1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include "ubi.h" 45 46 /* Maximum length of the 'mtd=' parameter */ 47 #define MTD_PARAM_LEN_MAX 64 48 49 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 50 #define MTD_PARAM_MAX_COUNT 4 51 52 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 53 #define MAX_MTD_UBI_BEB_LIMIT 768 54 55 #ifdef CONFIG_MTD_UBI_MODULE 56 #define ubi_is_module() 1 57 #else 58 #define ubi_is_module() 0 59 #endif 60 61 /** 62 * struct mtd_dev_param - MTD device parameter description data structure. 63 * @name: MTD character device node path, MTD device name, or MTD device number 64 * string 65 * @vid_hdr_offs: VID header offset 66 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 67 */ 68 struct mtd_dev_param { 69 char name[MTD_PARAM_LEN_MAX]; 70 int ubi_num; 71 int vid_hdr_offs; 72 int max_beb_per1024; 73 }; 74 75 /* Numbers of elements set in the @mtd_dev_param array */ 76 static int __initdata mtd_devs; 77 78 /* MTD devices specification parameters */ 79 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 80 #ifdef CONFIG_MTD_UBI_FASTMAP 81 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 82 static bool fm_autoconvert; 83 #endif 84 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 85 struct class *ubi_class; 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 static ssize_t ubi_version_show(struct class *class, 108 struct class_attribute *attr, char *buf) 109 { 110 return sprintf(buf, "%d\n", UBI_VERSION); 111 } 112 113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 114 static struct class_attribute ubi_version = 115 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 116 117 static ssize_t dev_attribute_show(struct device *dev, 118 struct device_attribute *attr, char *buf); 119 120 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 121 static struct device_attribute dev_eraseblock_size = 122 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 123 static struct device_attribute dev_avail_eraseblocks = 124 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125 static struct device_attribute dev_total_eraseblocks = 126 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 127 static struct device_attribute dev_volumes_count = 128 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 129 static struct device_attribute dev_max_ec = 130 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 131 static struct device_attribute dev_reserved_for_bad = 132 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 133 static struct device_attribute dev_bad_peb_count = 134 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 135 static struct device_attribute dev_max_vol_count = 136 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 137 static struct device_attribute dev_min_io_size = 138 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 139 static struct device_attribute dev_bgt_enabled = 140 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 141 static struct device_attribute dev_mtd_num = 142 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 143 144 /** 145 * ubi_volume_notify - send a volume change notification. 146 * @ubi: UBI device description object 147 * @vol: volume description object of the changed volume 148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 149 * 150 * This is a helper function which notifies all subscribers about a volume 151 * change event (creation, removal, re-sizing, re-naming, updating). Returns 152 * zero in case of success and a negative error code in case of failure. 153 */ 154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 155 { 156 struct ubi_notification nt; 157 158 ubi_do_get_device_info(ubi, &nt.di); 159 ubi_do_get_volume_info(ubi, vol, &nt.vi); 160 161 #ifdef CONFIG_MTD_UBI_FASTMAP 162 switch (ntype) { 163 case UBI_VOLUME_ADDED: 164 case UBI_VOLUME_REMOVED: 165 case UBI_VOLUME_RESIZED: 166 case UBI_VOLUME_RENAMED: 167 if (ubi_update_fastmap(ubi)) { 168 ubi_err("Unable to update fastmap!"); 169 ubi_ro_mode(ubi); 170 } 171 } 172 #endif 173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 174 } 175 176 /** 177 * ubi_notify_all - send a notification to all volumes. 178 * @ubi: UBI device description object 179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 180 * @nb: the notifier to call 181 * 182 * This function walks all volumes of UBI device @ubi and sends the @ntype 183 * notification for each volume. If @nb is %NULL, then all registered notifiers 184 * are called, otherwise only the @nb notifier is called. Returns the number of 185 * sent notifications. 186 */ 187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 188 { 189 struct ubi_notification nt; 190 int i, count = 0; 191 192 ubi_do_get_device_info(ubi, &nt.di); 193 194 mutex_lock(&ubi->device_mutex); 195 for (i = 0; i < ubi->vtbl_slots; i++) { 196 /* 197 * Since the @ubi->device is locked, and we are not going to 198 * change @ubi->volumes, we do not have to lock 199 * @ubi->volumes_lock. 200 */ 201 if (!ubi->volumes[i]) 202 continue; 203 204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 205 if (nb) 206 nb->notifier_call(nb, ntype, &nt); 207 else 208 blocking_notifier_call_chain(&ubi_notifiers, ntype, 209 &nt); 210 count += 1; 211 } 212 mutex_unlock(&ubi->device_mutex); 213 214 return count; 215 } 216 217 /** 218 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 219 * @nb: the notifier to call 220 * 221 * This function walks all UBI devices and volumes and sends the 222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 223 * registered notifiers are called, otherwise only the @nb notifier is called. 224 * Returns the number of sent notifications. 225 */ 226 int ubi_enumerate_volumes(struct notifier_block *nb) 227 { 228 int i, count = 0; 229 230 /* 231 * Since the @ubi_devices_mutex is locked, and we are not going to 232 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 233 */ 234 for (i = 0; i < UBI_MAX_DEVICES; i++) { 235 struct ubi_device *ubi = ubi_devices[i]; 236 237 if (!ubi) 238 continue; 239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 240 } 241 242 return count; 243 } 244 245 /** 246 * ubi_get_device - get UBI device. 247 * @ubi_num: UBI device number 248 * 249 * This function returns UBI device description object for UBI device number 250 * @ubi_num, or %NULL if the device does not exist. This function increases the 251 * device reference count to prevent removal of the device. In other words, the 252 * device cannot be removed if its reference count is not zero. 253 */ 254 struct ubi_device *ubi_get_device(int ubi_num) 255 { 256 struct ubi_device *ubi; 257 258 spin_lock(&ubi_devices_lock); 259 ubi = ubi_devices[ubi_num]; 260 if (ubi) { 261 ubi_assert(ubi->ref_count >= 0); 262 ubi->ref_count += 1; 263 get_device(&ubi->dev); 264 } 265 spin_unlock(&ubi_devices_lock); 266 267 return ubi; 268 } 269 270 /** 271 * ubi_put_device - drop an UBI device reference. 272 * @ubi: UBI device description object 273 */ 274 void ubi_put_device(struct ubi_device *ubi) 275 { 276 spin_lock(&ubi_devices_lock); 277 ubi->ref_count -= 1; 278 put_device(&ubi->dev); 279 spin_unlock(&ubi_devices_lock); 280 } 281 282 /** 283 * ubi_get_by_major - get UBI device by character device major number. 284 * @major: major number 285 * 286 * This function is similar to 'ubi_get_device()', but it searches the device 287 * by its major number. 288 */ 289 struct ubi_device *ubi_get_by_major(int major) 290 { 291 int i; 292 struct ubi_device *ubi; 293 294 spin_lock(&ubi_devices_lock); 295 for (i = 0; i < UBI_MAX_DEVICES; i++) { 296 ubi = ubi_devices[i]; 297 if (ubi && MAJOR(ubi->cdev.dev) == major) { 298 ubi_assert(ubi->ref_count >= 0); 299 ubi->ref_count += 1; 300 get_device(&ubi->dev); 301 spin_unlock(&ubi_devices_lock); 302 return ubi; 303 } 304 } 305 spin_unlock(&ubi_devices_lock); 306 307 return NULL; 308 } 309 310 /** 311 * ubi_major2num - get UBI device number by character device major number. 312 * @major: major number 313 * 314 * This function searches UBI device number object by its major number. If UBI 315 * device was not found, this function returns -ENODEV, otherwise the UBI device 316 * number is returned. 317 */ 318 int ubi_major2num(int major) 319 { 320 int i, ubi_num = -ENODEV; 321 322 spin_lock(&ubi_devices_lock); 323 for (i = 0; i < UBI_MAX_DEVICES; i++) { 324 struct ubi_device *ubi = ubi_devices[i]; 325 326 if (ubi && MAJOR(ubi->cdev.dev) == major) { 327 ubi_num = ubi->ubi_num; 328 break; 329 } 330 } 331 spin_unlock(&ubi_devices_lock); 332 333 return ubi_num; 334 } 335 336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 337 static ssize_t dev_attribute_show(struct device *dev, 338 struct device_attribute *attr, char *buf) 339 { 340 ssize_t ret; 341 struct ubi_device *ubi; 342 343 /* 344 * The below code looks weird, but it actually makes sense. We get the 345 * UBI device reference from the contained 'struct ubi_device'. But it 346 * is unclear if the device was removed or not yet. Indeed, if the 347 * device was removed before we increased its reference count, 348 * 'ubi_get_device()' will return -ENODEV and we fail. 349 * 350 * Remember, 'struct ubi_device' is freed in the release function, so 351 * we still can use 'ubi->ubi_num'. 352 */ 353 ubi = container_of(dev, struct ubi_device, dev); 354 ubi = ubi_get_device(ubi->ubi_num); 355 if (!ubi) 356 return -ENODEV; 357 358 if (attr == &dev_eraseblock_size) 359 ret = sprintf(buf, "%d\n", ubi->leb_size); 360 else if (attr == &dev_avail_eraseblocks) 361 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 362 else if (attr == &dev_total_eraseblocks) 363 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 364 else if (attr == &dev_volumes_count) 365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 366 else if (attr == &dev_max_ec) 367 ret = sprintf(buf, "%d\n", ubi->max_ec); 368 else if (attr == &dev_reserved_for_bad) 369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 370 else if (attr == &dev_bad_peb_count) 371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 372 else if (attr == &dev_max_vol_count) 373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 374 else if (attr == &dev_min_io_size) 375 ret = sprintf(buf, "%d\n", ubi->min_io_size); 376 else if (attr == &dev_bgt_enabled) 377 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 378 else if (attr == &dev_mtd_num) 379 ret = sprintf(buf, "%d\n", ubi->mtd->index); 380 else 381 ret = -EINVAL; 382 383 ubi_put_device(ubi); 384 return ret; 385 } 386 387 static void dev_release(struct device *dev) 388 { 389 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 390 391 kfree(ubi); 392 } 393 394 /** 395 * ubi_sysfs_init - initialize sysfs for an UBI device. 396 * @ubi: UBI device description object 397 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 398 * taken 399 * 400 * This function returns zero in case of success and a negative error code in 401 * case of failure. 402 */ 403 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 404 { 405 int err; 406 407 ubi->dev.release = dev_release; 408 ubi->dev.devt = ubi->cdev.dev; 409 ubi->dev.class = ubi_class; 410 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 411 err = device_register(&ubi->dev); 412 if (err) 413 return err; 414 415 *ref = 1; 416 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 417 if (err) 418 return err; 419 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 420 if (err) 421 return err; 422 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 423 if (err) 424 return err; 425 err = device_create_file(&ubi->dev, &dev_volumes_count); 426 if (err) 427 return err; 428 err = device_create_file(&ubi->dev, &dev_max_ec); 429 if (err) 430 return err; 431 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 432 if (err) 433 return err; 434 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 435 if (err) 436 return err; 437 err = device_create_file(&ubi->dev, &dev_max_vol_count); 438 if (err) 439 return err; 440 err = device_create_file(&ubi->dev, &dev_min_io_size); 441 if (err) 442 return err; 443 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 444 if (err) 445 return err; 446 err = device_create_file(&ubi->dev, &dev_mtd_num); 447 return err; 448 } 449 450 /** 451 * ubi_sysfs_close - close sysfs for an UBI device. 452 * @ubi: UBI device description object 453 */ 454 static void ubi_sysfs_close(struct ubi_device *ubi) 455 { 456 device_remove_file(&ubi->dev, &dev_mtd_num); 457 device_remove_file(&ubi->dev, &dev_bgt_enabled); 458 device_remove_file(&ubi->dev, &dev_min_io_size); 459 device_remove_file(&ubi->dev, &dev_max_vol_count); 460 device_remove_file(&ubi->dev, &dev_bad_peb_count); 461 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 462 device_remove_file(&ubi->dev, &dev_max_ec); 463 device_remove_file(&ubi->dev, &dev_volumes_count); 464 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 465 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 466 device_remove_file(&ubi->dev, &dev_eraseblock_size); 467 device_unregister(&ubi->dev); 468 } 469 470 /** 471 * kill_volumes - destroy all user volumes. 472 * @ubi: UBI device description object 473 */ 474 static void kill_volumes(struct ubi_device *ubi) 475 { 476 int i; 477 478 for (i = 0; i < ubi->vtbl_slots; i++) 479 if (ubi->volumes[i]) 480 ubi_free_volume(ubi, ubi->volumes[i]); 481 } 482 483 /** 484 * uif_init - initialize user interfaces for an UBI device. 485 * @ubi: UBI device description object 486 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 487 * taken, otherwise set to %0 488 * 489 * This function initializes various user interfaces for an UBI device. If the 490 * initialization fails at an early stage, this function frees all the 491 * resources it allocated, returns an error, and @ref is set to %0. However, 492 * if the initialization fails after the UBI device was registered in the 493 * driver core subsystem, this function takes a reference to @ubi->dev, because 494 * otherwise the release function ('dev_release()') would free whole @ubi 495 * object. The @ref argument is set to %1 in this case. The caller has to put 496 * this reference. 497 * 498 * This function returns zero in case of success and a negative error code in 499 * case of failure. 500 */ 501 static int uif_init(struct ubi_device *ubi, int *ref) 502 { 503 int i, err; 504 dev_t dev; 505 506 *ref = 0; 507 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 508 509 /* 510 * Major numbers for the UBI character devices are allocated 511 * dynamically. Major numbers of volume character devices are 512 * equivalent to ones of the corresponding UBI character device. Minor 513 * numbers of UBI character devices are 0, while minor numbers of 514 * volume character devices start from 1. Thus, we allocate one major 515 * number and ubi->vtbl_slots + 1 minor numbers. 516 */ 517 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 518 if (err) { 519 ubi_err("cannot register UBI character devices"); 520 return err; 521 } 522 523 ubi_assert(MINOR(dev) == 0); 524 cdev_init(&ubi->cdev, &ubi_cdev_operations); 525 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 526 ubi->cdev.owner = THIS_MODULE; 527 528 err = cdev_add(&ubi->cdev, dev, 1); 529 if (err) { 530 ubi_err("cannot add character device"); 531 goto out_unreg; 532 } 533 534 err = ubi_sysfs_init(ubi, ref); 535 if (err) 536 goto out_sysfs; 537 538 for (i = 0; i < ubi->vtbl_slots; i++) 539 if (ubi->volumes[i]) { 540 err = ubi_add_volume(ubi, ubi->volumes[i]); 541 if (err) { 542 ubi_err("cannot add volume %d", i); 543 goto out_volumes; 544 } 545 } 546 547 return 0; 548 549 out_volumes: 550 kill_volumes(ubi); 551 out_sysfs: 552 if (*ref) 553 get_device(&ubi->dev); 554 ubi_sysfs_close(ubi); 555 cdev_del(&ubi->cdev); 556 out_unreg: 557 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 558 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 559 return err; 560 } 561 562 /** 563 * uif_close - close user interfaces for an UBI device. 564 * @ubi: UBI device description object 565 * 566 * Note, since this function un-registers UBI volume device objects (@vol->dev), 567 * the memory allocated voe the volumes is freed as well (in the release 568 * function). 569 */ 570 static void uif_close(struct ubi_device *ubi) 571 { 572 kill_volumes(ubi); 573 ubi_sysfs_close(ubi); 574 cdev_del(&ubi->cdev); 575 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 576 } 577 578 /** 579 * ubi_free_internal_volumes - free internal volumes. 580 * @ubi: UBI device description object 581 */ 582 void ubi_free_internal_volumes(struct ubi_device *ubi) 583 { 584 int i; 585 586 for (i = ubi->vtbl_slots; 587 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 588 kfree(ubi->volumes[i]->eba_tbl); 589 kfree(ubi->volumes[i]); 590 } 591 } 592 593 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 594 { 595 int limit, device_pebs; 596 uint64_t device_size; 597 598 if (!max_beb_per1024) 599 return 0; 600 601 /* 602 * Here we are using size of the entire flash chip and 603 * not just the MTD partition size because the maximum 604 * number of bad eraseblocks is a percentage of the 605 * whole device and bad eraseblocks are not fairly 606 * distributed over the flash chip. So the worst case 607 * is that all the bad eraseblocks of the chip are in 608 * the MTD partition we are attaching (ubi->mtd). 609 */ 610 device_size = mtd_get_device_size(ubi->mtd); 611 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 612 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 613 614 /* Round it up */ 615 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 616 limit += 1; 617 618 return limit; 619 } 620 621 /** 622 * io_init - initialize I/O sub-system for a given UBI device. 623 * @ubi: UBI device description object 624 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 625 * 626 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 627 * assumed: 628 * o EC header is always at offset zero - this cannot be changed; 629 * o VID header starts just after the EC header at the closest address 630 * aligned to @io->hdrs_min_io_size; 631 * o data starts just after the VID header at the closest address aligned to 632 * @io->min_io_size 633 * 634 * This function returns zero in case of success and a negative error code in 635 * case of failure. 636 */ 637 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 638 { 639 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 640 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 641 642 if (ubi->mtd->numeraseregions != 0) { 643 /* 644 * Some flashes have several erase regions. Different regions 645 * may have different eraseblock size and other 646 * characteristics. It looks like mostly multi-region flashes 647 * have one "main" region and one or more small regions to 648 * store boot loader code or boot parameters or whatever. I 649 * guess we should just pick the largest region. But this is 650 * not implemented. 651 */ 652 ubi_err("multiple regions, not implemented"); 653 return -EINVAL; 654 } 655 656 if (ubi->vid_hdr_offset < 0) 657 return -EINVAL; 658 659 /* 660 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 661 * physical eraseblocks maximum. 662 */ 663 664 ubi->peb_size = ubi->mtd->erasesize; 665 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 666 ubi->flash_size = ubi->mtd->size; 667 668 if (mtd_can_have_bb(ubi->mtd)) { 669 ubi->bad_allowed = 1; 670 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 671 } 672 673 if (ubi->mtd->type == MTD_NORFLASH) { 674 ubi_assert(ubi->mtd->writesize == 1); 675 ubi->nor_flash = 1; 676 } 677 678 ubi->min_io_size = ubi->mtd->writesize; 679 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 680 681 /* 682 * Make sure minimal I/O unit is power of 2. Note, there is no 683 * fundamental reason for this assumption. It is just an optimization 684 * which allows us to avoid costly division operations. 685 */ 686 if (!is_power_of_2(ubi->min_io_size)) { 687 ubi_err("min. I/O unit (%d) is not power of 2", 688 ubi->min_io_size); 689 return -EINVAL; 690 } 691 692 ubi_assert(ubi->hdrs_min_io_size > 0); 693 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 694 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 695 696 ubi->max_write_size = ubi->mtd->writebufsize; 697 /* 698 * Maximum write size has to be greater or equivalent to min. I/O 699 * size, and be multiple of min. I/O size. 700 */ 701 if (ubi->max_write_size < ubi->min_io_size || 702 ubi->max_write_size % ubi->min_io_size || 703 !is_power_of_2(ubi->max_write_size)) { 704 ubi_err("bad write buffer size %d for %d min. I/O unit", 705 ubi->max_write_size, ubi->min_io_size); 706 return -EINVAL; 707 } 708 709 /* Calculate default aligned sizes of EC and VID headers */ 710 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 711 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 712 713 dbg_gen("min_io_size %d", ubi->min_io_size); 714 dbg_gen("max_write_size %d", ubi->max_write_size); 715 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 716 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 717 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 718 719 if (ubi->vid_hdr_offset == 0) 720 /* Default offset */ 721 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 722 ubi->ec_hdr_alsize; 723 else { 724 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 725 ~(ubi->hdrs_min_io_size - 1); 726 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 727 ubi->vid_hdr_aloffset; 728 } 729 730 /* Similar for the data offset */ 731 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 732 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 733 734 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 735 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 736 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 737 dbg_gen("leb_start %d", ubi->leb_start); 738 739 /* The shift must be aligned to 32-bit boundary */ 740 if (ubi->vid_hdr_shift % 4) { 741 ubi_err("unaligned VID header shift %d", 742 ubi->vid_hdr_shift); 743 return -EINVAL; 744 } 745 746 /* Check sanity */ 747 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 748 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 749 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 750 ubi->leb_start & (ubi->min_io_size - 1)) { 751 ubi_err("bad VID header (%d) or data offsets (%d)", 752 ubi->vid_hdr_offset, ubi->leb_start); 753 return -EINVAL; 754 } 755 756 /* 757 * Set maximum amount of physical erroneous eraseblocks to be 10%. 758 * Erroneous PEB are those which have read errors. 759 */ 760 ubi->max_erroneous = ubi->peb_count / 10; 761 if (ubi->max_erroneous < 16) 762 ubi->max_erroneous = 16; 763 dbg_gen("max_erroneous %d", ubi->max_erroneous); 764 765 /* 766 * It may happen that EC and VID headers are situated in one minimal 767 * I/O unit. In this case we can only accept this UBI image in 768 * read-only mode. 769 */ 770 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 771 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 772 ubi->ro_mode = 1; 773 } 774 775 ubi->leb_size = ubi->peb_size - ubi->leb_start; 776 777 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 778 ubi_msg("MTD device %d is write-protected, attach in read-only mode", 779 ubi->mtd->index); 780 ubi->ro_mode = 1; 781 } 782 783 /* 784 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 785 * unfortunately, MTD does not provide this information. We should loop 786 * over all physical eraseblocks and invoke mtd->block_is_bad() for 787 * each physical eraseblock. So, we leave @ubi->bad_peb_count 788 * uninitialized so far. 789 */ 790 791 return 0; 792 } 793 794 /** 795 * autoresize - re-size the volume which has the "auto-resize" flag set. 796 * @ubi: UBI device description object 797 * @vol_id: ID of the volume to re-size 798 * 799 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 800 * the volume table to the largest possible size. See comments in ubi-header.h 801 * for more description of the flag. Returns zero in case of success and a 802 * negative error code in case of failure. 803 */ 804 static int autoresize(struct ubi_device *ubi, int vol_id) 805 { 806 struct ubi_volume_desc desc; 807 struct ubi_volume *vol = ubi->volumes[vol_id]; 808 int err, old_reserved_pebs = vol->reserved_pebs; 809 810 if (ubi->ro_mode) { 811 ubi_warn("skip auto-resize because of R/O mode"); 812 return 0; 813 } 814 815 /* 816 * Clear the auto-resize flag in the volume in-memory copy of the 817 * volume table, and 'ubi_resize_volume()' will propagate this change 818 * to the flash. 819 */ 820 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 821 822 if (ubi->avail_pebs == 0) { 823 struct ubi_vtbl_record vtbl_rec; 824 825 /* 826 * No available PEBs to re-size the volume, clear the flag on 827 * flash and exit. 828 */ 829 vtbl_rec = ubi->vtbl[vol_id]; 830 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 831 if (err) 832 ubi_err("cannot clean auto-resize flag for volume %d", 833 vol_id); 834 } else { 835 desc.vol = vol; 836 err = ubi_resize_volume(&desc, 837 old_reserved_pebs + ubi->avail_pebs); 838 if (err) 839 ubi_err("cannot auto-resize volume %d", vol_id); 840 } 841 842 if (err) 843 return err; 844 845 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 846 vol->name, old_reserved_pebs, vol->reserved_pebs); 847 return 0; 848 } 849 850 /** 851 * ubi_attach_mtd_dev - attach an MTD device. 852 * @mtd: MTD device description object 853 * @ubi_num: number to assign to the new UBI device 854 * @vid_hdr_offset: VID header offset 855 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 856 * 857 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 858 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 859 * which case this function finds a vacant device number and assigns it 860 * automatically. Returns the new UBI device number in case of success and a 861 * negative error code in case of failure. 862 * 863 * Note, the invocations of this function has to be serialized by the 864 * @ubi_devices_mutex. 865 */ 866 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 867 int vid_hdr_offset, int max_beb_per1024) 868 { 869 struct ubi_device *ubi; 870 int i, err, ref = 0; 871 872 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 873 return -EINVAL; 874 875 if (!max_beb_per1024) 876 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 877 878 /* 879 * Check if we already have the same MTD device attached. 880 * 881 * Note, this function assumes that UBI devices creations and deletions 882 * are serialized, so it does not take the &ubi_devices_lock. 883 */ 884 for (i = 0; i < UBI_MAX_DEVICES; i++) { 885 ubi = ubi_devices[i]; 886 if (ubi && mtd->index == ubi->mtd->index) { 887 ubi_err("mtd%d is already attached to ubi%d", 888 mtd->index, i); 889 return -EEXIST; 890 } 891 } 892 893 /* 894 * Make sure this MTD device is not emulated on top of an UBI volume 895 * already. Well, generally this recursion works fine, but there are 896 * different problems like the UBI module takes a reference to itself 897 * by attaching (and thus, opening) the emulated MTD device. This 898 * results in inability to unload the module. And in general it makes 899 * no sense to attach emulated MTD devices, so we prohibit this. 900 */ 901 if (mtd->type == MTD_UBIVOLUME) { 902 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", 903 mtd->index); 904 return -EINVAL; 905 } 906 907 if (ubi_num == UBI_DEV_NUM_AUTO) { 908 /* Search for an empty slot in the @ubi_devices array */ 909 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 910 if (!ubi_devices[ubi_num]) 911 break; 912 if (ubi_num == UBI_MAX_DEVICES) { 913 ubi_err("only %d UBI devices may be created", 914 UBI_MAX_DEVICES); 915 return -ENFILE; 916 } 917 } else { 918 if (ubi_num >= UBI_MAX_DEVICES) 919 return -EINVAL; 920 921 /* Make sure ubi_num is not busy */ 922 if (ubi_devices[ubi_num]) { 923 ubi_err("ubi%d already exists", ubi_num); 924 return -EEXIST; 925 } 926 } 927 928 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 929 if (!ubi) 930 return -ENOMEM; 931 932 ubi->mtd = mtd; 933 ubi->ubi_num = ubi_num; 934 ubi->vid_hdr_offset = vid_hdr_offset; 935 ubi->autoresize_vol_id = -1; 936 937 #ifdef CONFIG_MTD_UBI_FASTMAP 938 ubi->fm_pool.used = ubi->fm_pool.size = 0; 939 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 940 941 /* 942 * fm_pool.max_size is 5% of the total number of PEBs but it's also 943 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 944 */ 945 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 946 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 947 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) 948 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; 949 950 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; 951 ubi->fm_disabled = !fm_autoconvert; 952 953 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 954 <= UBI_FM_MAX_START) { 955 ubi_err("More than %i PEBs are needed for fastmap, sorry.", 956 UBI_FM_MAX_START); 957 ubi->fm_disabled = 1; 958 } 959 960 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); 961 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); 962 #else 963 ubi->fm_disabled = 1; 964 #endif 965 mutex_init(&ubi->buf_mutex); 966 mutex_init(&ubi->ckvol_mutex); 967 mutex_init(&ubi->device_mutex); 968 spin_lock_init(&ubi->volumes_lock); 969 mutex_init(&ubi->fm_mutex); 970 init_rwsem(&ubi->fm_sem); 971 972 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 973 974 err = io_init(ubi, max_beb_per1024); 975 if (err) 976 goto out_free; 977 978 err = -ENOMEM; 979 ubi->peb_buf = vmalloc(ubi->peb_size); 980 if (!ubi->peb_buf) 981 goto out_free; 982 983 #ifdef CONFIG_MTD_UBI_FASTMAP 984 ubi->fm_size = ubi_calc_fm_size(ubi); 985 ubi->fm_buf = vzalloc(ubi->fm_size); 986 if (!ubi->fm_buf) 987 goto out_free; 988 #endif 989 err = ubi_attach(ubi, 0); 990 if (err) { 991 ubi_err("failed to attach mtd%d, error %d", mtd->index, err); 992 goto out_free; 993 } 994 995 if (ubi->autoresize_vol_id != -1) { 996 err = autoresize(ubi, ubi->autoresize_vol_id); 997 if (err) 998 goto out_detach; 999 } 1000 1001 err = uif_init(ubi, &ref); 1002 if (err) 1003 goto out_detach; 1004 1005 err = ubi_debugfs_init_dev(ubi); 1006 if (err) 1007 goto out_uif; 1008 1009 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1010 if (IS_ERR(ubi->bgt_thread)) { 1011 err = PTR_ERR(ubi->bgt_thread); 1012 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 1013 err); 1014 goto out_debugfs; 1015 } 1016 1017 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", 1018 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); 1019 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1020 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1021 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", 1022 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1023 ubi_msg("VID header offset: %d (aligned %d), data offset: %d", 1024 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1025 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1026 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1027 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", 1028 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1029 ubi->vtbl_slots); 1030 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1031 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1032 ubi->image_seq); 1033 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1034 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1035 1036 /* 1037 * The below lock makes sure we do not race with 'ubi_thread()' which 1038 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1039 */ 1040 spin_lock(&ubi->wl_lock); 1041 ubi->thread_enabled = 1; 1042 wake_up_process(ubi->bgt_thread); 1043 spin_unlock(&ubi->wl_lock); 1044 1045 ubi_devices[ubi_num] = ubi; 1046 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1047 return ubi_num; 1048 1049 out_debugfs: 1050 ubi_debugfs_exit_dev(ubi); 1051 out_uif: 1052 get_device(&ubi->dev); 1053 ubi_assert(ref); 1054 uif_close(ubi); 1055 out_detach: 1056 ubi_wl_close(ubi); 1057 ubi_free_internal_volumes(ubi); 1058 vfree(ubi->vtbl); 1059 out_free: 1060 vfree(ubi->peb_buf); 1061 vfree(ubi->fm_buf); 1062 if (ref) 1063 put_device(&ubi->dev); 1064 else 1065 kfree(ubi); 1066 return err; 1067 } 1068 1069 /** 1070 * ubi_detach_mtd_dev - detach an MTD device. 1071 * @ubi_num: UBI device number to detach from 1072 * @anyway: detach MTD even if device reference count is not zero 1073 * 1074 * This function destroys an UBI device number @ubi_num and detaches the 1075 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1076 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1077 * exist. 1078 * 1079 * Note, the invocations of this function has to be serialized by the 1080 * @ubi_devices_mutex. 1081 */ 1082 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1083 { 1084 struct ubi_device *ubi; 1085 1086 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1087 return -EINVAL; 1088 1089 ubi = ubi_get_device(ubi_num); 1090 if (!ubi) 1091 return -EINVAL; 1092 1093 spin_lock(&ubi_devices_lock); 1094 put_device(&ubi->dev); 1095 ubi->ref_count -= 1; 1096 if (ubi->ref_count) { 1097 if (!anyway) { 1098 spin_unlock(&ubi_devices_lock); 1099 return -EBUSY; 1100 } 1101 /* This may only happen if there is a bug */ 1102 ubi_err("%s reference count %d, destroy anyway", 1103 ubi->ubi_name, ubi->ref_count); 1104 } 1105 ubi_devices[ubi_num] = NULL; 1106 spin_unlock(&ubi_devices_lock); 1107 1108 ubi_assert(ubi_num == ubi->ubi_num); 1109 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1110 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 1111 #ifdef CONFIG_MTD_UBI_FASTMAP 1112 /* If we don't write a new fastmap at detach time we lose all 1113 * EC updates that have been made since the last written fastmap. */ 1114 ubi_update_fastmap(ubi); 1115 #endif 1116 /* 1117 * Before freeing anything, we have to stop the background thread to 1118 * prevent it from doing anything on this device while we are freeing. 1119 */ 1120 if (ubi->bgt_thread) 1121 kthread_stop(ubi->bgt_thread); 1122 1123 /* 1124 * Get a reference to the device in order to prevent 'dev_release()' 1125 * from freeing the @ubi object. 1126 */ 1127 get_device(&ubi->dev); 1128 1129 ubi_debugfs_exit_dev(ubi); 1130 uif_close(ubi); 1131 1132 ubi_wl_close(ubi); 1133 ubi_free_internal_volumes(ubi); 1134 vfree(ubi->vtbl); 1135 put_mtd_device(ubi->mtd); 1136 vfree(ubi->peb_buf); 1137 vfree(ubi->fm_buf); 1138 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 1139 put_device(&ubi->dev); 1140 return 0; 1141 } 1142 1143 /** 1144 * open_mtd_by_chdev - open an MTD device by its character device node path. 1145 * @mtd_dev: MTD character device node path 1146 * 1147 * This helper function opens an MTD device by its character node device path. 1148 * Returns MTD device description object in case of success and a negative 1149 * error code in case of failure. 1150 */ 1151 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1152 { 1153 int err, major, minor, mode; 1154 struct path path; 1155 1156 /* Probably this is an MTD character device node path */ 1157 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1158 if (err) 1159 return ERR_PTR(err); 1160 1161 /* MTD device number is defined by the major / minor numbers */ 1162 major = imajor(path.dentry->d_inode); 1163 minor = iminor(path.dentry->d_inode); 1164 mode = path.dentry->d_inode->i_mode; 1165 path_put(&path); 1166 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1167 return ERR_PTR(-EINVAL); 1168 1169 if (minor & 1) 1170 /* 1171 * Just do not think the "/dev/mtdrX" devices support is need, 1172 * so do not support them to avoid doing extra work. 1173 */ 1174 return ERR_PTR(-EINVAL); 1175 1176 return get_mtd_device(NULL, minor / 2); 1177 } 1178 1179 /** 1180 * open_mtd_device - open MTD device by name, character device path, or number. 1181 * @mtd_dev: name, character device node path, or MTD device device number 1182 * 1183 * This function tries to open and MTD device described by @mtd_dev string, 1184 * which is first treated as ASCII MTD device number, and if it is not true, it 1185 * is treated as MTD device name, and if that is also not true, it is treated 1186 * as MTD character device node path. Returns MTD device description object in 1187 * case of success and a negative error code in case of failure. 1188 */ 1189 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1190 { 1191 struct mtd_info *mtd; 1192 int mtd_num; 1193 char *endp; 1194 1195 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1196 if (*endp != '\0' || mtd_dev == endp) { 1197 /* 1198 * This does not look like an ASCII integer, probably this is 1199 * MTD device name. 1200 */ 1201 mtd = get_mtd_device_nm(mtd_dev); 1202 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1203 /* Probably this is an MTD character device node path */ 1204 mtd = open_mtd_by_chdev(mtd_dev); 1205 } else 1206 mtd = get_mtd_device(NULL, mtd_num); 1207 1208 return mtd; 1209 } 1210 1211 static int __init ubi_init(void) 1212 { 1213 int err, i, k; 1214 1215 /* Ensure that EC and VID headers have correct size */ 1216 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1217 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1218 1219 if (mtd_devs > UBI_MAX_DEVICES) { 1220 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 1221 return -EINVAL; 1222 } 1223 1224 /* Create base sysfs directory and sysfs files */ 1225 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1226 if (IS_ERR(ubi_class)) { 1227 err = PTR_ERR(ubi_class); 1228 ubi_err("cannot create UBI class"); 1229 goto out; 1230 } 1231 1232 err = class_create_file(ubi_class, &ubi_version); 1233 if (err) { 1234 ubi_err("cannot create sysfs file"); 1235 goto out_class; 1236 } 1237 1238 err = misc_register(&ubi_ctrl_cdev); 1239 if (err) { 1240 ubi_err("cannot register device"); 1241 goto out_version; 1242 } 1243 1244 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1245 sizeof(struct ubi_wl_entry), 1246 0, 0, NULL); 1247 if (!ubi_wl_entry_slab) 1248 goto out_dev_unreg; 1249 1250 err = ubi_debugfs_init(); 1251 if (err) 1252 goto out_slab; 1253 1254 1255 /* Attach MTD devices */ 1256 for (i = 0; i < mtd_devs; i++) { 1257 struct mtd_dev_param *p = &mtd_dev_param[i]; 1258 struct mtd_info *mtd; 1259 1260 cond_resched(); 1261 1262 mtd = open_mtd_device(p->name); 1263 if (IS_ERR(mtd)) { 1264 err = PTR_ERR(mtd); 1265 ubi_err("cannot open mtd %s, error %d", p->name, err); 1266 /* See comment below re-ubi_is_module(). */ 1267 if (ubi_is_module()) 1268 goto out_detach; 1269 continue; 1270 } 1271 1272 mutex_lock(&ubi_devices_mutex); 1273 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1274 p->vid_hdr_offs, p->max_beb_per1024); 1275 mutex_unlock(&ubi_devices_mutex); 1276 if (err < 0) { 1277 ubi_err("cannot attach mtd%d", mtd->index); 1278 put_mtd_device(mtd); 1279 1280 /* 1281 * Originally UBI stopped initializing on any error. 1282 * However, later on it was found out that this 1283 * behavior is not very good when UBI is compiled into 1284 * the kernel and the MTD devices to attach are passed 1285 * through the command line. Indeed, UBI failure 1286 * stopped whole boot sequence. 1287 * 1288 * To fix this, we changed the behavior for the 1289 * non-module case, but preserved the old behavior for 1290 * the module case, just for compatibility. This is a 1291 * little inconsistent, though. 1292 */ 1293 if (ubi_is_module()) 1294 goto out_detach; 1295 } 1296 } 1297 1298 return 0; 1299 1300 out_detach: 1301 for (k = 0; k < i; k++) 1302 if (ubi_devices[k]) { 1303 mutex_lock(&ubi_devices_mutex); 1304 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1305 mutex_unlock(&ubi_devices_mutex); 1306 } 1307 ubi_debugfs_exit(); 1308 out_slab: 1309 kmem_cache_destroy(ubi_wl_entry_slab); 1310 out_dev_unreg: 1311 misc_deregister(&ubi_ctrl_cdev); 1312 out_version: 1313 class_remove_file(ubi_class, &ubi_version); 1314 out_class: 1315 class_destroy(ubi_class); 1316 out: 1317 ubi_err("cannot initialize UBI, error %d", err); 1318 return err; 1319 } 1320 late_initcall(ubi_init); 1321 1322 static void __exit ubi_exit(void) 1323 { 1324 int i; 1325 1326 for (i = 0; i < UBI_MAX_DEVICES; i++) 1327 if (ubi_devices[i]) { 1328 mutex_lock(&ubi_devices_mutex); 1329 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1330 mutex_unlock(&ubi_devices_mutex); 1331 } 1332 ubi_debugfs_exit(); 1333 kmem_cache_destroy(ubi_wl_entry_slab); 1334 misc_deregister(&ubi_ctrl_cdev); 1335 class_remove_file(ubi_class, &ubi_version); 1336 class_destroy(ubi_class); 1337 } 1338 module_exit(ubi_exit); 1339 1340 /** 1341 * bytes_str_to_int - convert a number of bytes string into an integer. 1342 * @str: the string to convert 1343 * 1344 * This function returns positive resulting integer in case of success and a 1345 * negative error code in case of failure. 1346 */ 1347 static int __init bytes_str_to_int(const char *str) 1348 { 1349 char *endp; 1350 unsigned long result; 1351 1352 result = simple_strtoul(str, &endp, 0); 1353 if (str == endp || result >= INT_MAX) { 1354 ubi_err("incorrect bytes count: \"%s\"\n", str); 1355 return -EINVAL; 1356 } 1357 1358 switch (*endp) { 1359 case 'G': 1360 result *= 1024; 1361 case 'M': 1362 result *= 1024; 1363 case 'K': 1364 result *= 1024; 1365 if (endp[1] == 'i' && endp[2] == 'B') 1366 endp += 2; 1367 case '\0': 1368 break; 1369 default: 1370 ubi_err("incorrect bytes count: \"%s\"\n", str); 1371 return -EINVAL; 1372 } 1373 1374 return result; 1375 } 1376 1377 /** 1378 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1379 * @val: the parameter value to parse 1380 * @kp: not used 1381 * 1382 * This function returns zero in case of success and a negative error code in 1383 * case of error. 1384 */ 1385 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1386 { 1387 int i, len; 1388 struct mtd_dev_param *p; 1389 char buf[MTD_PARAM_LEN_MAX]; 1390 char *pbuf = &buf[0]; 1391 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1392 1393 if (!val) 1394 return -EINVAL; 1395 1396 if (mtd_devs == UBI_MAX_DEVICES) { 1397 ubi_err("too many parameters, max. is %d\n", 1398 UBI_MAX_DEVICES); 1399 return -EINVAL; 1400 } 1401 1402 len = strnlen(val, MTD_PARAM_LEN_MAX); 1403 if (len == MTD_PARAM_LEN_MAX) { 1404 ubi_err("parameter \"%s\" is too long, max. is %d\n", 1405 val, MTD_PARAM_LEN_MAX); 1406 return -EINVAL; 1407 } 1408 1409 if (len == 0) { 1410 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1411 return 0; 1412 } 1413 1414 strcpy(buf, val); 1415 1416 /* Get rid of the final newline */ 1417 if (buf[len - 1] == '\n') 1418 buf[len - 1] = '\0'; 1419 1420 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1421 tokens[i] = strsep(&pbuf, ","); 1422 1423 if (pbuf) { 1424 ubi_err("too many arguments at \"%s\"\n", val); 1425 return -EINVAL; 1426 } 1427 1428 p = &mtd_dev_param[mtd_devs]; 1429 strcpy(&p->name[0], tokens[0]); 1430 1431 token = tokens[1]; 1432 if (token) { 1433 p->vid_hdr_offs = bytes_str_to_int(token); 1434 1435 if (p->vid_hdr_offs < 0) 1436 return p->vid_hdr_offs; 1437 } 1438 1439 token = tokens[2]; 1440 if (token) { 1441 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1442 1443 if (err) { 1444 ubi_err("bad value for max_beb_per1024 parameter: %s", 1445 token); 1446 return -EINVAL; 1447 } 1448 } 1449 1450 token = tokens[3]; 1451 if (token) { 1452 int err = kstrtoint(token, 10, &p->ubi_num); 1453 1454 if (err) { 1455 ubi_err("bad value for ubi_num parameter: %s", token); 1456 return -EINVAL; 1457 } 1458 } else 1459 p->ubi_num = UBI_DEV_NUM_AUTO; 1460 1461 mtd_devs += 1; 1462 return 0; 1463 } 1464 1465 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1466 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1467 "Multiple \"mtd\" parameters may be specified.\n" 1468 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1469 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1470 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1471 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1472 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1473 "\n" 1474 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1475 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1476 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1477 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1478 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1479 #ifdef CONFIG_MTD_UBI_FASTMAP 1480 module_param(fm_autoconvert, bool, 0644); 1481 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1482 #endif 1483 MODULE_VERSION(__stringify(UBI_VERSION)); 1484 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1485 MODULE_AUTHOR("Artem Bityutskiy"); 1486 MODULE_LICENSE("GPL"); 1487