1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 5 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 * @enable_fm: enable fastmap when value is non-zero 57 */ 58 struct mtd_dev_param { 59 char name[MTD_PARAM_LEN_MAX]; 60 int ubi_num; 61 int vid_hdr_offs; 62 int max_beb_per1024; 63 int enable_fm; 64 }; 65 66 /* Numbers of elements set in the @mtd_dev_param array */ 67 static int mtd_devs; 68 69 /* MTD devices specification parameters */ 70 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 71 #ifdef CONFIG_MTD_UBI_FASTMAP 72 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 73 static bool fm_autoconvert; 74 static bool fm_debug; 75 #endif 76 77 /* Slab cache for wear-leveling entries */ 78 struct kmem_cache *ubi_wl_entry_slab; 79 80 /* UBI control character device */ 81 static struct miscdevice ubi_ctrl_cdev = { 82 .minor = MISC_DYNAMIC_MINOR, 83 .name = "ubi_ctrl", 84 .fops = &ubi_ctrl_cdev_operations, 85 }; 86 87 /* All UBI devices in system */ 88 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 89 90 /* Serializes UBI devices creations and removals */ 91 DEFINE_MUTEX(ubi_devices_mutex); 92 93 /* Protects @ubi_devices and @ubi->ref_count */ 94 static DEFINE_SPINLOCK(ubi_devices_lock); 95 96 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 97 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 98 static ssize_t version_show(struct class *class, struct class_attribute *attr, 99 char *buf) 100 { 101 return sprintf(buf, "%d\n", UBI_VERSION); 102 } 103 static CLASS_ATTR_RO(version); 104 105 static struct attribute *ubi_class_attrs[] = { 106 &class_attr_version.attr, 107 NULL, 108 }; 109 ATTRIBUTE_GROUPS(ubi_class); 110 111 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 112 struct class ubi_class = { 113 .name = UBI_NAME_STR, 114 .owner = THIS_MODULE, 115 .class_groups = ubi_class_groups, 116 }; 117 118 static ssize_t dev_attribute_show(struct device *dev, 119 struct device_attribute *attr, char *buf); 120 121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 122 static struct device_attribute dev_eraseblock_size = 123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_avail_eraseblocks = 125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_total_eraseblocks = 127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_volumes_count = 129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_max_ec = 131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_reserved_for_bad = 133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_bad_peb_count = 135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_max_vol_count = 137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_min_io_size = 139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_bgt_enabled = 141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_mtd_num = 143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_ro_mode = 145 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 146 147 /** 148 * ubi_volume_notify - send a volume change notification. 149 * @ubi: UBI device description object 150 * @vol: volume description object of the changed volume 151 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 152 * 153 * This is a helper function which notifies all subscribers about a volume 154 * change event (creation, removal, re-sizing, re-naming, updating). Returns 155 * zero in case of success and a negative error code in case of failure. 156 */ 157 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 158 { 159 int ret; 160 struct ubi_notification nt; 161 162 ubi_do_get_device_info(ubi, &nt.di); 163 ubi_do_get_volume_info(ubi, vol, &nt.vi); 164 165 switch (ntype) { 166 case UBI_VOLUME_ADDED: 167 case UBI_VOLUME_REMOVED: 168 case UBI_VOLUME_RESIZED: 169 case UBI_VOLUME_RENAMED: 170 ret = ubi_update_fastmap(ubi); 171 if (ret) 172 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 173 } 174 175 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 176 } 177 178 /** 179 * ubi_notify_all - send a notification to all volumes. 180 * @ubi: UBI device description object 181 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 182 * @nb: the notifier to call 183 * 184 * This function walks all volumes of UBI device @ubi and sends the @ntype 185 * notification for each volume. If @nb is %NULL, then all registered notifiers 186 * are called, otherwise only the @nb notifier is called. Returns the number of 187 * sent notifications. 188 */ 189 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 190 { 191 struct ubi_notification nt; 192 int i, count = 0; 193 194 ubi_do_get_device_info(ubi, &nt.di); 195 196 mutex_lock(&ubi->device_mutex); 197 for (i = 0; i < ubi->vtbl_slots; i++) { 198 /* 199 * Since the @ubi->device is locked, and we are not going to 200 * change @ubi->volumes, we do not have to lock 201 * @ubi->volumes_lock. 202 */ 203 if (!ubi->volumes[i]) 204 continue; 205 206 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 207 if (nb) 208 nb->notifier_call(nb, ntype, &nt); 209 else 210 blocking_notifier_call_chain(&ubi_notifiers, ntype, 211 &nt); 212 count += 1; 213 } 214 mutex_unlock(&ubi->device_mutex); 215 216 return count; 217 } 218 219 /** 220 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 221 * @nb: the notifier to call 222 * 223 * This function walks all UBI devices and volumes and sends the 224 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 225 * registered notifiers are called, otherwise only the @nb notifier is called. 226 * Returns the number of sent notifications. 227 */ 228 int ubi_enumerate_volumes(struct notifier_block *nb) 229 { 230 int i, count = 0; 231 232 /* 233 * Since the @ubi_devices_mutex is locked, and we are not going to 234 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 235 */ 236 for (i = 0; i < UBI_MAX_DEVICES; i++) { 237 struct ubi_device *ubi = ubi_devices[i]; 238 239 if (!ubi) 240 continue; 241 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 242 } 243 244 return count; 245 } 246 247 /** 248 * ubi_get_device - get UBI device. 249 * @ubi_num: UBI device number 250 * 251 * This function returns UBI device description object for UBI device number 252 * @ubi_num, or %NULL if the device does not exist. This function increases the 253 * device reference count to prevent removal of the device. In other words, the 254 * device cannot be removed if its reference count is not zero. 255 */ 256 struct ubi_device *ubi_get_device(int ubi_num) 257 { 258 struct ubi_device *ubi; 259 260 spin_lock(&ubi_devices_lock); 261 ubi = ubi_devices[ubi_num]; 262 if (ubi) { 263 ubi_assert(ubi->ref_count >= 0); 264 ubi->ref_count += 1; 265 get_device(&ubi->dev); 266 } 267 spin_unlock(&ubi_devices_lock); 268 269 return ubi; 270 } 271 272 /** 273 * ubi_put_device - drop an UBI device reference. 274 * @ubi: UBI device description object 275 */ 276 void ubi_put_device(struct ubi_device *ubi) 277 { 278 spin_lock(&ubi_devices_lock); 279 ubi->ref_count -= 1; 280 put_device(&ubi->dev); 281 spin_unlock(&ubi_devices_lock); 282 } 283 284 /** 285 * ubi_get_by_major - get UBI device by character device major number. 286 * @major: major number 287 * 288 * This function is similar to 'ubi_get_device()', but it searches the device 289 * by its major number. 290 */ 291 struct ubi_device *ubi_get_by_major(int major) 292 { 293 int i; 294 struct ubi_device *ubi; 295 296 spin_lock(&ubi_devices_lock); 297 for (i = 0; i < UBI_MAX_DEVICES; i++) { 298 ubi = ubi_devices[i]; 299 if (ubi && MAJOR(ubi->cdev.dev) == major) { 300 ubi_assert(ubi->ref_count >= 0); 301 ubi->ref_count += 1; 302 get_device(&ubi->dev); 303 spin_unlock(&ubi_devices_lock); 304 return ubi; 305 } 306 } 307 spin_unlock(&ubi_devices_lock); 308 309 return NULL; 310 } 311 312 /** 313 * ubi_major2num - get UBI device number by character device major number. 314 * @major: major number 315 * 316 * This function searches UBI device number object by its major number. If UBI 317 * device was not found, this function returns -ENODEV, otherwise the UBI device 318 * number is returned. 319 */ 320 int ubi_major2num(int major) 321 { 322 int i, ubi_num = -ENODEV; 323 324 spin_lock(&ubi_devices_lock); 325 for (i = 0; i < UBI_MAX_DEVICES; i++) { 326 struct ubi_device *ubi = ubi_devices[i]; 327 328 if (ubi && MAJOR(ubi->cdev.dev) == major) { 329 ubi_num = ubi->ubi_num; 330 break; 331 } 332 } 333 spin_unlock(&ubi_devices_lock); 334 335 return ubi_num; 336 } 337 338 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 339 static ssize_t dev_attribute_show(struct device *dev, 340 struct device_attribute *attr, char *buf) 341 { 342 ssize_t ret; 343 struct ubi_device *ubi; 344 345 /* 346 * The below code looks weird, but it actually makes sense. We get the 347 * UBI device reference from the contained 'struct ubi_device'. But it 348 * is unclear if the device was removed or not yet. Indeed, if the 349 * device was removed before we increased its reference count, 350 * 'ubi_get_device()' will return -ENODEV and we fail. 351 * 352 * Remember, 'struct ubi_device' is freed in the release function, so 353 * we still can use 'ubi->ubi_num'. 354 */ 355 ubi = container_of(dev, struct ubi_device, dev); 356 357 if (attr == &dev_eraseblock_size) 358 ret = sprintf(buf, "%d\n", ubi->leb_size); 359 else if (attr == &dev_avail_eraseblocks) 360 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 361 else if (attr == &dev_total_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 363 else if (attr == &dev_volumes_count) 364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 365 else if (attr == &dev_max_ec) 366 ret = sprintf(buf, "%d\n", ubi->max_ec); 367 else if (attr == &dev_reserved_for_bad) 368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 369 else if (attr == &dev_bad_peb_count) 370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 371 else if (attr == &dev_max_vol_count) 372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 373 else if (attr == &dev_min_io_size) 374 ret = sprintf(buf, "%d\n", ubi->min_io_size); 375 else if (attr == &dev_bgt_enabled) 376 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 377 else if (attr == &dev_mtd_num) 378 ret = sprintf(buf, "%d\n", ubi->mtd->index); 379 else if (attr == &dev_ro_mode) 380 ret = sprintf(buf, "%d\n", ubi->ro_mode); 381 else 382 ret = -EINVAL; 383 384 return ret; 385 } 386 387 static struct attribute *ubi_dev_attrs[] = { 388 &dev_eraseblock_size.attr, 389 &dev_avail_eraseblocks.attr, 390 &dev_total_eraseblocks.attr, 391 &dev_volumes_count.attr, 392 &dev_max_ec.attr, 393 &dev_reserved_for_bad.attr, 394 &dev_bad_peb_count.attr, 395 &dev_max_vol_count.attr, 396 &dev_min_io_size.attr, 397 &dev_bgt_enabled.attr, 398 &dev_mtd_num.attr, 399 &dev_ro_mode.attr, 400 NULL 401 }; 402 ATTRIBUTE_GROUPS(ubi_dev); 403 404 static void dev_release(struct device *dev) 405 { 406 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 407 408 kfree(ubi); 409 } 410 411 /** 412 * kill_volumes - destroy all user volumes. 413 * @ubi: UBI device description object 414 */ 415 static void kill_volumes(struct ubi_device *ubi) 416 { 417 int i; 418 419 for (i = 0; i < ubi->vtbl_slots; i++) 420 if (ubi->volumes[i]) 421 ubi_free_volume(ubi, ubi->volumes[i]); 422 } 423 424 /** 425 * uif_init - initialize user interfaces for an UBI device. 426 * @ubi: UBI device description object 427 * 428 * This function initializes various user interfaces for an UBI device. If the 429 * initialization fails at an early stage, this function frees all the 430 * resources it allocated, returns an error. 431 * 432 * This function returns zero in case of success and a negative error code in 433 * case of failure. 434 */ 435 static int uif_init(struct ubi_device *ubi) 436 { 437 int i, err; 438 dev_t dev; 439 440 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 441 442 /* 443 * Major numbers for the UBI character devices are allocated 444 * dynamically. Major numbers of volume character devices are 445 * equivalent to ones of the corresponding UBI character device. Minor 446 * numbers of UBI character devices are 0, while minor numbers of 447 * volume character devices start from 1. Thus, we allocate one major 448 * number and ubi->vtbl_slots + 1 minor numbers. 449 */ 450 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 451 if (err) { 452 ubi_err(ubi, "cannot register UBI character devices"); 453 return err; 454 } 455 456 ubi->dev.devt = dev; 457 458 ubi_assert(MINOR(dev) == 0); 459 cdev_init(&ubi->cdev, &ubi_cdev_operations); 460 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 461 ubi->cdev.owner = THIS_MODULE; 462 463 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 464 err = cdev_device_add(&ubi->cdev, &ubi->dev); 465 if (err) 466 goto out_unreg; 467 468 for (i = 0; i < ubi->vtbl_slots; i++) 469 if (ubi->volumes[i]) { 470 err = ubi_add_volume(ubi, ubi->volumes[i]); 471 if (err) { 472 ubi_err(ubi, "cannot add volume %d", i); 473 ubi->volumes[i] = NULL; 474 goto out_volumes; 475 } 476 } 477 478 return 0; 479 480 out_volumes: 481 kill_volumes(ubi); 482 cdev_device_del(&ubi->cdev, &ubi->dev); 483 out_unreg: 484 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 485 ubi_err(ubi, "cannot initialize UBI %s, error %d", 486 ubi->ubi_name, err); 487 return err; 488 } 489 490 /** 491 * uif_close - close user interfaces for an UBI device. 492 * @ubi: UBI device description object 493 * 494 * Note, since this function un-registers UBI volume device objects (@vol->dev), 495 * the memory allocated voe the volumes is freed as well (in the release 496 * function). 497 */ 498 static void uif_close(struct ubi_device *ubi) 499 { 500 kill_volumes(ubi); 501 cdev_device_del(&ubi->cdev, &ubi->dev); 502 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 503 } 504 505 /** 506 * ubi_free_volumes_from - free volumes from specific index. 507 * @ubi: UBI device description object 508 * @from: the start index used for volume free. 509 */ 510 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 511 { 512 int i; 513 514 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 515 if (!ubi->volumes[i]) 516 continue; 517 ubi_eba_replace_table(ubi->volumes[i], NULL); 518 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 519 kfree(ubi->volumes[i]); 520 ubi->volumes[i] = NULL; 521 } 522 } 523 524 /** 525 * ubi_free_all_volumes - free all volumes. 526 * @ubi: UBI device description object 527 */ 528 void ubi_free_all_volumes(struct ubi_device *ubi) 529 { 530 ubi_free_volumes_from(ubi, 0); 531 } 532 533 /** 534 * ubi_free_internal_volumes - free internal volumes. 535 * @ubi: UBI device description object 536 */ 537 void ubi_free_internal_volumes(struct ubi_device *ubi) 538 { 539 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 540 } 541 542 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 543 { 544 int limit, device_pebs; 545 uint64_t device_size; 546 547 if (!max_beb_per1024) { 548 /* 549 * Since max_beb_per1024 has not been set by the user in either 550 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 551 * limit if it is supported by the device. 552 */ 553 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 554 if (limit < 0) 555 return 0; 556 return limit; 557 } 558 559 /* 560 * Here we are using size of the entire flash chip and 561 * not just the MTD partition size because the maximum 562 * number of bad eraseblocks is a percentage of the 563 * whole device and bad eraseblocks are not fairly 564 * distributed over the flash chip. So the worst case 565 * is that all the bad eraseblocks of the chip are in 566 * the MTD partition we are attaching (ubi->mtd). 567 */ 568 device_size = mtd_get_device_size(ubi->mtd); 569 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 570 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 571 572 /* Round it up */ 573 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 574 limit += 1; 575 576 return limit; 577 } 578 579 /** 580 * io_init - initialize I/O sub-system for a given UBI device. 581 * @ubi: UBI device description object 582 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 583 * 584 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 585 * assumed: 586 * o EC header is always at offset zero - this cannot be changed; 587 * o VID header starts just after the EC header at the closest address 588 * aligned to @io->hdrs_min_io_size; 589 * o data starts just after the VID header at the closest address aligned to 590 * @io->min_io_size 591 * 592 * This function returns zero in case of success and a negative error code in 593 * case of failure. 594 */ 595 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 596 { 597 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 598 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 599 600 if (ubi->mtd->numeraseregions != 0) { 601 /* 602 * Some flashes have several erase regions. Different regions 603 * may have different eraseblock size and other 604 * characteristics. It looks like mostly multi-region flashes 605 * have one "main" region and one or more small regions to 606 * store boot loader code or boot parameters or whatever. I 607 * guess we should just pick the largest region. But this is 608 * not implemented. 609 */ 610 ubi_err(ubi, "multiple regions, not implemented"); 611 return -EINVAL; 612 } 613 614 if (ubi->vid_hdr_offset < 0) 615 return -EINVAL; 616 617 /* 618 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 619 * physical eraseblocks maximum. 620 */ 621 622 ubi->peb_size = ubi->mtd->erasesize; 623 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 624 ubi->flash_size = ubi->mtd->size; 625 626 if (mtd_can_have_bb(ubi->mtd)) { 627 ubi->bad_allowed = 1; 628 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 629 } 630 631 if (ubi->mtd->type == MTD_NORFLASH) 632 ubi->nor_flash = 1; 633 634 ubi->min_io_size = ubi->mtd->writesize; 635 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 636 637 /* 638 * Make sure minimal I/O unit is power of 2. Note, there is no 639 * fundamental reason for this assumption. It is just an optimization 640 * which allows us to avoid costly division operations. 641 */ 642 if (!is_power_of_2(ubi->min_io_size)) { 643 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 644 ubi->min_io_size); 645 return -EINVAL; 646 } 647 648 ubi_assert(ubi->hdrs_min_io_size > 0); 649 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 650 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 651 652 ubi->max_write_size = ubi->mtd->writebufsize; 653 /* 654 * Maximum write size has to be greater or equivalent to min. I/O 655 * size, and be multiple of min. I/O size. 656 */ 657 if (ubi->max_write_size < ubi->min_io_size || 658 ubi->max_write_size % ubi->min_io_size || 659 !is_power_of_2(ubi->max_write_size)) { 660 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 661 ubi->max_write_size, ubi->min_io_size); 662 return -EINVAL; 663 } 664 665 /* Calculate default aligned sizes of EC and VID headers */ 666 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 667 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 668 669 dbg_gen("min_io_size %d", ubi->min_io_size); 670 dbg_gen("max_write_size %d", ubi->max_write_size); 671 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 672 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 673 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 674 675 if (ubi->vid_hdr_offset == 0) 676 /* Default offset */ 677 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 678 ubi->ec_hdr_alsize; 679 else { 680 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 681 ~(ubi->hdrs_min_io_size - 1); 682 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 683 ubi->vid_hdr_aloffset; 684 } 685 686 /* 687 * Memory allocation for VID header is ubi->vid_hdr_alsize 688 * which is described in comments in io.c. 689 * Make sure VID header shift + UBI_VID_HDR_SIZE not exceeds 690 * ubi->vid_hdr_alsize, so that all vid header operations 691 * won't access memory out of bounds. 692 */ 693 if ((ubi->vid_hdr_shift + UBI_VID_HDR_SIZE) > ubi->vid_hdr_alsize) { 694 ubi_err(ubi, "Invalid VID header offset %d, VID header shift(%d)" 695 " + VID header size(%zu) > VID header aligned size(%d).", 696 ubi->vid_hdr_offset, ubi->vid_hdr_shift, 697 UBI_VID_HDR_SIZE, ubi->vid_hdr_alsize); 698 return -EINVAL; 699 } 700 701 /* Similar for the data offset */ 702 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 703 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 704 705 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 706 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 707 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 708 dbg_gen("leb_start %d", ubi->leb_start); 709 710 /* The shift must be aligned to 32-bit boundary */ 711 if (ubi->vid_hdr_shift % 4) { 712 ubi_err(ubi, "unaligned VID header shift %d", 713 ubi->vid_hdr_shift); 714 return -EINVAL; 715 } 716 717 /* Check sanity */ 718 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 719 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 720 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 721 ubi->leb_start & (ubi->min_io_size - 1)) { 722 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 723 ubi->vid_hdr_offset, ubi->leb_start); 724 return -EINVAL; 725 } 726 727 /* 728 * Set maximum amount of physical erroneous eraseblocks to be 10%. 729 * Erroneous PEB are those which have read errors. 730 */ 731 ubi->max_erroneous = ubi->peb_count / 10; 732 if (ubi->max_erroneous < 16) 733 ubi->max_erroneous = 16; 734 dbg_gen("max_erroneous %d", ubi->max_erroneous); 735 736 /* 737 * It may happen that EC and VID headers are situated in one minimal 738 * I/O unit. In this case we can only accept this UBI image in 739 * read-only mode. 740 */ 741 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 742 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 743 ubi->ro_mode = 1; 744 } 745 746 ubi->leb_size = ubi->peb_size - ubi->leb_start; 747 748 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 749 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 750 ubi->mtd->index); 751 ubi->ro_mode = 1; 752 } 753 754 /* 755 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 756 * unfortunately, MTD does not provide this information. We should loop 757 * over all physical eraseblocks and invoke mtd->block_is_bad() for 758 * each physical eraseblock. So, we leave @ubi->bad_peb_count 759 * uninitialized so far. 760 */ 761 762 return 0; 763 } 764 765 /** 766 * autoresize - re-size the volume which has the "auto-resize" flag set. 767 * @ubi: UBI device description object 768 * @vol_id: ID of the volume to re-size 769 * 770 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 771 * the volume table to the largest possible size. See comments in ubi-header.h 772 * for more description of the flag. Returns zero in case of success and a 773 * negative error code in case of failure. 774 */ 775 static int autoresize(struct ubi_device *ubi, int vol_id) 776 { 777 struct ubi_volume_desc desc; 778 struct ubi_volume *vol = ubi->volumes[vol_id]; 779 int err, old_reserved_pebs = vol->reserved_pebs; 780 781 if (ubi->ro_mode) { 782 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 783 return 0; 784 } 785 786 /* 787 * Clear the auto-resize flag in the volume in-memory copy of the 788 * volume table, and 'ubi_resize_volume()' will propagate this change 789 * to the flash. 790 */ 791 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 792 793 if (ubi->avail_pebs == 0) { 794 struct ubi_vtbl_record vtbl_rec; 795 796 /* 797 * No available PEBs to re-size the volume, clear the flag on 798 * flash and exit. 799 */ 800 vtbl_rec = ubi->vtbl[vol_id]; 801 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 802 if (err) 803 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 804 vol_id); 805 } else { 806 desc.vol = vol; 807 err = ubi_resize_volume(&desc, 808 old_reserved_pebs + ubi->avail_pebs); 809 if (err) 810 ubi_err(ubi, "cannot auto-resize volume %d", 811 vol_id); 812 } 813 814 if (err) 815 return err; 816 817 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 818 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 819 return 0; 820 } 821 822 /** 823 * ubi_attach_mtd_dev - attach an MTD device. 824 * @mtd: MTD device description object 825 * @ubi_num: number to assign to the new UBI device 826 * @vid_hdr_offset: VID header offset 827 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 828 * @disable_fm: whether disable fastmap 829 * 830 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 831 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 832 * which case this function finds a vacant device number and assigns it 833 * automatically. Returns the new UBI device number in case of success and a 834 * negative error code in case of failure. 835 * 836 * If @disable_fm is true, ubi doesn't create new fastmap even the module param 837 * 'fm_autoconvert' is set, and existed old fastmap will be destroyed after 838 * doing full scanning. 839 * 840 * Note, the invocations of this function has to be serialized by the 841 * @ubi_devices_mutex. 842 */ 843 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 844 int vid_hdr_offset, int max_beb_per1024, bool disable_fm) 845 { 846 struct ubi_device *ubi; 847 int i, err; 848 849 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 850 return -EINVAL; 851 852 if (!max_beb_per1024) 853 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 854 855 /* 856 * Check if we already have the same MTD device attached. 857 * 858 * Note, this function assumes that UBI devices creations and deletions 859 * are serialized, so it does not take the &ubi_devices_lock. 860 */ 861 for (i = 0; i < UBI_MAX_DEVICES; i++) { 862 ubi = ubi_devices[i]; 863 if (ubi && mtd->index == ubi->mtd->index) { 864 pr_err("ubi: mtd%d is already attached to ubi%d\n", 865 mtd->index, i); 866 return -EEXIST; 867 } 868 } 869 870 /* 871 * Make sure this MTD device is not emulated on top of an UBI volume 872 * already. Well, generally this recursion works fine, but there are 873 * different problems like the UBI module takes a reference to itself 874 * by attaching (and thus, opening) the emulated MTD device. This 875 * results in inability to unload the module. And in general it makes 876 * no sense to attach emulated MTD devices, so we prohibit this. 877 */ 878 if (mtd->type == MTD_UBIVOLUME) { 879 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 880 mtd->index); 881 return -EINVAL; 882 } 883 884 /* 885 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 886 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 887 * will die soon and you will lose all your data. 888 * Relax this rule if the partition we're attaching to operates in SLC 889 * mode. 890 */ 891 if (mtd->type == MTD_MLCNANDFLASH && 892 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 893 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 894 mtd->index); 895 return -EINVAL; 896 } 897 898 if (ubi_num == UBI_DEV_NUM_AUTO) { 899 /* Search for an empty slot in the @ubi_devices array */ 900 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 901 if (!ubi_devices[ubi_num]) 902 break; 903 if (ubi_num == UBI_MAX_DEVICES) { 904 pr_err("ubi: only %d UBI devices may be created\n", 905 UBI_MAX_DEVICES); 906 return -ENFILE; 907 } 908 } else { 909 if (ubi_num >= UBI_MAX_DEVICES) 910 return -EINVAL; 911 912 /* Make sure ubi_num is not busy */ 913 if (ubi_devices[ubi_num]) { 914 pr_err("ubi: ubi%i already exists\n", ubi_num); 915 return -EEXIST; 916 } 917 } 918 919 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 920 if (!ubi) 921 return -ENOMEM; 922 923 device_initialize(&ubi->dev); 924 ubi->dev.release = dev_release; 925 ubi->dev.class = &ubi_class; 926 ubi->dev.groups = ubi_dev_groups; 927 ubi->dev.parent = &mtd->dev; 928 929 ubi->mtd = mtd; 930 ubi->ubi_num = ubi_num; 931 ubi->vid_hdr_offset = vid_hdr_offset; 932 ubi->autoresize_vol_id = -1; 933 934 #ifdef CONFIG_MTD_UBI_FASTMAP 935 ubi->fm_pool.used = ubi->fm_pool.size = 0; 936 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 937 938 /* 939 * fm_pool.max_size is 5% of the total number of PEBs but it's also 940 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 941 */ 942 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 943 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 944 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 945 UBI_FM_MIN_POOL_SIZE); 946 947 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 948 ubi->fm_disabled = (!fm_autoconvert || disable_fm) ? 1 : 0; 949 if (fm_debug) 950 ubi_enable_dbg_chk_fastmap(ubi); 951 952 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 953 <= UBI_FM_MAX_START) { 954 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 955 UBI_FM_MAX_START); 956 ubi->fm_disabled = 1; 957 } 958 959 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 960 ubi_msg(ubi, "default fastmap WL pool size: %d", 961 ubi->fm_wl_pool.max_size); 962 #else 963 ubi->fm_disabled = 1; 964 #endif 965 mutex_init(&ubi->buf_mutex); 966 mutex_init(&ubi->ckvol_mutex); 967 mutex_init(&ubi->device_mutex); 968 spin_lock_init(&ubi->volumes_lock); 969 init_rwsem(&ubi->fm_protect); 970 init_rwsem(&ubi->fm_eba_sem); 971 972 ubi_msg(ubi, "attaching mtd%d", mtd->index); 973 974 err = io_init(ubi, max_beb_per1024); 975 if (err) 976 goto out_free; 977 978 err = -ENOMEM; 979 ubi->peb_buf = vmalloc(ubi->peb_size); 980 if (!ubi->peb_buf) 981 goto out_free; 982 983 #ifdef CONFIG_MTD_UBI_FASTMAP 984 ubi->fm_size = ubi_calc_fm_size(ubi); 985 ubi->fm_buf = vzalloc(ubi->fm_size); 986 if (!ubi->fm_buf) 987 goto out_free; 988 #endif 989 err = ubi_attach(ubi, disable_fm ? 1 : 0); 990 if (err) { 991 ubi_err(ubi, "failed to attach mtd%d, error %d", 992 mtd->index, err); 993 goto out_free; 994 } 995 996 if (ubi->autoresize_vol_id != -1) { 997 err = autoresize(ubi, ubi->autoresize_vol_id); 998 if (err) 999 goto out_detach; 1000 } 1001 1002 err = uif_init(ubi); 1003 if (err) 1004 goto out_detach; 1005 1006 err = ubi_debugfs_init_dev(ubi); 1007 if (err) 1008 goto out_uif; 1009 1010 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1011 if (IS_ERR(ubi->bgt_thread)) { 1012 err = PTR_ERR(ubi->bgt_thread); 1013 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1014 ubi->bgt_name, err); 1015 goto out_debugfs; 1016 } 1017 1018 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1019 mtd->index, mtd->name, ubi->flash_size >> 20); 1020 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1021 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1022 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1023 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1024 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1025 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1026 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1027 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1028 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1029 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1030 ubi->vtbl_slots); 1031 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1032 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1033 ubi->image_seq); 1034 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1035 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1036 1037 /* 1038 * The below lock makes sure we do not race with 'ubi_thread()' which 1039 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1040 */ 1041 spin_lock(&ubi->wl_lock); 1042 ubi->thread_enabled = 1; 1043 wake_up_process(ubi->bgt_thread); 1044 spin_unlock(&ubi->wl_lock); 1045 1046 ubi_devices[ubi_num] = ubi; 1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1048 return ubi_num; 1049 1050 out_debugfs: 1051 ubi_debugfs_exit_dev(ubi); 1052 out_uif: 1053 uif_close(ubi); 1054 out_detach: 1055 ubi_wl_close(ubi); 1056 ubi_free_all_volumes(ubi); 1057 vfree(ubi->vtbl); 1058 out_free: 1059 vfree(ubi->peb_buf); 1060 vfree(ubi->fm_buf); 1061 put_device(&ubi->dev); 1062 return err; 1063 } 1064 1065 /** 1066 * ubi_detach_mtd_dev - detach an MTD device. 1067 * @ubi_num: UBI device number to detach from 1068 * @anyway: detach MTD even if device reference count is not zero 1069 * 1070 * This function destroys an UBI device number @ubi_num and detaches the 1071 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1072 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1073 * exist. 1074 * 1075 * Note, the invocations of this function has to be serialized by the 1076 * @ubi_devices_mutex. 1077 */ 1078 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1079 { 1080 struct ubi_device *ubi; 1081 1082 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1083 return -EINVAL; 1084 1085 ubi = ubi_get_device(ubi_num); 1086 if (!ubi) 1087 return -EINVAL; 1088 1089 spin_lock(&ubi_devices_lock); 1090 put_device(&ubi->dev); 1091 ubi->ref_count -= 1; 1092 if (ubi->ref_count) { 1093 if (!anyway) { 1094 spin_unlock(&ubi_devices_lock); 1095 return -EBUSY; 1096 } 1097 /* This may only happen if there is a bug */ 1098 ubi_err(ubi, "%s reference count %d, destroy anyway", 1099 ubi->ubi_name, ubi->ref_count); 1100 } 1101 ubi_devices[ubi_num] = NULL; 1102 spin_unlock(&ubi_devices_lock); 1103 1104 ubi_assert(ubi_num == ubi->ubi_num); 1105 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1106 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1107 #ifdef CONFIG_MTD_UBI_FASTMAP 1108 /* If we don't write a new fastmap at detach time we lose all 1109 * EC updates that have been made since the last written fastmap. 1110 * In case of fastmap debugging we omit the update to simulate an 1111 * unclean shutdown. */ 1112 if (!ubi_dbg_chk_fastmap(ubi)) 1113 ubi_update_fastmap(ubi); 1114 #endif 1115 /* 1116 * Before freeing anything, we have to stop the background thread to 1117 * prevent it from doing anything on this device while we are freeing. 1118 */ 1119 if (ubi->bgt_thread) 1120 kthread_stop(ubi->bgt_thread); 1121 1122 #ifdef CONFIG_MTD_UBI_FASTMAP 1123 cancel_work_sync(&ubi->fm_work); 1124 #endif 1125 ubi_debugfs_exit_dev(ubi); 1126 uif_close(ubi); 1127 1128 ubi_wl_close(ubi); 1129 ubi_free_internal_volumes(ubi); 1130 vfree(ubi->vtbl); 1131 vfree(ubi->peb_buf); 1132 vfree(ubi->fm_buf); 1133 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1134 put_mtd_device(ubi->mtd); 1135 put_device(&ubi->dev); 1136 return 0; 1137 } 1138 1139 /** 1140 * open_mtd_by_chdev - open an MTD device by its character device node path. 1141 * @mtd_dev: MTD character device node path 1142 * 1143 * This helper function opens an MTD device by its character node device path. 1144 * Returns MTD device description object in case of success and a negative 1145 * error code in case of failure. 1146 */ 1147 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1148 { 1149 int err, minor; 1150 struct path path; 1151 struct kstat stat; 1152 1153 /* Probably this is an MTD character device node path */ 1154 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1155 if (err) 1156 return ERR_PTR(err); 1157 1158 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1159 path_put(&path); 1160 if (err) 1161 return ERR_PTR(err); 1162 1163 /* MTD device number is defined by the major / minor numbers */ 1164 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1165 return ERR_PTR(-EINVAL); 1166 1167 minor = MINOR(stat.rdev); 1168 1169 if (minor & 1) 1170 /* 1171 * Just do not think the "/dev/mtdrX" devices support is need, 1172 * so do not support them to avoid doing extra work. 1173 */ 1174 return ERR_PTR(-EINVAL); 1175 1176 return get_mtd_device(NULL, minor / 2); 1177 } 1178 1179 /** 1180 * open_mtd_device - open MTD device by name, character device path, or number. 1181 * @mtd_dev: name, character device node path, or MTD device device number 1182 * 1183 * This function tries to open and MTD device described by @mtd_dev string, 1184 * which is first treated as ASCII MTD device number, and if it is not true, it 1185 * is treated as MTD device name, and if that is also not true, it is treated 1186 * as MTD character device node path. Returns MTD device description object in 1187 * case of success and a negative error code in case of failure. 1188 */ 1189 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1190 { 1191 struct mtd_info *mtd; 1192 int mtd_num; 1193 char *endp; 1194 1195 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1196 if (*endp != '\0' || mtd_dev == endp) { 1197 /* 1198 * This does not look like an ASCII integer, probably this is 1199 * MTD device name. 1200 */ 1201 mtd = get_mtd_device_nm(mtd_dev); 1202 if (PTR_ERR(mtd) == -ENODEV) 1203 /* Probably this is an MTD character device node path */ 1204 mtd = open_mtd_by_chdev(mtd_dev); 1205 } else 1206 mtd = get_mtd_device(NULL, mtd_num); 1207 1208 return mtd; 1209 } 1210 1211 static int __init ubi_init(void) 1212 { 1213 int err, i, k; 1214 1215 /* Ensure that EC and VID headers have correct size */ 1216 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1217 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1218 1219 if (mtd_devs > UBI_MAX_DEVICES) { 1220 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1221 UBI_MAX_DEVICES); 1222 return -EINVAL; 1223 } 1224 1225 /* Create base sysfs directory and sysfs files */ 1226 err = class_register(&ubi_class); 1227 if (err < 0) 1228 return err; 1229 1230 err = misc_register(&ubi_ctrl_cdev); 1231 if (err) { 1232 pr_err("UBI error: cannot register device\n"); 1233 goto out; 1234 } 1235 1236 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1237 sizeof(struct ubi_wl_entry), 1238 0, 0, NULL); 1239 if (!ubi_wl_entry_slab) { 1240 err = -ENOMEM; 1241 goto out_dev_unreg; 1242 } 1243 1244 err = ubi_debugfs_init(); 1245 if (err) 1246 goto out_slab; 1247 1248 1249 /* Attach MTD devices */ 1250 for (i = 0; i < mtd_devs; i++) { 1251 struct mtd_dev_param *p = &mtd_dev_param[i]; 1252 struct mtd_info *mtd; 1253 1254 cond_resched(); 1255 1256 mtd = open_mtd_device(p->name); 1257 if (IS_ERR(mtd)) { 1258 err = PTR_ERR(mtd); 1259 pr_err("UBI error: cannot open mtd %s, error %d\n", 1260 p->name, err); 1261 /* See comment below re-ubi_is_module(). */ 1262 if (ubi_is_module()) 1263 goto out_detach; 1264 continue; 1265 } 1266 1267 mutex_lock(&ubi_devices_mutex); 1268 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1269 p->vid_hdr_offs, p->max_beb_per1024, 1270 p->enable_fm == 0 ? true : false); 1271 mutex_unlock(&ubi_devices_mutex); 1272 if (err < 0) { 1273 pr_err("UBI error: cannot attach mtd%d\n", 1274 mtd->index); 1275 put_mtd_device(mtd); 1276 1277 /* 1278 * Originally UBI stopped initializing on any error. 1279 * However, later on it was found out that this 1280 * behavior is not very good when UBI is compiled into 1281 * the kernel and the MTD devices to attach are passed 1282 * through the command line. Indeed, UBI failure 1283 * stopped whole boot sequence. 1284 * 1285 * To fix this, we changed the behavior for the 1286 * non-module case, but preserved the old behavior for 1287 * the module case, just for compatibility. This is a 1288 * little inconsistent, though. 1289 */ 1290 if (ubi_is_module()) 1291 goto out_detach; 1292 } 1293 } 1294 1295 err = ubiblock_init(); 1296 if (err) { 1297 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1298 1299 /* See comment above re-ubi_is_module(). */ 1300 if (ubi_is_module()) 1301 goto out_detach; 1302 } 1303 1304 return 0; 1305 1306 out_detach: 1307 for (k = 0; k < i; k++) 1308 if (ubi_devices[k]) { 1309 mutex_lock(&ubi_devices_mutex); 1310 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1311 mutex_unlock(&ubi_devices_mutex); 1312 } 1313 ubi_debugfs_exit(); 1314 out_slab: 1315 kmem_cache_destroy(ubi_wl_entry_slab); 1316 out_dev_unreg: 1317 misc_deregister(&ubi_ctrl_cdev); 1318 out: 1319 class_unregister(&ubi_class); 1320 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1321 return err; 1322 } 1323 late_initcall(ubi_init); 1324 1325 static void __exit ubi_exit(void) 1326 { 1327 int i; 1328 1329 ubiblock_exit(); 1330 1331 for (i = 0; i < UBI_MAX_DEVICES; i++) 1332 if (ubi_devices[i]) { 1333 mutex_lock(&ubi_devices_mutex); 1334 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1335 mutex_unlock(&ubi_devices_mutex); 1336 } 1337 ubi_debugfs_exit(); 1338 kmem_cache_destroy(ubi_wl_entry_slab); 1339 misc_deregister(&ubi_ctrl_cdev); 1340 class_unregister(&ubi_class); 1341 } 1342 module_exit(ubi_exit); 1343 1344 /** 1345 * bytes_str_to_int - convert a number of bytes string into an integer. 1346 * @str: the string to convert 1347 * 1348 * This function returns positive resulting integer in case of success and a 1349 * negative error code in case of failure. 1350 */ 1351 static int bytes_str_to_int(const char *str) 1352 { 1353 char *endp; 1354 unsigned long result; 1355 1356 result = simple_strtoul(str, &endp, 0); 1357 if (str == endp || result >= INT_MAX) { 1358 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1359 return -EINVAL; 1360 } 1361 1362 switch (*endp) { 1363 case 'G': 1364 result *= 1024; 1365 fallthrough; 1366 case 'M': 1367 result *= 1024; 1368 fallthrough; 1369 case 'K': 1370 result *= 1024; 1371 break; 1372 case '\0': 1373 break; 1374 default: 1375 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1376 return -EINVAL; 1377 } 1378 1379 return result; 1380 } 1381 1382 /** 1383 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1384 * @val: the parameter value to parse 1385 * @kp: not used 1386 * 1387 * This function returns zero in case of success and a negative error code in 1388 * case of error. 1389 */ 1390 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1391 { 1392 int i, len; 1393 struct mtd_dev_param *p; 1394 char buf[MTD_PARAM_LEN_MAX]; 1395 char *pbuf = &buf[0]; 1396 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1397 1398 if (!val) 1399 return -EINVAL; 1400 1401 if (mtd_devs == UBI_MAX_DEVICES) { 1402 pr_err("UBI error: too many parameters, max. is %d\n", 1403 UBI_MAX_DEVICES); 1404 return -EINVAL; 1405 } 1406 1407 len = strnlen(val, MTD_PARAM_LEN_MAX); 1408 if (len == MTD_PARAM_LEN_MAX) { 1409 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1410 val, MTD_PARAM_LEN_MAX); 1411 return -EINVAL; 1412 } 1413 1414 if (len == 0) { 1415 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1416 return 0; 1417 } 1418 1419 strcpy(buf, val); 1420 1421 /* Get rid of the final newline */ 1422 if (buf[len - 1] == '\n') 1423 buf[len - 1] = '\0'; 1424 1425 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1426 tokens[i] = strsep(&pbuf, ","); 1427 1428 if (pbuf) { 1429 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1430 return -EINVAL; 1431 } 1432 1433 p = &mtd_dev_param[mtd_devs]; 1434 strcpy(&p->name[0], tokens[0]); 1435 1436 token = tokens[1]; 1437 if (token) { 1438 p->vid_hdr_offs = bytes_str_to_int(token); 1439 1440 if (p->vid_hdr_offs < 0) 1441 return p->vid_hdr_offs; 1442 } 1443 1444 token = tokens[2]; 1445 if (token) { 1446 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1447 1448 if (err) { 1449 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s\n", 1450 token); 1451 return -EINVAL; 1452 } 1453 } 1454 1455 token = tokens[3]; 1456 if (token) { 1457 int err = kstrtoint(token, 10, &p->ubi_num); 1458 1459 if (err) { 1460 pr_err("UBI error: bad value for ubi_num parameter: %s\n", 1461 token); 1462 return -EINVAL; 1463 } 1464 } else 1465 p->ubi_num = UBI_DEV_NUM_AUTO; 1466 1467 token = tokens[4]; 1468 if (token) { 1469 int err = kstrtoint(token, 10, &p->enable_fm); 1470 1471 if (err) { 1472 pr_err("UBI error: bad value for enable_fm parameter: %s\n", 1473 token); 1474 return -EINVAL; 1475 } 1476 } else 1477 p->enable_fm = 0; 1478 1479 mtd_devs += 1; 1480 return 0; 1481 } 1482 1483 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1484 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1485 "Multiple \"mtd\" parameters may be specified.\n" 1486 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1487 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1488 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1489 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1490 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1491 "Optional \"enable_fm\" parameter determines whether to enable fastmap during attach. If the value is non-zero, fastmap is enabled. Default value is 0.\n" 1492 "\n" 1493 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1494 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1495 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1496 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1497 "example 5: mtd=1,0,0,5 mtd=2,0,0,6,1 - attach MTD device /dev/mtd1 to UBI 5 and disable fastmap; attach MTD device /dev/mtd2 to UBI 6 and enable fastmap.(only works when fastmap is enabled and fm_autoconvert=Y).\n" 1498 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1499 #ifdef CONFIG_MTD_UBI_FASTMAP 1500 module_param(fm_autoconvert, bool, 0644); 1501 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1502 module_param(fm_debug, bool, 0); 1503 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1504 #endif 1505 MODULE_VERSION(__stringify(UBI_VERSION)); 1506 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1507 MODULE_AUTHOR("Artem Bityutskiy"); 1508 MODULE_LICENSE("GPL"); 1509