1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 static ssize_t ubi_version_show(struct class *class, 108 struct class_attribute *attr, char *buf) 109 { 110 return sprintf(buf, "%d\n", UBI_VERSION); 111 } 112 113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 114 static struct class_attribute ubi_class_attrs[] = { 115 __ATTR(version, S_IRUGO, ubi_version_show, NULL), 116 __ATTR_NULL 117 }; 118 119 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 120 struct class ubi_class = { 121 .name = UBI_NAME_STR, 122 .owner = THIS_MODULE, 123 .class_attrs = ubi_class_attrs, 124 }; 125 126 static ssize_t dev_attribute_show(struct device *dev, 127 struct device_attribute *attr, char *buf); 128 129 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 130 static struct device_attribute dev_eraseblock_size = 131 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_avail_eraseblocks = 133 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_total_eraseblocks = 135 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_volumes_count = 137 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_max_ec = 139 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_reserved_for_bad = 141 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_bad_peb_count = 143 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_max_vol_count = 145 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_min_io_size = 147 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_bgt_enabled = 149 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_mtd_num = 151 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_ro_mode = 153 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 154 155 /** 156 * ubi_volume_notify - send a volume change notification. 157 * @ubi: UBI device description object 158 * @vol: volume description object of the changed volume 159 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 160 * 161 * This is a helper function which notifies all subscribers about a volume 162 * change event (creation, removal, re-sizing, re-naming, updating). Returns 163 * zero in case of success and a negative error code in case of failure. 164 */ 165 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 166 { 167 int ret; 168 struct ubi_notification nt; 169 170 ubi_do_get_device_info(ubi, &nt.di); 171 ubi_do_get_volume_info(ubi, vol, &nt.vi); 172 173 switch (ntype) { 174 case UBI_VOLUME_ADDED: 175 case UBI_VOLUME_REMOVED: 176 case UBI_VOLUME_RESIZED: 177 case UBI_VOLUME_RENAMED: 178 ret = ubi_update_fastmap(ubi); 179 if (ret) 180 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 181 } 182 183 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 184 } 185 186 /** 187 * ubi_notify_all - send a notification to all volumes. 188 * @ubi: UBI device description object 189 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 190 * @nb: the notifier to call 191 * 192 * This function walks all volumes of UBI device @ubi and sends the @ntype 193 * notification for each volume. If @nb is %NULL, then all registered notifiers 194 * are called, otherwise only the @nb notifier is called. Returns the number of 195 * sent notifications. 196 */ 197 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 198 { 199 struct ubi_notification nt; 200 int i, count = 0; 201 202 ubi_do_get_device_info(ubi, &nt.di); 203 204 mutex_lock(&ubi->device_mutex); 205 for (i = 0; i < ubi->vtbl_slots; i++) { 206 /* 207 * Since the @ubi->device is locked, and we are not going to 208 * change @ubi->volumes, we do not have to lock 209 * @ubi->volumes_lock. 210 */ 211 if (!ubi->volumes[i]) 212 continue; 213 214 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 215 if (nb) 216 nb->notifier_call(nb, ntype, &nt); 217 else 218 blocking_notifier_call_chain(&ubi_notifiers, ntype, 219 &nt); 220 count += 1; 221 } 222 mutex_unlock(&ubi->device_mutex); 223 224 return count; 225 } 226 227 /** 228 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 229 * @nb: the notifier to call 230 * 231 * This function walks all UBI devices and volumes and sends the 232 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 233 * registered notifiers are called, otherwise only the @nb notifier is called. 234 * Returns the number of sent notifications. 235 */ 236 int ubi_enumerate_volumes(struct notifier_block *nb) 237 { 238 int i, count = 0; 239 240 /* 241 * Since the @ubi_devices_mutex is locked, and we are not going to 242 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 243 */ 244 for (i = 0; i < UBI_MAX_DEVICES; i++) { 245 struct ubi_device *ubi = ubi_devices[i]; 246 247 if (!ubi) 248 continue; 249 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 250 } 251 252 return count; 253 } 254 255 /** 256 * ubi_get_device - get UBI device. 257 * @ubi_num: UBI device number 258 * 259 * This function returns UBI device description object for UBI device number 260 * @ubi_num, or %NULL if the device does not exist. This function increases the 261 * device reference count to prevent removal of the device. In other words, the 262 * device cannot be removed if its reference count is not zero. 263 */ 264 struct ubi_device *ubi_get_device(int ubi_num) 265 { 266 struct ubi_device *ubi; 267 268 spin_lock(&ubi_devices_lock); 269 ubi = ubi_devices[ubi_num]; 270 if (ubi) { 271 ubi_assert(ubi->ref_count >= 0); 272 ubi->ref_count += 1; 273 get_device(&ubi->dev); 274 } 275 spin_unlock(&ubi_devices_lock); 276 277 return ubi; 278 } 279 280 /** 281 * ubi_put_device - drop an UBI device reference. 282 * @ubi: UBI device description object 283 */ 284 void ubi_put_device(struct ubi_device *ubi) 285 { 286 spin_lock(&ubi_devices_lock); 287 ubi->ref_count -= 1; 288 put_device(&ubi->dev); 289 spin_unlock(&ubi_devices_lock); 290 } 291 292 /** 293 * ubi_get_by_major - get UBI device by character device major number. 294 * @major: major number 295 * 296 * This function is similar to 'ubi_get_device()', but it searches the device 297 * by its major number. 298 */ 299 struct ubi_device *ubi_get_by_major(int major) 300 { 301 int i; 302 struct ubi_device *ubi; 303 304 spin_lock(&ubi_devices_lock); 305 for (i = 0; i < UBI_MAX_DEVICES; i++) { 306 ubi = ubi_devices[i]; 307 if (ubi && MAJOR(ubi->cdev.dev) == major) { 308 ubi_assert(ubi->ref_count >= 0); 309 ubi->ref_count += 1; 310 get_device(&ubi->dev); 311 spin_unlock(&ubi_devices_lock); 312 return ubi; 313 } 314 } 315 spin_unlock(&ubi_devices_lock); 316 317 return NULL; 318 } 319 320 /** 321 * ubi_major2num - get UBI device number by character device major number. 322 * @major: major number 323 * 324 * This function searches UBI device number object by its major number. If UBI 325 * device was not found, this function returns -ENODEV, otherwise the UBI device 326 * number is returned. 327 */ 328 int ubi_major2num(int major) 329 { 330 int i, ubi_num = -ENODEV; 331 332 spin_lock(&ubi_devices_lock); 333 for (i = 0; i < UBI_MAX_DEVICES; i++) { 334 struct ubi_device *ubi = ubi_devices[i]; 335 336 if (ubi && MAJOR(ubi->cdev.dev) == major) { 337 ubi_num = ubi->ubi_num; 338 break; 339 } 340 } 341 spin_unlock(&ubi_devices_lock); 342 343 return ubi_num; 344 } 345 346 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 347 static ssize_t dev_attribute_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 ssize_t ret; 351 struct ubi_device *ubi; 352 353 /* 354 * The below code looks weird, but it actually makes sense. We get the 355 * UBI device reference from the contained 'struct ubi_device'. But it 356 * is unclear if the device was removed or not yet. Indeed, if the 357 * device was removed before we increased its reference count, 358 * 'ubi_get_device()' will return -ENODEV and we fail. 359 * 360 * Remember, 'struct ubi_device' is freed in the release function, so 361 * we still can use 'ubi->ubi_num'. 362 */ 363 ubi = container_of(dev, struct ubi_device, dev); 364 ubi = ubi_get_device(ubi->ubi_num); 365 if (!ubi) 366 return -ENODEV; 367 368 if (attr == &dev_eraseblock_size) 369 ret = sprintf(buf, "%d\n", ubi->leb_size); 370 else if (attr == &dev_avail_eraseblocks) 371 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 372 else if (attr == &dev_total_eraseblocks) 373 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 374 else if (attr == &dev_volumes_count) 375 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 376 else if (attr == &dev_max_ec) 377 ret = sprintf(buf, "%d\n", ubi->max_ec); 378 else if (attr == &dev_reserved_for_bad) 379 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 380 else if (attr == &dev_bad_peb_count) 381 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 382 else if (attr == &dev_max_vol_count) 383 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 384 else if (attr == &dev_min_io_size) 385 ret = sprintf(buf, "%d\n", ubi->min_io_size); 386 else if (attr == &dev_bgt_enabled) 387 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 388 else if (attr == &dev_mtd_num) 389 ret = sprintf(buf, "%d\n", ubi->mtd->index); 390 else if (attr == &dev_ro_mode) 391 ret = sprintf(buf, "%d\n", ubi->ro_mode); 392 else 393 ret = -EINVAL; 394 395 ubi_put_device(ubi); 396 return ret; 397 } 398 399 static struct attribute *ubi_dev_attrs[] = { 400 &dev_eraseblock_size.attr, 401 &dev_avail_eraseblocks.attr, 402 &dev_total_eraseblocks.attr, 403 &dev_volumes_count.attr, 404 &dev_max_ec.attr, 405 &dev_reserved_for_bad.attr, 406 &dev_bad_peb_count.attr, 407 &dev_max_vol_count.attr, 408 &dev_min_io_size.attr, 409 &dev_bgt_enabled.attr, 410 &dev_mtd_num.attr, 411 &dev_ro_mode.attr, 412 NULL 413 }; 414 ATTRIBUTE_GROUPS(ubi_dev); 415 416 static void dev_release(struct device *dev) 417 { 418 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 419 420 kfree(ubi); 421 } 422 423 /** 424 * kill_volumes - destroy all user volumes. 425 * @ubi: UBI device description object 426 */ 427 static void kill_volumes(struct ubi_device *ubi) 428 { 429 int i; 430 431 for (i = 0; i < ubi->vtbl_slots; i++) 432 if (ubi->volumes[i]) 433 ubi_free_volume(ubi, ubi->volumes[i]); 434 } 435 436 /** 437 * uif_init - initialize user interfaces for an UBI device. 438 * @ubi: UBI device description object 439 * 440 * This function initializes various user interfaces for an UBI device. If the 441 * initialization fails at an early stage, this function frees all the 442 * resources it allocated, returns an error. 443 * 444 * This function returns zero in case of success and a negative error code in 445 * case of failure. 446 */ 447 static int uif_init(struct ubi_device *ubi) 448 { 449 int i, err; 450 dev_t dev; 451 452 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 453 454 /* 455 * Major numbers for the UBI character devices are allocated 456 * dynamically. Major numbers of volume character devices are 457 * equivalent to ones of the corresponding UBI character device. Minor 458 * numbers of UBI character devices are 0, while minor numbers of 459 * volume character devices start from 1. Thus, we allocate one major 460 * number and ubi->vtbl_slots + 1 minor numbers. 461 */ 462 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 463 if (err) { 464 ubi_err(ubi, "cannot register UBI character devices"); 465 return err; 466 } 467 468 ubi->dev.devt = dev; 469 470 ubi_assert(MINOR(dev) == 0); 471 cdev_init(&ubi->cdev, &ubi_cdev_operations); 472 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 473 ubi->cdev.owner = THIS_MODULE; 474 475 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 476 err = cdev_device_add(&ubi->cdev, &ubi->dev); 477 if (err) 478 goto out_unreg; 479 480 for (i = 0; i < ubi->vtbl_slots; i++) 481 if (ubi->volumes[i]) { 482 err = ubi_add_volume(ubi, ubi->volumes[i]); 483 if (err) { 484 ubi_err(ubi, "cannot add volume %d", i); 485 goto out_volumes; 486 } 487 } 488 489 return 0; 490 491 out_volumes: 492 kill_volumes(ubi); 493 cdev_device_del(&ubi->cdev, &ubi->dev); 494 out_unreg: 495 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 496 ubi_err(ubi, "cannot initialize UBI %s, error %d", 497 ubi->ubi_name, err); 498 return err; 499 } 500 501 /** 502 * uif_close - close user interfaces for an UBI device. 503 * @ubi: UBI device description object 504 * 505 * Note, since this function un-registers UBI volume device objects (@vol->dev), 506 * the memory allocated voe the volumes is freed as well (in the release 507 * function). 508 */ 509 static void uif_close(struct ubi_device *ubi) 510 { 511 kill_volumes(ubi); 512 cdev_device_del(&ubi->cdev, &ubi->dev); 513 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 514 } 515 516 /** 517 * ubi_free_internal_volumes - free internal volumes. 518 * @ubi: UBI device description object 519 */ 520 void ubi_free_internal_volumes(struct ubi_device *ubi) 521 { 522 int i; 523 524 for (i = ubi->vtbl_slots; 525 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 526 ubi_eba_replace_table(ubi->volumes[i], NULL); 527 kfree(ubi->volumes[i]); 528 } 529 } 530 531 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 532 { 533 int limit, device_pebs; 534 uint64_t device_size; 535 536 if (!max_beb_per1024) 537 return 0; 538 539 /* 540 * Here we are using size of the entire flash chip and 541 * not just the MTD partition size because the maximum 542 * number of bad eraseblocks is a percentage of the 543 * whole device and bad eraseblocks are not fairly 544 * distributed over the flash chip. So the worst case 545 * is that all the bad eraseblocks of the chip are in 546 * the MTD partition we are attaching (ubi->mtd). 547 */ 548 device_size = mtd_get_device_size(ubi->mtd); 549 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 550 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 551 552 /* Round it up */ 553 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 554 limit += 1; 555 556 return limit; 557 } 558 559 /** 560 * io_init - initialize I/O sub-system for a given UBI device. 561 * @ubi: UBI device description object 562 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 563 * 564 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 565 * assumed: 566 * o EC header is always at offset zero - this cannot be changed; 567 * o VID header starts just after the EC header at the closest address 568 * aligned to @io->hdrs_min_io_size; 569 * o data starts just after the VID header at the closest address aligned to 570 * @io->min_io_size 571 * 572 * This function returns zero in case of success and a negative error code in 573 * case of failure. 574 */ 575 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 576 { 577 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 578 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 579 580 if (ubi->mtd->numeraseregions != 0) { 581 /* 582 * Some flashes have several erase regions. Different regions 583 * may have different eraseblock size and other 584 * characteristics. It looks like mostly multi-region flashes 585 * have one "main" region and one or more small regions to 586 * store boot loader code or boot parameters or whatever. I 587 * guess we should just pick the largest region. But this is 588 * not implemented. 589 */ 590 ubi_err(ubi, "multiple regions, not implemented"); 591 return -EINVAL; 592 } 593 594 if (ubi->vid_hdr_offset < 0) 595 return -EINVAL; 596 597 /* 598 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 599 * physical eraseblocks maximum. 600 */ 601 602 ubi->peb_size = ubi->mtd->erasesize; 603 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 604 ubi->flash_size = ubi->mtd->size; 605 606 if (mtd_can_have_bb(ubi->mtd)) { 607 ubi->bad_allowed = 1; 608 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 609 } 610 611 if (ubi->mtd->type == MTD_NORFLASH) { 612 ubi_assert(ubi->mtd->writesize == 1); 613 ubi->nor_flash = 1; 614 } 615 616 ubi->min_io_size = ubi->mtd->writesize; 617 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 618 619 /* 620 * Make sure minimal I/O unit is power of 2. Note, there is no 621 * fundamental reason for this assumption. It is just an optimization 622 * which allows us to avoid costly division operations. 623 */ 624 if (!is_power_of_2(ubi->min_io_size)) { 625 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 626 ubi->min_io_size); 627 return -EINVAL; 628 } 629 630 ubi_assert(ubi->hdrs_min_io_size > 0); 631 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 632 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 633 634 ubi->max_write_size = ubi->mtd->writebufsize; 635 /* 636 * Maximum write size has to be greater or equivalent to min. I/O 637 * size, and be multiple of min. I/O size. 638 */ 639 if (ubi->max_write_size < ubi->min_io_size || 640 ubi->max_write_size % ubi->min_io_size || 641 !is_power_of_2(ubi->max_write_size)) { 642 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 643 ubi->max_write_size, ubi->min_io_size); 644 return -EINVAL; 645 } 646 647 /* Calculate default aligned sizes of EC and VID headers */ 648 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 649 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 650 651 dbg_gen("min_io_size %d", ubi->min_io_size); 652 dbg_gen("max_write_size %d", ubi->max_write_size); 653 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 654 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 655 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 656 657 if (ubi->vid_hdr_offset == 0) 658 /* Default offset */ 659 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 660 ubi->ec_hdr_alsize; 661 else { 662 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 663 ~(ubi->hdrs_min_io_size - 1); 664 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 665 ubi->vid_hdr_aloffset; 666 } 667 668 /* Similar for the data offset */ 669 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 670 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 671 672 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 673 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 674 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 675 dbg_gen("leb_start %d", ubi->leb_start); 676 677 /* The shift must be aligned to 32-bit boundary */ 678 if (ubi->vid_hdr_shift % 4) { 679 ubi_err(ubi, "unaligned VID header shift %d", 680 ubi->vid_hdr_shift); 681 return -EINVAL; 682 } 683 684 /* Check sanity */ 685 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 686 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 687 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 688 ubi->leb_start & (ubi->min_io_size - 1)) { 689 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 690 ubi->vid_hdr_offset, ubi->leb_start); 691 return -EINVAL; 692 } 693 694 /* 695 * Set maximum amount of physical erroneous eraseblocks to be 10%. 696 * Erroneous PEB are those which have read errors. 697 */ 698 ubi->max_erroneous = ubi->peb_count / 10; 699 if (ubi->max_erroneous < 16) 700 ubi->max_erroneous = 16; 701 dbg_gen("max_erroneous %d", ubi->max_erroneous); 702 703 /* 704 * It may happen that EC and VID headers are situated in one minimal 705 * I/O unit. In this case we can only accept this UBI image in 706 * read-only mode. 707 */ 708 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 709 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 710 ubi->ro_mode = 1; 711 } 712 713 ubi->leb_size = ubi->peb_size - ubi->leb_start; 714 715 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 716 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 717 ubi->mtd->index); 718 ubi->ro_mode = 1; 719 } 720 721 /* 722 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 723 * unfortunately, MTD does not provide this information. We should loop 724 * over all physical eraseblocks and invoke mtd->block_is_bad() for 725 * each physical eraseblock. So, we leave @ubi->bad_peb_count 726 * uninitialized so far. 727 */ 728 729 return 0; 730 } 731 732 /** 733 * autoresize - re-size the volume which has the "auto-resize" flag set. 734 * @ubi: UBI device description object 735 * @vol_id: ID of the volume to re-size 736 * 737 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 738 * the volume table to the largest possible size. See comments in ubi-header.h 739 * for more description of the flag. Returns zero in case of success and a 740 * negative error code in case of failure. 741 */ 742 static int autoresize(struct ubi_device *ubi, int vol_id) 743 { 744 struct ubi_volume_desc desc; 745 struct ubi_volume *vol = ubi->volumes[vol_id]; 746 int err, old_reserved_pebs = vol->reserved_pebs; 747 748 if (ubi->ro_mode) { 749 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 750 return 0; 751 } 752 753 /* 754 * Clear the auto-resize flag in the volume in-memory copy of the 755 * volume table, and 'ubi_resize_volume()' will propagate this change 756 * to the flash. 757 */ 758 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 759 760 if (ubi->avail_pebs == 0) { 761 struct ubi_vtbl_record vtbl_rec; 762 763 /* 764 * No available PEBs to re-size the volume, clear the flag on 765 * flash and exit. 766 */ 767 vtbl_rec = ubi->vtbl[vol_id]; 768 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 769 if (err) 770 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 771 vol_id); 772 } else { 773 desc.vol = vol; 774 err = ubi_resize_volume(&desc, 775 old_reserved_pebs + ubi->avail_pebs); 776 if (err) 777 ubi_err(ubi, "cannot auto-resize volume %d", 778 vol_id); 779 } 780 781 if (err) 782 return err; 783 784 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 785 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 786 return 0; 787 } 788 789 /** 790 * ubi_attach_mtd_dev - attach an MTD device. 791 * @mtd: MTD device description object 792 * @ubi_num: number to assign to the new UBI device 793 * @vid_hdr_offset: VID header offset 794 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 795 * 796 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 797 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 798 * which case this function finds a vacant device number and assigns it 799 * automatically. Returns the new UBI device number in case of success and a 800 * negative error code in case of failure. 801 * 802 * Note, the invocations of this function has to be serialized by the 803 * @ubi_devices_mutex. 804 */ 805 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 806 int vid_hdr_offset, int max_beb_per1024) 807 { 808 struct ubi_device *ubi; 809 int i, err; 810 811 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 812 return -EINVAL; 813 814 if (!max_beb_per1024) 815 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 816 817 /* 818 * Check if we already have the same MTD device attached. 819 * 820 * Note, this function assumes that UBI devices creations and deletions 821 * are serialized, so it does not take the &ubi_devices_lock. 822 */ 823 for (i = 0; i < UBI_MAX_DEVICES; i++) { 824 ubi = ubi_devices[i]; 825 if (ubi && mtd->index == ubi->mtd->index) { 826 pr_err("ubi: mtd%d is already attached to ubi%d", 827 mtd->index, i); 828 return -EEXIST; 829 } 830 } 831 832 /* 833 * Make sure this MTD device is not emulated on top of an UBI volume 834 * already. Well, generally this recursion works fine, but there are 835 * different problems like the UBI module takes a reference to itself 836 * by attaching (and thus, opening) the emulated MTD device. This 837 * results in inability to unload the module. And in general it makes 838 * no sense to attach emulated MTD devices, so we prohibit this. 839 */ 840 if (mtd->type == MTD_UBIVOLUME) { 841 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI", 842 mtd->index); 843 return -EINVAL; 844 } 845 846 if (ubi_num == UBI_DEV_NUM_AUTO) { 847 /* Search for an empty slot in the @ubi_devices array */ 848 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 849 if (!ubi_devices[ubi_num]) 850 break; 851 if (ubi_num == UBI_MAX_DEVICES) { 852 pr_err("ubi: only %d UBI devices may be created", 853 UBI_MAX_DEVICES); 854 return -ENFILE; 855 } 856 } else { 857 if (ubi_num >= UBI_MAX_DEVICES) 858 return -EINVAL; 859 860 /* Make sure ubi_num is not busy */ 861 if (ubi_devices[ubi_num]) { 862 pr_err("ubi: ubi%i already exists", ubi_num); 863 return -EEXIST; 864 } 865 } 866 867 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 868 if (!ubi) 869 return -ENOMEM; 870 871 device_initialize(&ubi->dev); 872 ubi->dev.release = dev_release; 873 ubi->dev.class = &ubi_class; 874 ubi->dev.groups = ubi_dev_groups; 875 876 ubi->mtd = mtd; 877 ubi->ubi_num = ubi_num; 878 ubi->vid_hdr_offset = vid_hdr_offset; 879 ubi->autoresize_vol_id = -1; 880 881 #ifdef CONFIG_MTD_UBI_FASTMAP 882 ubi->fm_pool.used = ubi->fm_pool.size = 0; 883 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 884 885 /* 886 * fm_pool.max_size is 5% of the total number of PEBs but it's also 887 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 888 */ 889 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 890 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 891 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 892 UBI_FM_MIN_POOL_SIZE); 893 894 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 895 ubi->fm_disabled = !fm_autoconvert; 896 if (fm_debug) 897 ubi_enable_dbg_chk_fastmap(ubi); 898 899 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 900 <= UBI_FM_MAX_START) { 901 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 902 UBI_FM_MAX_START); 903 ubi->fm_disabled = 1; 904 } 905 906 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 907 ubi_msg(ubi, "default fastmap WL pool size: %d", 908 ubi->fm_wl_pool.max_size); 909 #else 910 ubi->fm_disabled = 1; 911 #endif 912 mutex_init(&ubi->buf_mutex); 913 mutex_init(&ubi->ckvol_mutex); 914 mutex_init(&ubi->device_mutex); 915 spin_lock_init(&ubi->volumes_lock); 916 init_rwsem(&ubi->fm_protect); 917 init_rwsem(&ubi->fm_eba_sem); 918 919 ubi_msg(ubi, "attaching mtd%d", mtd->index); 920 921 err = io_init(ubi, max_beb_per1024); 922 if (err) 923 goto out_free; 924 925 err = -ENOMEM; 926 ubi->peb_buf = vmalloc(ubi->peb_size); 927 if (!ubi->peb_buf) 928 goto out_free; 929 930 #ifdef CONFIG_MTD_UBI_FASTMAP 931 ubi->fm_size = ubi_calc_fm_size(ubi); 932 ubi->fm_buf = vzalloc(ubi->fm_size); 933 if (!ubi->fm_buf) 934 goto out_free; 935 #endif 936 err = ubi_attach(ubi, 0); 937 if (err) { 938 ubi_err(ubi, "failed to attach mtd%d, error %d", 939 mtd->index, err); 940 goto out_free; 941 } 942 943 if (ubi->autoresize_vol_id != -1) { 944 err = autoresize(ubi, ubi->autoresize_vol_id); 945 if (err) 946 goto out_detach; 947 } 948 949 /* Make device "available" before it becomes accessible via sysfs */ 950 ubi_devices[ubi_num] = ubi; 951 952 err = uif_init(ubi); 953 if (err) 954 goto out_detach; 955 956 err = ubi_debugfs_init_dev(ubi); 957 if (err) 958 goto out_uif; 959 960 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 961 if (IS_ERR(ubi->bgt_thread)) { 962 err = PTR_ERR(ubi->bgt_thread); 963 ubi_err(ubi, "cannot spawn \"%s\", error %d", 964 ubi->bgt_name, err); 965 goto out_debugfs; 966 } 967 968 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 969 mtd->index, mtd->name, ubi->flash_size >> 20); 970 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 971 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 972 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 973 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 974 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 975 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 976 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 977 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 978 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 979 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 980 ubi->vtbl_slots); 981 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 982 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 983 ubi->image_seq); 984 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 985 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 986 987 /* 988 * The below lock makes sure we do not race with 'ubi_thread()' which 989 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 990 */ 991 spin_lock(&ubi->wl_lock); 992 ubi->thread_enabled = 1; 993 wake_up_process(ubi->bgt_thread); 994 spin_unlock(&ubi->wl_lock); 995 996 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 997 return ubi_num; 998 999 out_debugfs: 1000 ubi_debugfs_exit_dev(ubi); 1001 out_uif: 1002 uif_close(ubi); 1003 out_detach: 1004 ubi_devices[ubi_num] = NULL; 1005 ubi_wl_close(ubi); 1006 ubi_free_internal_volumes(ubi); 1007 vfree(ubi->vtbl); 1008 out_free: 1009 vfree(ubi->peb_buf); 1010 vfree(ubi->fm_buf); 1011 put_device(&ubi->dev); 1012 return err; 1013 } 1014 1015 /** 1016 * ubi_detach_mtd_dev - detach an MTD device. 1017 * @ubi_num: UBI device number to detach from 1018 * @anyway: detach MTD even if device reference count is not zero 1019 * 1020 * This function destroys an UBI device number @ubi_num and detaches the 1021 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1022 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1023 * exist. 1024 * 1025 * Note, the invocations of this function has to be serialized by the 1026 * @ubi_devices_mutex. 1027 */ 1028 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1029 { 1030 struct ubi_device *ubi; 1031 1032 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1033 return -EINVAL; 1034 1035 ubi = ubi_get_device(ubi_num); 1036 if (!ubi) 1037 return -EINVAL; 1038 1039 spin_lock(&ubi_devices_lock); 1040 put_device(&ubi->dev); 1041 ubi->ref_count -= 1; 1042 if (ubi->ref_count) { 1043 if (!anyway) { 1044 spin_unlock(&ubi_devices_lock); 1045 return -EBUSY; 1046 } 1047 /* This may only happen if there is a bug */ 1048 ubi_err(ubi, "%s reference count %d, destroy anyway", 1049 ubi->ubi_name, ubi->ref_count); 1050 } 1051 ubi_devices[ubi_num] = NULL; 1052 spin_unlock(&ubi_devices_lock); 1053 1054 ubi_assert(ubi_num == ubi->ubi_num); 1055 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1056 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1057 #ifdef CONFIG_MTD_UBI_FASTMAP 1058 /* If we don't write a new fastmap at detach time we lose all 1059 * EC updates that have been made since the last written fastmap. 1060 * In case of fastmap debugging we omit the update to simulate an 1061 * unclean shutdown. */ 1062 if (!ubi_dbg_chk_fastmap(ubi)) 1063 ubi_update_fastmap(ubi); 1064 #endif 1065 /* 1066 * Before freeing anything, we have to stop the background thread to 1067 * prevent it from doing anything on this device while we are freeing. 1068 */ 1069 if (ubi->bgt_thread) 1070 kthread_stop(ubi->bgt_thread); 1071 1072 ubi_debugfs_exit_dev(ubi); 1073 uif_close(ubi); 1074 1075 ubi_wl_close(ubi); 1076 ubi_free_internal_volumes(ubi); 1077 vfree(ubi->vtbl); 1078 put_mtd_device(ubi->mtd); 1079 vfree(ubi->peb_buf); 1080 vfree(ubi->fm_buf); 1081 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1082 put_device(&ubi->dev); 1083 return 0; 1084 } 1085 1086 /** 1087 * open_mtd_by_chdev - open an MTD device by its character device node path. 1088 * @mtd_dev: MTD character device node path 1089 * 1090 * This helper function opens an MTD device by its character node device path. 1091 * Returns MTD device description object in case of success and a negative 1092 * error code in case of failure. 1093 */ 1094 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1095 { 1096 int err, minor; 1097 struct path path; 1098 struct kstat stat; 1099 1100 /* Probably this is an MTD character device node path */ 1101 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1102 if (err) 1103 return ERR_PTR(err); 1104 1105 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1106 path_put(&path); 1107 if (err) 1108 return ERR_PTR(err); 1109 1110 /* MTD device number is defined by the major / minor numbers */ 1111 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1112 return ERR_PTR(-EINVAL); 1113 1114 minor = MINOR(stat.rdev); 1115 1116 if (minor & 1) 1117 /* 1118 * Just do not think the "/dev/mtdrX" devices support is need, 1119 * so do not support them to avoid doing extra work. 1120 */ 1121 return ERR_PTR(-EINVAL); 1122 1123 return get_mtd_device(NULL, minor / 2); 1124 } 1125 1126 /** 1127 * open_mtd_device - open MTD device by name, character device path, or number. 1128 * @mtd_dev: name, character device node path, or MTD device device number 1129 * 1130 * This function tries to open and MTD device described by @mtd_dev string, 1131 * which is first treated as ASCII MTD device number, and if it is not true, it 1132 * is treated as MTD device name, and if that is also not true, it is treated 1133 * as MTD character device node path. Returns MTD device description object in 1134 * case of success and a negative error code in case of failure. 1135 */ 1136 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1137 { 1138 struct mtd_info *mtd; 1139 int mtd_num; 1140 char *endp; 1141 1142 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1143 if (*endp != '\0' || mtd_dev == endp) { 1144 /* 1145 * This does not look like an ASCII integer, probably this is 1146 * MTD device name. 1147 */ 1148 mtd = get_mtd_device_nm(mtd_dev); 1149 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1150 /* Probably this is an MTD character device node path */ 1151 mtd = open_mtd_by_chdev(mtd_dev); 1152 } else 1153 mtd = get_mtd_device(NULL, mtd_num); 1154 1155 return mtd; 1156 } 1157 1158 static int __init ubi_init(void) 1159 { 1160 int err, i, k; 1161 1162 /* Ensure that EC and VID headers have correct size */ 1163 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1164 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1165 1166 if (mtd_devs > UBI_MAX_DEVICES) { 1167 pr_err("UBI error: too many MTD devices, maximum is %d", 1168 UBI_MAX_DEVICES); 1169 return -EINVAL; 1170 } 1171 1172 /* Create base sysfs directory and sysfs files */ 1173 err = class_register(&ubi_class); 1174 if (err < 0) 1175 return err; 1176 1177 err = misc_register(&ubi_ctrl_cdev); 1178 if (err) { 1179 pr_err("UBI error: cannot register device"); 1180 goto out; 1181 } 1182 1183 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1184 sizeof(struct ubi_wl_entry), 1185 0, 0, NULL); 1186 if (!ubi_wl_entry_slab) { 1187 err = -ENOMEM; 1188 goto out_dev_unreg; 1189 } 1190 1191 err = ubi_debugfs_init(); 1192 if (err) 1193 goto out_slab; 1194 1195 1196 /* Attach MTD devices */ 1197 for (i = 0; i < mtd_devs; i++) { 1198 struct mtd_dev_param *p = &mtd_dev_param[i]; 1199 struct mtd_info *mtd; 1200 1201 cond_resched(); 1202 1203 mtd = open_mtd_device(p->name); 1204 if (IS_ERR(mtd)) { 1205 err = PTR_ERR(mtd); 1206 pr_err("UBI error: cannot open mtd %s, error %d", 1207 p->name, err); 1208 /* See comment below re-ubi_is_module(). */ 1209 if (ubi_is_module()) 1210 goto out_detach; 1211 continue; 1212 } 1213 1214 mutex_lock(&ubi_devices_mutex); 1215 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1216 p->vid_hdr_offs, p->max_beb_per1024); 1217 mutex_unlock(&ubi_devices_mutex); 1218 if (err < 0) { 1219 pr_err("UBI error: cannot attach mtd%d", 1220 mtd->index); 1221 put_mtd_device(mtd); 1222 1223 /* 1224 * Originally UBI stopped initializing on any error. 1225 * However, later on it was found out that this 1226 * behavior is not very good when UBI is compiled into 1227 * the kernel and the MTD devices to attach are passed 1228 * through the command line. Indeed, UBI failure 1229 * stopped whole boot sequence. 1230 * 1231 * To fix this, we changed the behavior for the 1232 * non-module case, but preserved the old behavior for 1233 * the module case, just for compatibility. This is a 1234 * little inconsistent, though. 1235 */ 1236 if (ubi_is_module()) 1237 goto out_detach; 1238 } 1239 } 1240 1241 err = ubiblock_init(); 1242 if (err) { 1243 pr_err("UBI error: block: cannot initialize, error %d", err); 1244 1245 /* See comment above re-ubi_is_module(). */ 1246 if (ubi_is_module()) 1247 goto out_detach; 1248 } 1249 1250 return 0; 1251 1252 out_detach: 1253 for (k = 0; k < i; k++) 1254 if (ubi_devices[k]) { 1255 mutex_lock(&ubi_devices_mutex); 1256 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1257 mutex_unlock(&ubi_devices_mutex); 1258 } 1259 ubi_debugfs_exit(); 1260 out_slab: 1261 kmem_cache_destroy(ubi_wl_entry_slab); 1262 out_dev_unreg: 1263 misc_deregister(&ubi_ctrl_cdev); 1264 out: 1265 class_unregister(&ubi_class); 1266 pr_err("UBI error: cannot initialize UBI, error %d", err); 1267 return err; 1268 } 1269 late_initcall(ubi_init); 1270 1271 static void __exit ubi_exit(void) 1272 { 1273 int i; 1274 1275 ubiblock_exit(); 1276 1277 for (i = 0; i < UBI_MAX_DEVICES; i++) 1278 if (ubi_devices[i]) { 1279 mutex_lock(&ubi_devices_mutex); 1280 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1281 mutex_unlock(&ubi_devices_mutex); 1282 } 1283 ubi_debugfs_exit(); 1284 kmem_cache_destroy(ubi_wl_entry_slab); 1285 misc_deregister(&ubi_ctrl_cdev); 1286 class_unregister(&ubi_class); 1287 } 1288 module_exit(ubi_exit); 1289 1290 /** 1291 * bytes_str_to_int - convert a number of bytes string into an integer. 1292 * @str: the string to convert 1293 * 1294 * This function returns positive resulting integer in case of success and a 1295 * negative error code in case of failure. 1296 */ 1297 static int bytes_str_to_int(const char *str) 1298 { 1299 char *endp; 1300 unsigned long result; 1301 1302 result = simple_strtoul(str, &endp, 0); 1303 if (str == endp || result >= INT_MAX) { 1304 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1305 return -EINVAL; 1306 } 1307 1308 switch (*endp) { 1309 case 'G': 1310 result *= 1024; 1311 case 'M': 1312 result *= 1024; 1313 case 'K': 1314 result *= 1024; 1315 if (endp[1] == 'i' && endp[2] == 'B') 1316 endp += 2; 1317 case '\0': 1318 break; 1319 default: 1320 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1321 return -EINVAL; 1322 } 1323 1324 return result; 1325 } 1326 1327 /** 1328 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1329 * @val: the parameter value to parse 1330 * @kp: not used 1331 * 1332 * This function returns zero in case of success and a negative error code in 1333 * case of error. 1334 */ 1335 static int ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1336 { 1337 int i, len; 1338 struct mtd_dev_param *p; 1339 char buf[MTD_PARAM_LEN_MAX]; 1340 char *pbuf = &buf[0]; 1341 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1342 1343 if (!val) 1344 return -EINVAL; 1345 1346 if (mtd_devs == UBI_MAX_DEVICES) { 1347 pr_err("UBI error: too many parameters, max. is %d\n", 1348 UBI_MAX_DEVICES); 1349 return -EINVAL; 1350 } 1351 1352 len = strnlen(val, MTD_PARAM_LEN_MAX); 1353 if (len == MTD_PARAM_LEN_MAX) { 1354 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1355 val, MTD_PARAM_LEN_MAX); 1356 return -EINVAL; 1357 } 1358 1359 if (len == 0) { 1360 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1361 return 0; 1362 } 1363 1364 strcpy(buf, val); 1365 1366 /* Get rid of the final newline */ 1367 if (buf[len - 1] == '\n') 1368 buf[len - 1] = '\0'; 1369 1370 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1371 tokens[i] = strsep(&pbuf, ","); 1372 1373 if (pbuf) { 1374 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1375 return -EINVAL; 1376 } 1377 1378 p = &mtd_dev_param[mtd_devs]; 1379 strcpy(&p->name[0], tokens[0]); 1380 1381 token = tokens[1]; 1382 if (token) { 1383 p->vid_hdr_offs = bytes_str_to_int(token); 1384 1385 if (p->vid_hdr_offs < 0) 1386 return p->vid_hdr_offs; 1387 } 1388 1389 token = tokens[2]; 1390 if (token) { 1391 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1392 1393 if (err) { 1394 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1395 token); 1396 return -EINVAL; 1397 } 1398 } 1399 1400 token = tokens[3]; 1401 if (token) { 1402 int err = kstrtoint(token, 10, &p->ubi_num); 1403 1404 if (err) { 1405 pr_err("UBI error: bad value for ubi_num parameter: %s", 1406 token); 1407 return -EINVAL; 1408 } 1409 } else 1410 p->ubi_num = UBI_DEV_NUM_AUTO; 1411 1412 mtd_devs += 1; 1413 return 0; 1414 } 1415 1416 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1417 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1418 "Multiple \"mtd\" parameters may be specified.\n" 1419 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1420 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1421 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1422 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1423 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1424 "\n" 1425 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1426 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1427 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1428 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1429 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1430 #ifdef CONFIG_MTD_UBI_FASTMAP 1431 module_param(fm_autoconvert, bool, 0644); 1432 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1433 module_param(fm_debug, bool, 0); 1434 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1435 #endif 1436 MODULE_VERSION(__stringify(UBI_VERSION)); 1437 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1438 MODULE_AUTHOR("Artem Bityutskiy"); 1439 MODULE_LICENSE("GPL"); 1440