->name[0], tokens[0]); 1391 1392 token = tokens[1]; 1393 if (token) { 1394 p->vid_hdr_offs = bytes_str_to_int(token); 1395 1396 if (p->vid_hdr_offs < 0) 1397 return p->vid_hdr_offs; 1398 } 1399 1400 token = tokens[2]; 1401 if (token) { 1402 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1403 1404 if (err) { 1405 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1406 token); 1407 return -EINVAL; 1408 } 1409 } 1410 1411 token = tokens[3]; 1412 if (token) { 1413 int err = kstrtoint(token, 10, &p->ubi_num); 1414 1415 if (err) { 1416 pr_err("UBI error: bad value for ubi_num parameter: %s", 1417 token); 1418 return -EINVAL; 1419 } 1420 } else 1421 p->ubi_num = UBI_DEV_NUM_AUTO; 1422 1423 mtd_devs += 1; 1424 return 0; 1425 } 1426 1427 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1428 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1429 "Multiple \"mtd\" parameters may be specified.\n" 1430 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1431 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1432 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1433 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1434 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1435 "\n" 1436 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1437 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1438 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1439 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1440 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1441 #ifdef CONFIG_MTD_UBI_FASTMAP 1442 module_param(fm_autoconvert, bool, 0644); 1443 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1444 module_param(fm_debug, bool, 0); 1445 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1446 #endif 1447 MODULE_VERSION(__stringify(UBI_VERSION)); 1448 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1449 MODULE_AUTHOR("Artem Bityutskiy"); 1450 MODULE_LICENSE("GPL"); 1451