1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int __initdata mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 #endif 85 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 86 struct class *ubi_class; 87 88 /* Slab cache for wear-leveling entries */ 89 struct kmem_cache *ubi_wl_entry_slab; 90 91 /* UBI control character device */ 92 static struct miscdevice ubi_ctrl_cdev = { 93 .minor = MISC_DYNAMIC_MINOR, 94 .name = "ubi_ctrl", 95 .fops = &ubi_ctrl_cdev_operations, 96 }; 97 98 /* All UBI devices in system */ 99 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 100 101 /* Serializes UBI devices creations and removals */ 102 DEFINE_MUTEX(ubi_devices_mutex); 103 104 /* Protects @ubi_devices and @ubi->ref_count */ 105 static DEFINE_SPINLOCK(ubi_devices_lock); 106 107 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 108 static ssize_t ubi_version_show(struct class *class, 109 struct class_attribute *attr, char *buf) 110 { 111 return sprintf(buf, "%d\n", UBI_VERSION); 112 } 113 114 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 115 static struct class_attribute ubi_version = 116 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 117 118 static ssize_t dev_attribute_show(struct device *dev, 119 struct device_attribute *attr, char *buf); 120 121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 122 static struct device_attribute dev_eraseblock_size = 123 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_avail_eraseblocks = 125 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_total_eraseblocks = 127 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_volumes_count = 129 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_max_ec = 131 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_reserved_for_bad = 133 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_bad_peb_count = 135 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_max_vol_count = 137 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_min_io_size = 139 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_bgt_enabled = 141 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_mtd_num = 143 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 144 145 /** 146 * ubi_volume_notify - send a volume change notification. 147 * @ubi: UBI device description object 148 * @vol: volume description object of the changed volume 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 150 * 151 * This is a helper function which notifies all subscribers about a volume 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns 153 * zero in case of success and a negative error code in case of failure. 154 */ 155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 156 { 157 struct ubi_notification nt; 158 159 ubi_do_get_device_info(ubi, &nt.di); 160 ubi_do_get_volume_info(ubi, vol, &nt.vi); 161 162 #ifdef CONFIG_MTD_UBI_FASTMAP 163 switch (ntype) { 164 case UBI_VOLUME_ADDED: 165 case UBI_VOLUME_REMOVED: 166 case UBI_VOLUME_RESIZED: 167 case UBI_VOLUME_RENAMED: 168 if (ubi_update_fastmap(ubi)) { 169 ubi_err("Unable to update fastmap!"); 170 ubi_ro_mode(ubi); 171 } 172 } 173 #endif 174 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 175 } 176 177 /** 178 * ubi_notify_all - send a notification to all volumes. 179 * @ubi: UBI device description object 180 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 181 * @nb: the notifier to call 182 * 183 * This function walks all volumes of UBI device @ubi and sends the @ntype 184 * notification for each volume. If @nb is %NULL, then all registered notifiers 185 * are called, otherwise only the @nb notifier is called. Returns the number of 186 * sent notifications. 187 */ 188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 189 { 190 struct ubi_notification nt; 191 int i, count = 0; 192 193 ubi_do_get_device_info(ubi, &nt.di); 194 195 mutex_lock(&ubi->device_mutex); 196 for (i = 0; i < ubi->vtbl_slots; i++) { 197 /* 198 * Since the @ubi->device is locked, and we are not going to 199 * change @ubi->volumes, we do not have to lock 200 * @ubi->volumes_lock. 201 */ 202 if (!ubi->volumes[i]) 203 continue; 204 205 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 206 if (nb) 207 nb->notifier_call(nb, ntype, &nt); 208 else 209 blocking_notifier_call_chain(&ubi_notifiers, ntype, 210 &nt); 211 count += 1; 212 } 213 mutex_unlock(&ubi->device_mutex); 214 215 return count; 216 } 217 218 /** 219 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 220 * @nb: the notifier to call 221 * 222 * This function walks all UBI devices and volumes and sends the 223 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 224 * registered notifiers are called, otherwise only the @nb notifier is called. 225 * Returns the number of sent notifications. 226 */ 227 int ubi_enumerate_volumes(struct notifier_block *nb) 228 { 229 int i, count = 0; 230 231 /* 232 * Since the @ubi_devices_mutex is locked, and we are not going to 233 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 234 */ 235 for (i = 0; i < UBI_MAX_DEVICES; i++) { 236 struct ubi_device *ubi = ubi_devices[i]; 237 238 if (!ubi) 239 continue; 240 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 241 } 242 243 return count; 244 } 245 246 /** 247 * ubi_get_device - get UBI device. 248 * @ubi_num: UBI device number 249 * 250 * This function returns UBI device description object for UBI device number 251 * @ubi_num, or %NULL if the device does not exist. This function increases the 252 * device reference count to prevent removal of the device. In other words, the 253 * device cannot be removed if its reference count is not zero. 254 */ 255 struct ubi_device *ubi_get_device(int ubi_num) 256 { 257 struct ubi_device *ubi; 258 259 spin_lock(&ubi_devices_lock); 260 ubi = ubi_devices[ubi_num]; 261 if (ubi) { 262 ubi_assert(ubi->ref_count >= 0); 263 ubi->ref_count += 1; 264 get_device(&ubi->dev); 265 } 266 spin_unlock(&ubi_devices_lock); 267 268 return ubi; 269 } 270 271 /** 272 * ubi_put_device - drop an UBI device reference. 273 * @ubi: UBI device description object 274 */ 275 void ubi_put_device(struct ubi_device *ubi) 276 { 277 spin_lock(&ubi_devices_lock); 278 ubi->ref_count -= 1; 279 put_device(&ubi->dev); 280 spin_unlock(&ubi_devices_lock); 281 } 282 283 /** 284 * ubi_get_by_major - get UBI device by character device major number. 285 * @major: major number 286 * 287 * This function is similar to 'ubi_get_device()', but it searches the device 288 * by its major number. 289 */ 290 struct ubi_device *ubi_get_by_major(int major) 291 { 292 int i; 293 struct ubi_device *ubi; 294 295 spin_lock(&ubi_devices_lock); 296 for (i = 0; i < UBI_MAX_DEVICES; i++) { 297 ubi = ubi_devices[i]; 298 if (ubi && MAJOR(ubi->cdev.dev) == major) { 299 ubi_assert(ubi->ref_count >= 0); 300 ubi->ref_count += 1; 301 get_device(&ubi->dev); 302 spin_unlock(&ubi_devices_lock); 303 return ubi; 304 } 305 } 306 spin_unlock(&ubi_devices_lock); 307 308 return NULL; 309 } 310 311 /** 312 * ubi_major2num - get UBI device number by character device major number. 313 * @major: major number 314 * 315 * This function searches UBI device number object by its major number. If UBI 316 * device was not found, this function returns -ENODEV, otherwise the UBI device 317 * number is returned. 318 */ 319 int ubi_major2num(int major) 320 { 321 int i, ubi_num = -ENODEV; 322 323 spin_lock(&ubi_devices_lock); 324 for (i = 0; i < UBI_MAX_DEVICES; i++) { 325 struct ubi_device *ubi = ubi_devices[i]; 326 327 if (ubi && MAJOR(ubi->cdev.dev) == major) { 328 ubi_num = ubi->ubi_num; 329 break; 330 } 331 } 332 spin_unlock(&ubi_devices_lock); 333 334 return ubi_num; 335 } 336 337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 338 static ssize_t dev_attribute_show(struct device *dev, 339 struct device_attribute *attr, char *buf) 340 { 341 ssize_t ret; 342 struct ubi_device *ubi; 343 344 /* 345 * The below code looks weird, but it actually makes sense. We get the 346 * UBI device reference from the contained 'struct ubi_device'. But it 347 * is unclear if the device was removed or not yet. Indeed, if the 348 * device was removed before we increased its reference count, 349 * 'ubi_get_device()' will return -ENODEV and we fail. 350 * 351 * Remember, 'struct ubi_device' is freed in the release function, so 352 * we still can use 'ubi->ubi_num'. 353 */ 354 ubi = container_of(dev, struct ubi_device, dev); 355 ubi = ubi_get_device(ubi->ubi_num); 356 if (!ubi) 357 return -ENODEV; 358 359 if (attr == &dev_eraseblock_size) 360 ret = sprintf(buf, "%d\n", ubi->leb_size); 361 else if (attr == &dev_avail_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 363 else if (attr == &dev_total_eraseblocks) 364 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 365 else if (attr == &dev_volumes_count) 366 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 367 else if (attr == &dev_max_ec) 368 ret = sprintf(buf, "%d\n", ubi->max_ec); 369 else if (attr == &dev_reserved_for_bad) 370 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 371 else if (attr == &dev_bad_peb_count) 372 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 373 else if (attr == &dev_max_vol_count) 374 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 375 else if (attr == &dev_min_io_size) 376 ret = sprintf(buf, "%d\n", ubi->min_io_size); 377 else if (attr == &dev_bgt_enabled) 378 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 379 else if (attr == &dev_mtd_num) 380 ret = sprintf(buf, "%d\n", ubi->mtd->index); 381 else 382 ret = -EINVAL; 383 384 ubi_put_device(ubi); 385 return ret; 386 } 387 388 static void dev_release(struct device *dev) 389 { 390 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 391 392 kfree(ubi); 393 } 394 395 /** 396 * ubi_sysfs_init - initialize sysfs for an UBI device. 397 * @ubi: UBI device description object 398 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 399 * taken 400 * 401 * This function returns zero in case of success and a negative error code in 402 * case of failure. 403 */ 404 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 405 { 406 int err; 407 408 ubi->dev.release = dev_release; 409 ubi->dev.devt = ubi->cdev.dev; 410 ubi->dev.class = ubi_class; 411 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 412 err = device_register(&ubi->dev); 413 if (err) 414 return err; 415 416 *ref = 1; 417 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 418 if (err) 419 return err; 420 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 421 if (err) 422 return err; 423 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 424 if (err) 425 return err; 426 err = device_create_file(&ubi->dev, &dev_volumes_count); 427 if (err) 428 return err; 429 err = device_create_file(&ubi->dev, &dev_max_ec); 430 if (err) 431 return err; 432 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 433 if (err) 434 return err; 435 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 436 if (err) 437 return err; 438 err = device_create_file(&ubi->dev, &dev_max_vol_count); 439 if (err) 440 return err; 441 err = device_create_file(&ubi->dev, &dev_min_io_size); 442 if (err) 443 return err; 444 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 445 if (err) 446 return err; 447 err = device_create_file(&ubi->dev, &dev_mtd_num); 448 return err; 449 } 450 451 /** 452 * ubi_sysfs_close - close sysfs for an UBI device. 453 * @ubi: UBI device description object 454 */ 455 static void ubi_sysfs_close(struct ubi_device *ubi) 456 { 457 device_remove_file(&ubi->dev, &dev_mtd_num); 458 device_remove_file(&ubi->dev, &dev_bgt_enabled); 459 device_remove_file(&ubi->dev, &dev_min_io_size); 460 device_remove_file(&ubi->dev, &dev_max_vol_count); 461 device_remove_file(&ubi->dev, &dev_bad_peb_count); 462 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 463 device_remove_file(&ubi->dev, &dev_max_ec); 464 device_remove_file(&ubi->dev, &dev_volumes_count); 465 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 466 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 467 device_remove_file(&ubi->dev, &dev_eraseblock_size); 468 device_unregister(&ubi->dev); 469 } 470 471 /** 472 * kill_volumes - destroy all user volumes. 473 * @ubi: UBI device description object 474 */ 475 static void kill_volumes(struct ubi_device *ubi) 476 { 477 int i; 478 479 for (i = 0; i < ubi->vtbl_slots; i++) 480 if (ubi->volumes[i]) 481 ubi_free_volume(ubi, ubi->volumes[i]); 482 } 483 484 /** 485 * uif_init - initialize user interfaces for an UBI device. 486 * @ubi: UBI device description object 487 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 488 * taken, otherwise set to %0 489 * 490 * This function initializes various user interfaces for an UBI device. If the 491 * initialization fails at an early stage, this function frees all the 492 * resources it allocated, returns an error, and @ref is set to %0. However, 493 * if the initialization fails after the UBI device was registered in the 494 * driver core subsystem, this function takes a reference to @ubi->dev, because 495 * otherwise the release function ('dev_release()') would free whole @ubi 496 * object. The @ref argument is set to %1 in this case. The caller has to put 497 * this reference. 498 * 499 * This function returns zero in case of success and a negative error code in 500 * case of failure. 501 */ 502 static int uif_init(struct ubi_device *ubi, int *ref) 503 { 504 int i, err; 505 dev_t dev; 506 507 *ref = 0; 508 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 509 510 /* 511 * Major numbers for the UBI character devices are allocated 512 * dynamically. Major numbers of volume character devices are 513 * equivalent to ones of the corresponding UBI character device. Minor 514 * numbers of UBI character devices are 0, while minor numbers of 515 * volume character devices start from 1. Thus, we allocate one major 516 * number and ubi->vtbl_slots + 1 minor numbers. 517 */ 518 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 519 if (err) { 520 ubi_err("cannot register UBI character devices"); 521 return err; 522 } 523 524 ubi_assert(MINOR(dev) == 0); 525 cdev_init(&ubi->cdev, &ubi_cdev_operations); 526 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 527 ubi->cdev.owner = THIS_MODULE; 528 529 err = cdev_add(&ubi->cdev, dev, 1); 530 if (err) { 531 ubi_err("cannot add character device"); 532 goto out_unreg; 533 } 534 535 err = ubi_sysfs_init(ubi, ref); 536 if (err) 537 goto out_sysfs; 538 539 for (i = 0; i < ubi->vtbl_slots; i++) 540 if (ubi->volumes[i]) { 541 err = ubi_add_volume(ubi, ubi->volumes[i]); 542 if (err) { 543 ubi_err("cannot add volume %d", i); 544 goto out_volumes; 545 } 546 } 547 548 return 0; 549 550 out_volumes: 551 kill_volumes(ubi); 552 out_sysfs: 553 if (*ref) 554 get_device(&ubi->dev); 555 ubi_sysfs_close(ubi); 556 cdev_del(&ubi->cdev); 557 out_unreg: 558 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 559 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 560 return err; 561 } 562 563 /** 564 * uif_close - close user interfaces for an UBI device. 565 * @ubi: UBI device description object 566 * 567 * Note, since this function un-registers UBI volume device objects (@vol->dev), 568 * the memory allocated voe the volumes is freed as well (in the release 569 * function). 570 */ 571 static void uif_close(struct ubi_device *ubi) 572 { 573 kill_volumes(ubi); 574 ubi_sysfs_close(ubi); 575 cdev_del(&ubi->cdev); 576 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 577 } 578 579 /** 580 * ubi_free_internal_volumes - free internal volumes. 581 * @ubi: UBI device description object 582 */ 583 void ubi_free_internal_volumes(struct ubi_device *ubi) 584 { 585 int i; 586 587 for (i = ubi->vtbl_slots; 588 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 589 kfree(ubi->volumes[i]->eba_tbl); 590 kfree(ubi->volumes[i]); 591 } 592 } 593 594 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 595 { 596 int limit, device_pebs; 597 uint64_t device_size; 598 599 if (!max_beb_per1024) 600 return 0; 601 602 /* 603 * Here we are using size of the entire flash chip and 604 * not just the MTD partition size because the maximum 605 * number of bad eraseblocks is a percentage of the 606 * whole device and bad eraseblocks are not fairly 607 * distributed over the flash chip. So the worst case 608 * is that all the bad eraseblocks of the chip are in 609 * the MTD partition we are attaching (ubi->mtd). 610 */ 611 device_size = mtd_get_device_size(ubi->mtd); 612 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 613 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 614 615 /* Round it up */ 616 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 617 limit += 1; 618 619 return limit; 620 } 621 622 /** 623 * io_init - initialize I/O sub-system for a given UBI device. 624 * @ubi: UBI device description object 625 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 626 * 627 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 628 * assumed: 629 * o EC header is always at offset zero - this cannot be changed; 630 * o VID header starts just after the EC header at the closest address 631 * aligned to @io->hdrs_min_io_size; 632 * o data starts just after the VID header at the closest address aligned to 633 * @io->min_io_size 634 * 635 * This function returns zero in case of success and a negative error code in 636 * case of failure. 637 */ 638 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 639 { 640 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 641 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 642 643 if (ubi->mtd->numeraseregions != 0) { 644 /* 645 * Some flashes have several erase regions. Different regions 646 * may have different eraseblock size and other 647 * characteristics. It looks like mostly multi-region flashes 648 * have one "main" region and one or more small regions to 649 * store boot loader code or boot parameters or whatever. I 650 * guess we should just pick the largest region. But this is 651 * not implemented. 652 */ 653 ubi_err("multiple regions, not implemented"); 654 return -EINVAL; 655 } 656 657 if (ubi->vid_hdr_offset < 0) 658 return -EINVAL; 659 660 /* 661 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 662 * physical eraseblocks maximum. 663 */ 664 665 ubi->peb_size = ubi->mtd->erasesize; 666 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 667 ubi->flash_size = ubi->mtd->size; 668 669 if (mtd_can_have_bb(ubi->mtd)) { 670 ubi->bad_allowed = 1; 671 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 672 } 673 674 if (ubi->mtd->type == MTD_NORFLASH) { 675 ubi_assert(ubi->mtd->writesize == 1); 676 ubi->nor_flash = 1; 677 } 678 679 ubi->min_io_size = ubi->mtd->writesize; 680 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 681 682 /* 683 * Make sure minimal I/O unit is power of 2. Note, there is no 684 * fundamental reason for this assumption. It is just an optimization 685 * which allows us to avoid costly division operations. 686 */ 687 if (!is_power_of_2(ubi->min_io_size)) { 688 ubi_err("min. I/O unit (%d) is not power of 2", 689 ubi->min_io_size); 690 return -EINVAL; 691 } 692 693 ubi_assert(ubi->hdrs_min_io_size > 0); 694 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 695 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 696 697 ubi->max_write_size = ubi->mtd->writebufsize; 698 /* 699 * Maximum write size has to be greater or equivalent to min. I/O 700 * size, and be multiple of min. I/O size. 701 */ 702 if (ubi->max_write_size < ubi->min_io_size || 703 ubi->max_write_size % ubi->min_io_size || 704 !is_power_of_2(ubi->max_write_size)) { 705 ubi_err("bad write buffer size %d for %d min. I/O unit", 706 ubi->max_write_size, ubi->min_io_size); 707 return -EINVAL; 708 } 709 710 /* Calculate default aligned sizes of EC and VID headers */ 711 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 712 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 713 714 dbg_gen("min_io_size %d", ubi->min_io_size); 715 dbg_gen("max_write_size %d", ubi->max_write_size); 716 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 717 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 718 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 719 720 if (ubi->vid_hdr_offset == 0) 721 /* Default offset */ 722 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 723 ubi->ec_hdr_alsize; 724 else { 725 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 726 ~(ubi->hdrs_min_io_size - 1); 727 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 728 ubi->vid_hdr_aloffset; 729 } 730 731 /* Similar for the data offset */ 732 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 733 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 734 735 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 736 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 737 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 738 dbg_gen("leb_start %d", ubi->leb_start); 739 740 /* The shift must be aligned to 32-bit boundary */ 741 if (ubi->vid_hdr_shift % 4) { 742 ubi_err("unaligned VID header shift %d", 743 ubi->vid_hdr_shift); 744 return -EINVAL; 745 } 746 747 /* Check sanity */ 748 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 749 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 750 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 751 ubi->leb_start & (ubi->min_io_size - 1)) { 752 ubi_err("bad VID header (%d) or data offsets (%d)", 753 ubi->vid_hdr_offset, ubi->leb_start); 754 return -EINVAL; 755 } 756 757 /* 758 * Set maximum amount of physical erroneous eraseblocks to be 10%. 759 * Erroneous PEB are those which have read errors. 760 */ 761 ubi->max_erroneous = ubi->peb_count / 10; 762 if (ubi->max_erroneous < 16) 763 ubi->max_erroneous = 16; 764 dbg_gen("max_erroneous %d", ubi->max_erroneous); 765 766 /* 767 * It may happen that EC and VID headers are situated in one minimal 768 * I/O unit. In this case we can only accept this UBI image in 769 * read-only mode. 770 */ 771 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 772 ubi_warn("EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 773 ubi->ro_mode = 1; 774 } 775 776 ubi->leb_size = ubi->peb_size - ubi->leb_start; 777 778 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 779 ubi_msg("MTD device %d is write-protected, attach in read-only mode", 780 ubi->mtd->index); 781 ubi->ro_mode = 1; 782 } 783 784 /* 785 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 786 * unfortunately, MTD does not provide this information. We should loop 787 * over all physical eraseblocks and invoke mtd->block_is_bad() for 788 * each physical eraseblock. So, we leave @ubi->bad_peb_count 789 * uninitialized so far. 790 */ 791 792 return 0; 793 } 794 795 /** 796 * autoresize - re-size the volume which has the "auto-resize" flag set. 797 * @ubi: UBI device description object 798 * @vol_id: ID of the volume to re-size 799 * 800 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 801 * the volume table to the largest possible size. See comments in ubi-header.h 802 * for more description of the flag. Returns zero in case of success and a 803 * negative error code in case of failure. 804 */ 805 static int autoresize(struct ubi_device *ubi, int vol_id) 806 { 807 struct ubi_volume_desc desc; 808 struct ubi_volume *vol = ubi->volumes[vol_id]; 809 int err, old_reserved_pebs = vol->reserved_pebs; 810 811 if (ubi->ro_mode) { 812 ubi_warn("skip auto-resize because of R/O mode"); 813 return 0; 814 } 815 816 /* 817 * Clear the auto-resize flag in the volume in-memory copy of the 818 * volume table, and 'ubi_resize_volume()' will propagate this change 819 * to the flash. 820 */ 821 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 822 823 if (ubi->avail_pebs == 0) { 824 struct ubi_vtbl_record vtbl_rec; 825 826 /* 827 * No available PEBs to re-size the volume, clear the flag on 828 * flash and exit. 829 */ 830 vtbl_rec = ubi->vtbl[vol_id]; 831 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 832 if (err) 833 ubi_err("cannot clean auto-resize flag for volume %d", 834 vol_id); 835 } else { 836 desc.vol = vol; 837 err = ubi_resize_volume(&desc, 838 old_reserved_pebs + ubi->avail_pebs); 839 if (err) 840 ubi_err("cannot auto-resize volume %d", vol_id); 841 } 842 843 if (err) 844 return err; 845 846 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 847 vol->name, old_reserved_pebs, vol->reserved_pebs); 848 return 0; 849 } 850 851 /** 852 * ubi_attach_mtd_dev - attach an MTD device. 853 * @mtd: MTD device description object 854 * @ubi_num: number to assign to the new UBI device 855 * @vid_hdr_offset: VID header offset 856 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 857 * 858 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 859 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 860 * which case this function finds a vacant device number and assigns it 861 * automatically. Returns the new UBI device number in case of success and a 862 * negative error code in case of failure. 863 * 864 * Note, the invocations of this function has to be serialized by the 865 * @ubi_devices_mutex. 866 */ 867 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 868 int vid_hdr_offset, int max_beb_per1024) 869 { 870 struct ubi_device *ubi; 871 int i, err, ref = 0; 872 873 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 874 return -EINVAL; 875 876 if (!max_beb_per1024) 877 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 878 879 /* 880 * Check if we already have the same MTD device attached. 881 * 882 * Note, this function assumes that UBI devices creations and deletions 883 * are serialized, so it does not take the &ubi_devices_lock. 884 */ 885 for (i = 0; i < UBI_MAX_DEVICES; i++) { 886 ubi = ubi_devices[i]; 887 if (ubi && mtd->index == ubi->mtd->index) { 888 ubi_err("mtd%d is already attached to ubi%d", 889 mtd->index, i); 890 return -EEXIST; 891 } 892 } 893 894 /* 895 * Make sure this MTD device is not emulated on top of an UBI volume 896 * already. Well, generally this recursion works fine, but there are 897 * different problems like the UBI module takes a reference to itself 898 * by attaching (and thus, opening) the emulated MTD device. This 899 * results in inability to unload the module. And in general it makes 900 * no sense to attach emulated MTD devices, so we prohibit this. 901 */ 902 if (mtd->type == MTD_UBIVOLUME) { 903 ubi_err("refuse attaching mtd%d - it is already emulated on top of UBI", 904 mtd->index); 905 return -EINVAL; 906 } 907 908 if (ubi_num == UBI_DEV_NUM_AUTO) { 909 /* Search for an empty slot in the @ubi_devices array */ 910 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 911 if (!ubi_devices[ubi_num]) 912 break; 913 if (ubi_num == UBI_MAX_DEVICES) { 914 ubi_err("only %d UBI devices may be created", 915 UBI_MAX_DEVICES); 916 return -ENFILE; 917 } 918 } else { 919 if (ubi_num >= UBI_MAX_DEVICES) 920 return -EINVAL; 921 922 /* Make sure ubi_num is not busy */ 923 if (ubi_devices[ubi_num]) { 924 ubi_err("ubi%d already exists", ubi_num); 925 return -EEXIST; 926 } 927 } 928 929 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 930 if (!ubi) 931 return -ENOMEM; 932 933 ubi->mtd = mtd; 934 ubi->ubi_num = ubi_num; 935 ubi->vid_hdr_offset = vid_hdr_offset; 936 ubi->autoresize_vol_id = -1; 937 938 #ifdef CONFIG_MTD_UBI_FASTMAP 939 ubi->fm_pool.used = ubi->fm_pool.size = 0; 940 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 941 942 /* 943 * fm_pool.max_size is 5% of the total number of PEBs but it's also 944 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 945 */ 946 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 947 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 948 if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE) 949 ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE; 950 951 ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE; 952 ubi->fm_disabled = !fm_autoconvert; 953 954 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 955 <= UBI_FM_MAX_START) { 956 ubi_err("More than %i PEBs are needed for fastmap, sorry.", 957 UBI_FM_MAX_START); 958 ubi->fm_disabled = 1; 959 } 960 961 ubi_msg("default fastmap pool size: %d", ubi->fm_pool.max_size); 962 ubi_msg("default fastmap WL pool size: %d", ubi->fm_wl_pool.max_size); 963 #else 964 ubi->fm_disabled = 1; 965 #endif 966 mutex_init(&ubi->buf_mutex); 967 mutex_init(&ubi->ckvol_mutex); 968 mutex_init(&ubi->device_mutex); 969 spin_lock_init(&ubi->volumes_lock); 970 mutex_init(&ubi->fm_mutex); 971 init_rwsem(&ubi->fm_sem); 972 973 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 974 975 err = io_init(ubi, max_beb_per1024); 976 if (err) 977 goto out_free; 978 979 err = -ENOMEM; 980 ubi->peb_buf = vmalloc(ubi->peb_size); 981 if (!ubi->peb_buf) 982 goto out_free; 983 984 #ifdef CONFIG_MTD_UBI_FASTMAP 985 ubi->fm_size = ubi_calc_fm_size(ubi); 986 ubi->fm_buf = vzalloc(ubi->fm_size); 987 if (!ubi->fm_buf) 988 goto out_free; 989 #endif 990 err = ubi_attach(ubi, 0); 991 if (err) { 992 ubi_err("failed to attach mtd%d, error %d", mtd->index, err); 993 goto out_free; 994 } 995 996 if (ubi->autoresize_vol_id != -1) { 997 err = autoresize(ubi, ubi->autoresize_vol_id); 998 if (err) 999 goto out_detach; 1000 } 1001 1002 err = uif_init(ubi, &ref); 1003 if (err) 1004 goto out_detach; 1005 1006 err = ubi_debugfs_init_dev(ubi); 1007 if (err) 1008 goto out_uif; 1009 1010 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1011 if (IS_ERR(ubi->bgt_thread)) { 1012 err = PTR_ERR(ubi->bgt_thread); 1013 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 1014 err); 1015 goto out_debugfs; 1016 } 1017 1018 ubi_msg("attached mtd%d (name \"%s\", size %llu MiB) to ubi%d", 1019 mtd->index, mtd->name, ubi->flash_size >> 20, ubi_num); 1020 ubi_msg("PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1021 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1022 ubi_msg("min./max. I/O unit sizes: %d/%d, sub-page size %d", 1023 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1024 ubi_msg("VID header offset: %d (aligned %d), data offset: %d", 1025 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1026 ubi_msg("good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1027 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1028 ubi_msg("user volume: %d, internal volumes: %d, max. volumes count: %d", 1029 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1030 ubi->vtbl_slots); 1031 ubi_msg("max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1032 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1033 ubi->image_seq); 1034 ubi_msg("available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1035 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1036 1037 /* 1038 * The below lock makes sure we do not race with 'ubi_thread()' which 1039 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1040 */ 1041 spin_lock(&ubi->wl_lock); 1042 ubi->thread_enabled = 1; 1043 wake_up_process(ubi->bgt_thread); 1044 spin_unlock(&ubi->wl_lock); 1045 1046 ubi_devices[ubi_num] = ubi; 1047 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1048 return ubi_num; 1049 1050 out_debugfs: 1051 ubi_debugfs_exit_dev(ubi); 1052 out_uif: 1053 get_device(&ubi->dev); 1054 ubi_assert(ref); 1055 uif_close(ubi); 1056 out_detach: 1057 ubi_wl_close(ubi); 1058 ubi_free_internal_volumes(ubi); 1059 vfree(ubi->vtbl); 1060 out_free: 1061 vfree(ubi->peb_buf); 1062 vfree(ubi->fm_buf); 1063 if (ref) 1064 put_device(&ubi->dev); 1065 else 1066 kfree(ubi); 1067 return err; 1068 } 1069 1070 /** 1071 * ubi_detach_mtd_dev - detach an MTD device. 1072 * @ubi_num: UBI device number to detach from 1073 * @anyway: detach MTD even if device reference count is not zero 1074 * 1075 * This function destroys an UBI device number @ubi_num and detaches the 1076 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1077 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1078 * exist. 1079 * 1080 * Note, the invocations of this function has to be serialized by the 1081 * @ubi_devices_mutex. 1082 */ 1083 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1084 { 1085 struct ubi_device *ubi; 1086 1087 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1088 return -EINVAL; 1089 1090 ubi = ubi_get_device(ubi_num); 1091 if (!ubi) 1092 return -EINVAL; 1093 1094 spin_lock(&ubi_devices_lock); 1095 put_device(&ubi->dev); 1096 ubi->ref_count -= 1; 1097 if (ubi->ref_count) { 1098 if (!anyway) { 1099 spin_unlock(&ubi_devices_lock); 1100 return -EBUSY; 1101 } 1102 /* This may only happen if there is a bug */ 1103 ubi_err("%s reference count %d, destroy anyway", 1104 ubi->ubi_name, ubi->ref_count); 1105 } 1106 ubi_devices[ubi_num] = NULL; 1107 spin_unlock(&ubi_devices_lock); 1108 1109 ubi_assert(ubi_num == ubi->ubi_num); 1110 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1111 ubi_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 1112 #ifdef CONFIG_MTD_UBI_FASTMAP 1113 /* If we don't write a new fastmap at detach time we lose all 1114 * EC updates that have been made since the last written fastmap. */ 1115 ubi_update_fastmap(ubi); 1116 #endif 1117 /* 1118 * Before freeing anything, we have to stop the background thread to 1119 * prevent it from doing anything on this device while we are freeing. 1120 */ 1121 if (ubi->bgt_thread) 1122 kthread_stop(ubi->bgt_thread); 1123 1124 /* 1125 * Get a reference to the device in order to prevent 'dev_release()' 1126 * from freeing the @ubi object. 1127 */ 1128 get_device(&ubi->dev); 1129 1130 ubi_debugfs_exit_dev(ubi); 1131 uif_close(ubi); 1132 1133 ubi_wl_close(ubi); 1134 ubi_free_internal_volumes(ubi); 1135 vfree(ubi->vtbl); 1136 put_mtd_device(ubi->mtd); 1137 vfree(ubi->peb_buf); 1138 vfree(ubi->fm_buf); 1139 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 1140 put_device(&ubi->dev); 1141 return 0; 1142 } 1143 1144 /** 1145 * open_mtd_by_chdev - open an MTD device by its character device node path. 1146 * @mtd_dev: MTD character device node path 1147 * 1148 * This helper function opens an MTD device by its character node device path. 1149 * Returns MTD device description object in case of success and a negative 1150 * error code in case of failure. 1151 */ 1152 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1153 { 1154 int err, major, minor, mode; 1155 struct path path; 1156 1157 /* Probably this is an MTD character device node path */ 1158 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1159 if (err) 1160 return ERR_PTR(err); 1161 1162 /* MTD device number is defined by the major / minor numbers */ 1163 major = imajor(path.dentry->d_inode); 1164 minor = iminor(path.dentry->d_inode); 1165 mode = path.dentry->d_inode->i_mode; 1166 path_put(&path); 1167 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1168 return ERR_PTR(-EINVAL); 1169 1170 if (minor & 1) 1171 /* 1172 * Just do not think the "/dev/mtdrX" devices support is need, 1173 * so do not support them to avoid doing extra work. 1174 */ 1175 return ERR_PTR(-EINVAL); 1176 1177 return get_mtd_device(NULL, minor / 2); 1178 } 1179 1180 /** 1181 * open_mtd_device - open MTD device by name, character device path, or number. 1182 * @mtd_dev: name, character device node path, or MTD device device number 1183 * 1184 * This function tries to open and MTD device described by @mtd_dev string, 1185 * which is first treated as ASCII MTD device number, and if it is not true, it 1186 * is treated as MTD device name, and if that is also not true, it is treated 1187 * as MTD character device node path. Returns MTD device description object in 1188 * case of success and a negative error code in case of failure. 1189 */ 1190 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1191 { 1192 struct mtd_info *mtd; 1193 int mtd_num; 1194 char *endp; 1195 1196 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1197 if (*endp != '\0' || mtd_dev == endp) { 1198 /* 1199 * This does not look like an ASCII integer, probably this is 1200 * MTD device name. 1201 */ 1202 mtd = get_mtd_device_nm(mtd_dev); 1203 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1204 /* Probably this is an MTD character device node path */ 1205 mtd = open_mtd_by_chdev(mtd_dev); 1206 } else 1207 mtd = get_mtd_device(NULL, mtd_num); 1208 1209 return mtd; 1210 } 1211 1212 static int __init ubi_init(void) 1213 { 1214 int err, i, k; 1215 1216 /* Ensure that EC and VID headers have correct size */ 1217 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1218 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1219 1220 if (mtd_devs > UBI_MAX_DEVICES) { 1221 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 1222 return -EINVAL; 1223 } 1224 1225 /* Create base sysfs directory and sysfs files */ 1226 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 1227 if (IS_ERR(ubi_class)) { 1228 err = PTR_ERR(ubi_class); 1229 ubi_err("cannot create UBI class"); 1230 goto out; 1231 } 1232 1233 err = class_create_file(ubi_class, &ubi_version); 1234 if (err) { 1235 ubi_err("cannot create sysfs file"); 1236 goto out_class; 1237 } 1238 1239 err = misc_register(&ubi_ctrl_cdev); 1240 if (err) { 1241 ubi_err("cannot register device"); 1242 goto out_version; 1243 } 1244 1245 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1246 sizeof(struct ubi_wl_entry), 1247 0, 0, NULL); 1248 if (!ubi_wl_entry_slab) { 1249 err = -ENOMEM; 1250 goto out_dev_unreg; 1251 } 1252 1253 err = ubi_debugfs_init(); 1254 if (err) 1255 goto out_slab; 1256 1257 1258 /* Attach MTD devices */ 1259 for (i = 0; i < mtd_devs; i++) { 1260 struct mtd_dev_param *p = &mtd_dev_param[i]; 1261 struct mtd_info *mtd; 1262 1263 cond_resched(); 1264 1265 mtd = open_mtd_device(p->name); 1266 if (IS_ERR(mtd)) { 1267 err = PTR_ERR(mtd); 1268 ubi_err("cannot open mtd %s, error %d", p->name, err); 1269 /* See comment below re-ubi_is_module(). */ 1270 if (ubi_is_module()) 1271 goto out_detach; 1272 continue; 1273 } 1274 1275 mutex_lock(&ubi_devices_mutex); 1276 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1277 p->vid_hdr_offs, p->max_beb_per1024); 1278 mutex_unlock(&ubi_devices_mutex); 1279 if (err < 0) { 1280 ubi_err("cannot attach mtd%d", mtd->index); 1281 put_mtd_device(mtd); 1282 1283 /* 1284 * Originally UBI stopped initializing on any error. 1285 * However, later on it was found out that this 1286 * behavior is not very good when UBI is compiled into 1287 * the kernel and the MTD devices to attach are passed 1288 * through the command line. Indeed, UBI failure 1289 * stopped whole boot sequence. 1290 * 1291 * To fix this, we changed the behavior for the 1292 * non-module case, but preserved the old behavior for 1293 * the module case, just for compatibility. This is a 1294 * little inconsistent, though. 1295 */ 1296 if (ubi_is_module()) 1297 goto out_detach; 1298 } 1299 } 1300 1301 err = ubiblock_init(); 1302 if (err) { 1303 ubi_err("block: cannot initialize, error %d", err); 1304 1305 /* See comment above re-ubi_is_module(). */ 1306 if (ubi_is_module()) 1307 goto out_detach; 1308 } 1309 1310 return 0; 1311 1312 out_detach: 1313 for (k = 0; k < i; k++) 1314 if (ubi_devices[k]) { 1315 mutex_lock(&ubi_devices_mutex); 1316 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1317 mutex_unlock(&ubi_devices_mutex); 1318 } 1319 ubi_debugfs_exit(); 1320 out_slab: 1321 kmem_cache_destroy(ubi_wl_entry_slab); 1322 out_dev_unreg: 1323 misc_deregister(&ubi_ctrl_cdev); 1324 out_version: 1325 class_remove_file(ubi_class, &ubi_version); 1326 out_class: 1327 class_destroy(ubi_class); 1328 out: 1329 ubi_err("cannot initialize UBI, error %d", err); 1330 return err; 1331 } 1332 late_initcall(ubi_init); 1333 1334 static void __exit ubi_exit(void) 1335 { 1336 int i; 1337 1338 ubiblock_exit(); 1339 1340 for (i = 0; i < UBI_MAX_DEVICES; i++) 1341 if (ubi_devices[i]) { 1342 mutex_lock(&ubi_devices_mutex); 1343 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1344 mutex_unlock(&ubi_devices_mutex); 1345 } 1346 ubi_debugfs_exit(); 1347 kmem_cache_destroy(ubi_wl_entry_slab); 1348 misc_deregister(&ubi_ctrl_cdev); 1349 class_remove_file(ubi_class, &ubi_version); 1350 class_destroy(ubi_class); 1351 } 1352 module_exit(ubi_exit); 1353 1354 /** 1355 * bytes_str_to_int - convert a number of bytes string into an integer. 1356 * @str: the string to convert 1357 * 1358 * This function returns positive resulting integer in case of success and a 1359 * negative error code in case of failure. 1360 */ 1361 static int __init bytes_str_to_int(const char *str) 1362 { 1363 char *endp; 1364 unsigned long result; 1365 1366 result = simple_strtoul(str, &endp, 0); 1367 if (str == endp || result >= INT_MAX) { 1368 ubi_err("incorrect bytes count: \"%s\"\n", str); 1369 return -EINVAL; 1370 } 1371 1372 switch (*endp) { 1373 case 'G': 1374 result *= 1024; 1375 case 'M': 1376 result *= 1024; 1377 case 'K': 1378 result *= 1024; 1379 if (endp[1] == 'i' && endp[2] == 'B') 1380 endp += 2; 1381 case '\0': 1382 break; 1383 default: 1384 ubi_err("incorrect bytes count: \"%s\"\n", str); 1385 return -EINVAL; 1386 } 1387 1388 return result; 1389 } 1390 1391 /** 1392 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1393 * @val: the parameter value to parse 1394 * @kp: not used 1395 * 1396 * This function returns zero in case of success and a negative error code in 1397 * case of error. 1398 */ 1399 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1400 { 1401 int i, len; 1402 struct mtd_dev_param *p; 1403 char buf[MTD_PARAM_LEN_MAX]; 1404 char *pbuf = &buf[0]; 1405 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1406 1407 if (!val) 1408 return -EINVAL; 1409 1410 if (mtd_devs == UBI_MAX_DEVICES) { 1411 ubi_err("too many parameters, max. is %d\n", 1412 UBI_MAX_DEVICES); 1413 return -EINVAL; 1414 } 1415 1416 len = strnlen(val, MTD_PARAM_LEN_MAX); 1417 if (len == MTD_PARAM_LEN_MAX) { 1418 ubi_err("parameter \"%s\" is too long, max. is %d\n", 1419 val, MTD_PARAM_LEN_MAX); 1420 return -EINVAL; 1421 } 1422 1423 if (len == 0) { 1424 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1425 return 0; 1426 } 1427 1428 strcpy(buf, val); 1429 1430 /* Get rid of the final newline */ 1431 if (buf[len - 1] == '\n') 1432 buf[len - 1] = '\0'; 1433 1434 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1435 tokens[i] = strsep(&pbuf, ","); 1436 1437 if (pbuf) { 1438 ubi_err("too many arguments at \"%s\"\n", val); 1439 return -EINVAL; 1440 } 1441 1442 p = &mtd_dev_param[mtd_devs]; 1443 strcpy(&p->name[0], tokens[0]); 1444 1445 token = tokens[1]; 1446 if (token) { 1447 p->vid_hdr_offs = bytes_str_to_int(token); 1448 1449 if (p->vid_hdr_offs < 0) 1450 return p->vid_hdr_offs; 1451 } 1452 1453 token = tokens[2]; 1454 if (token) { 1455 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1456 1457 if (err) { 1458 ubi_err("bad value for max_beb_per1024 parameter: %s", 1459 token); 1460 return -EINVAL; 1461 } 1462 } 1463 1464 token = tokens[3]; 1465 if (token) { 1466 int err = kstrtoint(token, 10, &p->ubi_num); 1467 1468 if (err) { 1469 ubi_err("bad value for ubi_num parameter: %s", token); 1470 return -EINVAL; 1471 } 1472 } else 1473 p->ubi_num = UBI_DEV_NUM_AUTO; 1474 1475 mtd_devs += 1; 1476 return 0; 1477 } 1478 1479 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1480 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1481 "Multiple \"mtd\" parameters may be specified.\n" 1482 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1483 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1484 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1485 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1486 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1487 "\n" 1488 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1489 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1490 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1491 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1492 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1493 #ifdef CONFIG_MTD_UBI_FASTMAP 1494 module_param(fm_autoconvert, bool, 0644); 1495 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1496 #endif 1497 MODULE_VERSION(__stringify(UBI_VERSION)); 1498 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1499 MODULE_AUTHOR("Artem Bityutskiy"); 1500 MODULE_LICENSE("GPL"); 1501