xref: /openbmc/linux/drivers/mtd/ubi/build.c (revision c819e2cf)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  */
31 
32 #include <linux/err.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/stringify.h>
36 #include <linux/namei.h>
37 #include <linux/stat.h>
38 #include <linux/miscdevice.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/log2.h>
41 #include <linux/kthread.h>
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/major.h>
45 #include "ubi.h"
46 
47 /* Maximum length of the 'mtd=' parameter */
48 #define MTD_PARAM_LEN_MAX 64
49 
50 /* Maximum number of comma-separated items in the 'mtd=' parameter */
51 #define MTD_PARAM_MAX_COUNT 4
52 
53 /* Maximum value for the number of bad PEBs per 1024 PEBs */
54 #define MAX_MTD_UBI_BEB_LIMIT 768
55 
56 #ifdef CONFIG_MTD_UBI_MODULE
57 #define ubi_is_module() 1
58 #else
59 #define ubi_is_module() 0
60 #endif
61 
62 /**
63  * struct mtd_dev_param - MTD device parameter description data structure.
64  * @name: MTD character device node path, MTD device name, or MTD device number
65  *        string
66  * @vid_hdr_offs: VID header offset
67  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68  */
69 struct mtd_dev_param {
70 	char name[MTD_PARAM_LEN_MAX];
71 	int ubi_num;
72 	int vid_hdr_offs;
73 	int max_beb_per1024;
74 };
75 
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78 
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifdef CONFIG_MTD_UBI_FASTMAP
82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
83 static bool fm_autoconvert;
84 #endif
85 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
86 struct class *ubi_class;
87 
88 /* Slab cache for wear-leveling entries */
89 struct kmem_cache *ubi_wl_entry_slab;
90 
91 /* UBI control character device */
92 static struct miscdevice ubi_ctrl_cdev = {
93 	.minor = MISC_DYNAMIC_MINOR,
94 	.name = "ubi_ctrl",
95 	.fops = &ubi_ctrl_cdev_operations,
96 };
97 
98 /* All UBI devices in system */
99 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
100 
101 /* Serializes UBI devices creations and removals */
102 DEFINE_MUTEX(ubi_devices_mutex);
103 
104 /* Protects @ubi_devices and @ubi->ref_count */
105 static DEFINE_SPINLOCK(ubi_devices_lock);
106 
107 /* "Show" method for files in '/<sysfs>/class/ubi/' */
108 static ssize_t ubi_version_show(struct class *class,
109 				struct class_attribute *attr, char *buf)
110 {
111 	return sprintf(buf, "%d\n", UBI_VERSION);
112 }
113 
114 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
115 static struct class_attribute ubi_version =
116 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
117 
118 static ssize_t dev_attribute_show(struct device *dev,
119 				  struct device_attribute *attr, char *buf);
120 
121 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
122 static struct device_attribute dev_eraseblock_size =
123 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
124 static struct device_attribute dev_avail_eraseblocks =
125 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
126 static struct device_attribute dev_total_eraseblocks =
127 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
128 static struct device_attribute dev_volumes_count =
129 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
130 static struct device_attribute dev_max_ec =
131 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
132 static struct device_attribute dev_reserved_for_bad =
133 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
134 static struct device_attribute dev_bad_peb_count =
135 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
136 static struct device_attribute dev_max_vol_count =
137 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
138 static struct device_attribute dev_min_io_size =
139 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
140 static struct device_attribute dev_bgt_enabled =
141 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
142 static struct device_attribute dev_mtd_num =
143 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
144 
145 /**
146  * ubi_volume_notify - send a volume change notification.
147  * @ubi: UBI device description object
148  * @vol: volume description object of the changed volume
149  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
150  *
151  * This is a helper function which notifies all subscribers about a volume
152  * change event (creation, removal, re-sizing, re-naming, updating). Returns
153  * zero in case of success and a negative error code in case of failure.
154  */
155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
156 {
157 	struct ubi_notification nt;
158 
159 	ubi_do_get_device_info(ubi, &nt.di);
160 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
161 
162 #ifdef CONFIG_MTD_UBI_FASTMAP
163 	switch (ntype) {
164 	case UBI_VOLUME_ADDED:
165 	case UBI_VOLUME_REMOVED:
166 	case UBI_VOLUME_RESIZED:
167 	case UBI_VOLUME_RENAMED:
168 		if (ubi_update_fastmap(ubi)) {
169 			ubi_err(ubi, "Unable to update fastmap!");
170 			ubi_ro_mode(ubi);
171 		}
172 	}
173 #endif
174 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
175 }
176 
177 /**
178  * ubi_notify_all - send a notification to all volumes.
179  * @ubi: UBI device description object
180  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
181  * @nb: the notifier to call
182  *
183  * This function walks all volumes of UBI device @ubi and sends the @ntype
184  * notification for each volume. If @nb is %NULL, then all registered notifiers
185  * are called, otherwise only the @nb notifier is called. Returns the number of
186  * sent notifications.
187  */
188 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
189 {
190 	struct ubi_notification nt;
191 	int i, count = 0;
192 
193 	ubi_do_get_device_info(ubi, &nt.di);
194 
195 	mutex_lock(&ubi->device_mutex);
196 	for (i = 0; i < ubi->vtbl_slots; i++) {
197 		/*
198 		 * Since the @ubi->device is locked, and we are not going to
199 		 * change @ubi->volumes, we do not have to lock
200 		 * @ubi->volumes_lock.
201 		 */
202 		if (!ubi->volumes[i])
203 			continue;
204 
205 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
206 		if (nb)
207 			nb->notifier_call(nb, ntype, &nt);
208 		else
209 			blocking_notifier_call_chain(&ubi_notifiers, ntype,
210 						     &nt);
211 		count += 1;
212 	}
213 	mutex_unlock(&ubi->device_mutex);
214 
215 	return count;
216 }
217 
218 /**
219  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
220  * @nb: the notifier to call
221  *
222  * This function walks all UBI devices and volumes and sends the
223  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
224  * registered notifiers are called, otherwise only the @nb notifier is called.
225  * Returns the number of sent notifications.
226  */
227 int ubi_enumerate_volumes(struct notifier_block *nb)
228 {
229 	int i, count = 0;
230 
231 	/*
232 	 * Since the @ubi_devices_mutex is locked, and we are not going to
233 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
234 	 */
235 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
236 		struct ubi_device *ubi = ubi_devices[i];
237 
238 		if (!ubi)
239 			continue;
240 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
241 	}
242 
243 	return count;
244 }
245 
246 /**
247  * ubi_get_device - get UBI device.
248  * @ubi_num: UBI device number
249  *
250  * This function returns UBI device description object for UBI device number
251  * @ubi_num, or %NULL if the device does not exist. This function increases the
252  * device reference count to prevent removal of the device. In other words, the
253  * device cannot be removed if its reference count is not zero.
254  */
255 struct ubi_device *ubi_get_device(int ubi_num)
256 {
257 	struct ubi_device *ubi;
258 
259 	spin_lock(&ubi_devices_lock);
260 	ubi = ubi_devices[ubi_num];
261 	if (ubi) {
262 		ubi_assert(ubi->ref_count >= 0);
263 		ubi->ref_count += 1;
264 		get_device(&ubi->dev);
265 	}
266 	spin_unlock(&ubi_devices_lock);
267 
268 	return ubi;
269 }
270 
271 /**
272  * ubi_put_device - drop an UBI device reference.
273  * @ubi: UBI device description object
274  */
275 void ubi_put_device(struct ubi_device *ubi)
276 {
277 	spin_lock(&ubi_devices_lock);
278 	ubi->ref_count -= 1;
279 	put_device(&ubi->dev);
280 	spin_unlock(&ubi_devices_lock);
281 }
282 
283 /**
284  * ubi_get_by_major - get UBI device by character device major number.
285  * @major: major number
286  *
287  * This function is similar to 'ubi_get_device()', but it searches the device
288  * by its major number.
289  */
290 struct ubi_device *ubi_get_by_major(int major)
291 {
292 	int i;
293 	struct ubi_device *ubi;
294 
295 	spin_lock(&ubi_devices_lock);
296 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
297 		ubi = ubi_devices[i];
298 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
299 			ubi_assert(ubi->ref_count >= 0);
300 			ubi->ref_count += 1;
301 			get_device(&ubi->dev);
302 			spin_unlock(&ubi_devices_lock);
303 			return ubi;
304 		}
305 	}
306 	spin_unlock(&ubi_devices_lock);
307 
308 	return NULL;
309 }
310 
311 /**
312  * ubi_major2num - get UBI device number by character device major number.
313  * @major: major number
314  *
315  * This function searches UBI device number object by its major number. If UBI
316  * device was not found, this function returns -ENODEV, otherwise the UBI device
317  * number is returned.
318  */
319 int ubi_major2num(int major)
320 {
321 	int i, ubi_num = -ENODEV;
322 
323 	spin_lock(&ubi_devices_lock);
324 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
325 		struct ubi_device *ubi = ubi_devices[i];
326 
327 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
328 			ubi_num = ubi->ubi_num;
329 			break;
330 		}
331 	}
332 	spin_unlock(&ubi_devices_lock);
333 
334 	return ubi_num;
335 }
336 
337 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
338 static ssize_t dev_attribute_show(struct device *dev,
339 				  struct device_attribute *attr, char *buf)
340 {
341 	ssize_t ret;
342 	struct ubi_device *ubi;
343 
344 	/*
345 	 * The below code looks weird, but it actually makes sense. We get the
346 	 * UBI device reference from the contained 'struct ubi_device'. But it
347 	 * is unclear if the device was removed or not yet. Indeed, if the
348 	 * device was removed before we increased its reference count,
349 	 * 'ubi_get_device()' will return -ENODEV and we fail.
350 	 *
351 	 * Remember, 'struct ubi_device' is freed in the release function, so
352 	 * we still can use 'ubi->ubi_num'.
353 	 */
354 	ubi = container_of(dev, struct ubi_device, dev);
355 	ubi = ubi_get_device(ubi->ubi_num);
356 	if (!ubi)
357 		return -ENODEV;
358 
359 	if (attr == &dev_eraseblock_size)
360 		ret = sprintf(buf, "%d\n", ubi->leb_size);
361 	else if (attr == &dev_avail_eraseblocks)
362 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
363 	else if (attr == &dev_total_eraseblocks)
364 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
365 	else if (attr == &dev_volumes_count)
366 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
367 	else if (attr == &dev_max_ec)
368 		ret = sprintf(buf, "%d\n", ubi->max_ec);
369 	else if (attr == &dev_reserved_for_bad)
370 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
371 	else if (attr == &dev_bad_peb_count)
372 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
373 	else if (attr == &dev_max_vol_count)
374 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
375 	else if (attr == &dev_min_io_size)
376 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
377 	else if (attr == &dev_bgt_enabled)
378 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
379 	else if (attr == &dev_mtd_num)
380 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
381 	else
382 		ret = -EINVAL;
383 
384 	ubi_put_device(ubi);
385 	return ret;
386 }
387 
388 static void dev_release(struct device *dev)
389 {
390 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
391 
392 	kfree(ubi);
393 }
394 
395 /**
396  * ubi_sysfs_init - initialize sysfs for an UBI device.
397  * @ubi: UBI device description object
398  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
399  *       taken
400  *
401  * This function returns zero in case of success and a negative error code in
402  * case of failure.
403  */
404 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
405 {
406 	int err;
407 
408 	ubi->dev.release = dev_release;
409 	ubi->dev.devt = ubi->cdev.dev;
410 	ubi->dev.class = ubi_class;
411 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
412 	err = device_register(&ubi->dev);
413 	if (err)
414 		return err;
415 
416 	*ref = 1;
417 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
418 	if (err)
419 		return err;
420 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
421 	if (err)
422 		return err;
423 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
424 	if (err)
425 		return err;
426 	err = device_create_file(&ubi->dev, &dev_volumes_count);
427 	if (err)
428 		return err;
429 	err = device_create_file(&ubi->dev, &dev_max_ec);
430 	if (err)
431 		return err;
432 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
433 	if (err)
434 		return err;
435 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
436 	if (err)
437 		return err;
438 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
439 	if (err)
440 		return err;
441 	err = device_create_file(&ubi->dev, &dev_min_io_size);
442 	if (err)
443 		return err;
444 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
445 	if (err)
446 		return err;
447 	err = device_create_file(&ubi->dev, &dev_mtd_num);
448 	return err;
449 }
450 
451 /**
452  * ubi_sysfs_close - close sysfs for an UBI device.
453  * @ubi: UBI device description object
454  */
455 static void ubi_sysfs_close(struct ubi_device *ubi)
456 {
457 	device_remove_file(&ubi->dev, &dev_mtd_num);
458 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
459 	device_remove_file(&ubi->dev, &dev_min_io_size);
460 	device_remove_file(&ubi->dev, &dev_max_vol_count);
461 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
462 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
463 	device_remove_file(&ubi->dev, &dev_max_ec);
464 	device_remove_file(&ubi->dev, &dev_volumes_count);
465 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
466 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
467 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
468 	device_unregister(&ubi->dev);
469 }
470 
471 /**
472  * kill_volumes - destroy all user volumes.
473  * @ubi: UBI device description object
474  */
475 static void kill_volumes(struct ubi_device *ubi)
476 {
477 	int i;
478 
479 	for (i = 0; i < ubi->vtbl_slots; i++)
480 		if (ubi->volumes[i])
481 			ubi_free_volume(ubi, ubi->volumes[i]);
482 }
483 
484 /**
485  * uif_init - initialize user interfaces for an UBI device.
486  * @ubi: UBI device description object
487  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
488  *       taken, otherwise set to %0
489  *
490  * This function initializes various user interfaces for an UBI device. If the
491  * initialization fails at an early stage, this function frees all the
492  * resources it allocated, returns an error, and @ref is set to %0. However,
493  * if the initialization fails after the UBI device was registered in the
494  * driver core subsystem, this function takes a reference to @ubi->dev, because
495  * otherwise the release function ('dev_release()') would free whole @ubi
496  * object. The @ref argument is set to %1 in this case. The caller has to put
497  * this reference.
498  *
499  * This function returns zero in case of success and a negative error code in
500  * case of failure.
501  */
502 static int uif_init(struct ubi_device *ubi, int *ref)
503 {
504 	int i, err;
505 	dev_t dev;
506 
507 	*ref = 0;
508 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
509 
510 	/*
511 	 * Major numbers for the UBI character devices are allocated
512 	 * dynamically. Major numbers of volume character devices are
513 	 * equivalent to ones of the corresponding UBI character device. Minor
514 	 * numbers of UBI character devices are 0, while minor numbers of
515 	 * volume character devices start from 1. Thus, we allocate one major
516 	 * number and ubi->vtbl_slots + 1 minor numbers.
517 	 */
518 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
519 	if (err) {
520 		ubi_err(ubi, "cannot register UBI character devices");
521 		return err;
522 	}
523 
524 	ubi_assert(MINOR(dev) == 0);
525 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
526 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
527 	ubi->cdev.owner = THIS_MODULE;
528 
529 	err = cdev_add(&ubi->cdev, dev, 1);
530 	if (err) {
531 		ubi_err(ubi, "cannot add character device");
532 		goto out_unreg;
533 	}
534 
535 	err = ubi_sysfs_init(ubi, ref);
536 	if (err)
537 		goto out_sysfs;
538 
539 	for (i = 0; i < ubi->vtbl_slots; i++)
540 		if (ubi->volumes[i]) {
541 			err = ubi_add_volume(ubi, ubi->volumes[i]);
542 			if (err) {
543 				ubi_err(ubi, "cannot add volume %d", i);
544 				goto out_volumes;
545 			}
546 		}
547 
548 	return 0;
549 
550 out_volumes:
551 	kill_volumes(ubi);
552 out_sysfs:
553 	if (*ref)
554 		get_device(&ubi->dev);
555 	ubi_sysfs_close(ubi);
556 	cdev_del(&ubi->cdev);
557 out_unreg:
558 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
559 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
560 		ubi->ubi_name, err);
561 	return err;
562 }
563 
564 /**
565  * uif_close - close user interfaces for an UBI device.
566  * @ubi: UBI device description object
567  *
568  * Note, since this function un-registers UBI volume device objects (@vol->dev),
569  * the memory allocated voe the volumes is freed as well (in the release
570  * function).
571  */
572 static void uif_close(struct ubi_device *ubi)
573 {
574 	kill_volumes(ubi);
575 	ubi_sysfs_close(ubi);
576 	cdev_del(&ubi->cdev);
577 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
578 }
579 
580 /**
581  * ubi_free_internal_volumes - free internal volumes.
582  * @ubi: UBI device description object
583  */
584 void ubi_free_internal_volumes(struct ubi_device *ubi)
585 {
586 	int i;
587 
588 	for (i = ubi->vtbl_slots;
589 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
590 		kfree(ubi->volumes[i]->eba_tbl);
591 		kfree(ubi->volumes[i]);
592 	}
593 }
594 
595 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
596 {
597 	int limit, device_pebs;
598 	uint64_t device_size;
599 
600 	if (!max_beb_per1024)
601 		return 0;
602 
603 	/*
604 	 * Here we are using size of the entire flash chip and
605 	 * not just the MTD partition size because the maximum
606 	 * number of bad eraseblocks is a percentage of the
607 	 * whole device and bad eraseblocks are not fairly
608 	 * distributed over the flash chip. So the worst case
609 	 * is that all the bad eraseblocks of the chip are in
610 	 * the MTD partition we are attaching (ubi->mtd).
611 	 */
612 	device_size = mtd_get_device_size(ubi->mtd);
613 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
614 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
615 
616 	/* Round it up */
617 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
618 		limit += 1;
619 
620 	return limit;
621 }
622 
623 /**
624  * io_init - initialize I/O sub-system for a given UBI device.
625  * @ubi: UBI device description object
626  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
627  *
628  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
629  * assumed:
630  *   o EC header is always at offset zero - this cannot be changed;
631  *   o VID header starts just after the EC header at the closest address
632  *     aligned to @io->hdrs_min_io_size;
633  *   o data starts just after the VID header at the closest address aligned to
634  *     @io->min_io_size
635  *
636  * This function returns zero in case of success and a negative error code in
637  * case of failure.
638  */
639 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
640 {
641 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
642 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
643 
644 	if (ubi->mtd->numeraseregions != 0) {
645 		/*
646 		 * Some flashes have several erase regions. Different regions
647 		 * may have different eraseblock size and other
648 		 * characteristics. It looks like mostly multi-region flashes
649 		 * have one "main" region and one or more small regions to
650 		 * store boot loader code or boot parameters or whatever. I
651 		 * guess we should just pick the largest region. But this is
652 		 * not implemented.
653 		 */
654 		ubi_err(ubi, "multiple regions, not implemented");
655 		return -EINVAL;
656 	}
657 
658 	if (ubi->vid_hdr_offset < 0)
659 		return -EINVAL;
660 
661 	/*
662 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
663 	 * physical eraseblocks maximum.
664 	 */
665 
666 	ubi->peb_size   = ubi->mtd->erasesize;
667 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
668 	ubi->flash_size = ubi->mtd->size;
669 
670 	if (mtd_can_have_bb(ubi->mtd)) {
671 		ubi->bad_allowed = 1;
672 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
673 	}
674 
675 	if (ubi->mtd->type == MTD_NORFLASH) {
676 		ubi_assert(ubi->mtd->writesize == 1);
677 		ubi->nor_flash = 1;
678 	}
679 
680 	ubi->min_io_size = ubi->mtd->writesize;
681 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
682 
683 	/*
684 	 * Make sure minimal I/O unit is power of 2. Note, there is no
685 	 * fundamental reason for this assumption. It is just an optimization
686 	 * which allows us to avoid costly division operations.
687 	 */
688 	if (!is_power_of_2(ubi->min_io_size)) {
689 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
690 			ubi->min_io_size);
691 		return -EINVAL;
692 	}
693 
694 	ubi_assert(ubi->hdrs_min_io_size > 0);
695 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
696 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
697 
698 	ubi->max_write_size = ubi->mtd->writebufsize;
699 	/*
700 	 * Maximum write size has to be greater or equivalent to min. I/O
701 	 * size, and be multiple of min. I/O size.
702 	 */
703 	if (ubi->max_write_size < ubi->min_io_size ||
704 	    ubi->max_write_size % ubi->min_io_size ||
705 	    !is_power_of_2(ubi->max_write_size)) {
706 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
707 			ubi->max_write_size, ubi->min_io_size);
708 		return -EINVAL;
709 	}
710 
711 	/* Calculate default aligned sizes of EC and VID headers */
712 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
713 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
714 
715 	dbg_gen("min_io_size      %d", ubi->min_io_size);
716 	dbg_gen("max_write_size   %d", ubi->max_write_size);
717 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
718 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
719 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
720 
721 	if (ubi->vid_hdr_offset == 0)
722 		/* Default offset */
723 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
724 				      ubi->ec_hdr_alsize;
725 	else {
726 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
727 						~(ubi->hdrs_min_io_size - 1);
728 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
729 						ubi->vid_hdr_aloffset;
730 	}
731 
732 	/* Similar for the data offset */
733 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
734 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
735 
736 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
737 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
738 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
739 	dbg_gen("leb_start        %d", ubi->leb_start);
740 
741 	/* The shift must be aligned to 32-bit boundary */
742 	if (ubi->vid_hdr_shift % 4) {
743 		ubi_err(ubi, "unaligned VID header shift %d",
744 			ubi->vid_hdr_shift);
745 		return -EINVAL;
746 	}
747 
748 	/* Check sanity */
749 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
750 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
751 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
752 	    ubi->leb_start & (ubi->min_io_size - 1)) {
753 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
754 			ubi->vid_hdr_offset, ubi->leb_start);
755 		return -EINVAL;
756 	}
757 
758 	/*
759 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
760 	 * Erroneous PEB are those which have read errors.
761 	 */
762 	ubi->max_erroneous = ubi->peb_count / 10;
763 	if (ubi->max_erroneous < 16)
764 		ubi->max_erroneous = 16;
765 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
766 
767 	/*
768 	 * It may happen that EC and VID headers are situated in one minimal
769 	 * I/O unit. In this case we can only accept this UBI image in
770 	 * read-only mode.
771 	 */
772 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
773 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
774 		ubi->ro_mode = 1;
775 	}
776 
777 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
778 
779 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
780 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
781 			ubi->mtd->index);
782 		ubi->ro_mode = 1;
783 	}
784 
785 	/*
786 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
787 	 * unfortunately, MTD does not provide this information. We should loop
788 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
789 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
790 	 * uninitialized so far.
791 	 */
792 
793 	return 0;
794 }
795 
796 /**
797  * autoresize - re-size the volume which has the "auto-resize" flag set.
798  * @ubi: UBI device description object
799  * @vol_id: ID of the volume to re-size
800  *
801  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
802  * the volume table to the largest possible size. See comments in ubi-header.h
803  * for more description of the flag. Returns zero in case of success and a
804  * negative error code in case of failure.
805  */
806 static int autoresize(struct ubi_device *ubi, int vol_id)
807 {
808 	struct ubi_volume_desc desc;
809 	struct ubi_volume *vol = ubi->volumes[vol_id];
810 	int err, old_reserved_pebs = vol->reserved_pebs;
811 
812 	if (ubi->ro_mode) {
813 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
814 		return 0;
815 	}
816 
817 	/*
818 	 * Clear the auto-resize flag in the volume in-memory copy of the
819 	 * volume table, and 'ubi_resize_volume()' will propagate this change
820 	 * to the flash.
821 	 */
822 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
823 
824 	if (ubi->avail_pebs == 0) {
825 		struct ubi_vtbl_record vtbl_rec;
826 
827 		/*
828 		 * No available PEBs to re-size the volume, clear the flag on
829 		 * flash and exit.
830 		 */
831 		vtbl_rec = ubi->vtbl[vol_id];
832 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
833 		if (err)
834 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
835 				vol_id);
836 	} else {
837 		desc.vol = vol;
838 		err = ubi_resize_volume(&desc,
839 					old_reserved_pebs + ubi->avail_pebs);
840 		if (err)
841 			ubi_err(ubi, "cannot auto-resize volume %d",
842 				vol_id);
843 	}
844 
845 	if (err)
846 		return err;
847 
848 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
849 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
850 	return 0;
851 }
852 
853 /**
854  * ubi_attach_mtd_dev - attach an MTD device.
855  * @mtd: MTD device description object
856  * @ubi_num: number to assign to the new UBI device
857  * @vid_hdr_offset: VID header offset
858  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
859  *
860  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
861  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
862  * which case this function finds a vacant device number and assigns it
863  * automatically. Returns the new UBI device number in case of success and a
864  * negative error code in case of failure.
865  *
866  * Note, the invocations of this function has to be serialized by the
867  * @ubi_devices_mutex.
868  */
869 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
870 		       int vid_hdr_offset, int max_beb_per1024)
871 {
872 	struct ubi_device *ubi;
873 	int i, err, ref = 0;
874 
875 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
876 		return -EINVAL;
877 
878 	if (!max_beb_per1024)
879 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
880 
881 	/*
882 	 * Check if we already have the same MTD device attached.
883 	 *
884 	 * Note, this function assumes that UBI devices creations and deletions
885 	 * are serialized, so it does not take the &ubi_devices_lock.
886 	 */
887 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
888 		ubi = ubi_devices[i];
889 		if (ubi && mtd->index == ubi->mtd->index) {
890 			ubi_err(ubi, "mtd%d is already attached to ubi%d",
891 				mtd->index, i);
892 			return -EEXIST;
893 		}
894 	}
895 
896 	/*
897 	 * Make sure this MTD device is not emulated on top of an UBI volume
898 	 * already. Well, generally this recursion works fine, but there are
899 	 * different problems like the UBI module takes a reference to itself
900 	 * by attaching (and thus, opening) the emulated MTD device. This
901 	 * results in inability to unload the module. And in general it makes
902 	 * no sense to attach emulated MTD devices, so we prohibit this.
903 	 */
904 	if (mtd->type == MTD_UBIVOLUME) {
905 		ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
906 			mtd->index);
907 		return -EINVAL;
908 	}
909 
910 	if (ubi_num == UBI_DEV_NUM_AUTO) {
911 		/* Search for an empty slot in the @ubi_devices array */
912 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
913 			if (!ubi_devices[ubi_num])
914 				break;
915 		if (ubi_num == UBI_MAX_DEVICES) {
916 			ubi_err(ubi, "only %d UBI devices may be created",
917 				UBI_MAX_DEVICES);
918 			return -ENFILE;
919 		}
920 	} else {
921 		if (ubi_num >= UBI_MAX_DEVICES)
922 			return -EINVAL;
923 
924 		/* Make sure ubi_num is not busy */
925 		if (ubi_devices[ubi_num]) {
926 			ubi_err(ubi, "ubi%d already exists", ubi_num);
927 			return -EEXIST;
928 		}
929 	}
930 
931 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
932 	if (!ubi)
933 		return -ENOMEM;
934 
935 	ubi->mtd = mtd;
936 	ubi->ubi_num = ubi_num;
937 	ubi->vid_hdr_offset = vid_hdr_offset;
938 	ubi->autoresize_vol_id = -1;
939 
940 #ifdef CONFIG_MTD_UBI_FASTMAP
941 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
942 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
943 
944 	/*
945 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
946 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
947 	 */
948 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
949 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
950 	if (ubi->fm_pool.max_size < UBI_FM_MIN_POOL_SIZE)
951 		ubi->fm_pool.max_size = UBI_FM_MIN_POOL_SIZE;
952 
953 	ubi->fm_wl_pool.max_size = UBI_FM_WL_POOL_SIZE;
954 	ubi->fm_disabled = !fm_autoconvert;
955 
956 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
957 	    <= UBI_FM_MAX_START) {
958 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
959 			UBI_FM_MAX_START);
960 		ubi->fm_disabled = 1;
961 	}
962 
963 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
964 	ubi_msg(ubi, "default fastmap WL pool size: %d",
965 		ubi->fm_wl_pool.max_size);
966 #else
967 	ubi->fm_disabled = 1;
968 #endif
969 	mutex_init(&ubi->buf_mutex);
970 	mutex_init(&ubi->ckvol_mutex);
971 	mutex_init(&ubi->device_mutex);
972 	spin_lock_init(&ubi->volumes_lock);
973 	mutex_init(&ubi->fm_mutex);
974 	init_rwsem(&ubi->fm_sem);
975 
976 	ubi_msg(ubi, "attaching mtd%d to ubi%d", mtd->index, ubi_num);
977 
978 	err = io_init(ubi, max_beb_per1024);
979 	if (err)
980 		goto out_free;
981 
982 	err = -ENOMEM;
983 	ubi->peb_buf = vmalloc(ubi->peb_size);
984 	if (!ubi->peb_buf)
985 		goto out_free;
986 
987 #ifdef CONFIG_MTD_UBI_FASTMAP
988 	ubi->fm_size = ubi_calc_fm_size(ubi);
989 	ubi->fm_buf = vzalloc(ubi->fm_size);
990 	if (!ubi->fm_buf)
991 		goto out_free;
992 #endif
993 	err = ubi_attach(ubi, 0);
994 	if (err) {
995 		ubi_err(ubi, "failed to attach mtd%d, error %d",
996 			mtd->index, err);
997 		goto out_free;
998 	}
999 
1000 	if (ubi->autoresize_vol_id != -1) {
1001 		err = autoresize(ubi, ubi->autoresize_vol_id);
1002 		if (err)
1003 			goto out_detach;
1004 	}
1005 
1006 	err = uif_init(ubi, &ref);
1007 	if (err)
1008 		goto out_detach;
1009 
1010 	err = ubi_debugfs_init_dev(ubi);
1011 	if (err)
1012 		goto out_uif;
1013 
1014 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1015 	if (IS_ERR(ubi->bgt_thread)) {
1016 		err = PTR_ERR(ubi->bgt_thread);
1017 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1018 			ubi->bgt_name, err);
1019 		goto out_debugfs;
1020 	}
1021 
1022 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1023 		mtd->index, mtd->name, ubi->flash_size >> 20);
1024 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1025 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1026 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1027 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1028 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1029 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1030 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1031 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1032 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1033 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1034 		ubi->vtbl_slots);
1035 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1036 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1037 		ubi->image_seq);
1038 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1039 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1040 
1041 	/*
1042 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1043 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1044 	 */
1045 	spin_lock(&ubi->wl_lock);
1046 	ubi->thread_enabled = 1;
1047 	wake_up_process(ubi->bgt_thread);
1048 	spin_unlock(&ubi->wl_lock);
1049 
1050 	ubi_devices[ubi_num] = ubi;
1051 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1052 	return ubi_num;
1053 
1054 out_debugfs:
1055 	ubi_debugfs_exit_dev(ubi);
1056 out_uif:
1057 	get_device(&ubi->dev);
1058 	ubi_assert(ref);
1059 	uif_close(ubi);
1060 out_detach:
1061 	ubi_wl_close(ubi);
1062 	ubi_free_internal_volumes(ubi);
1063 	vfree(ubi->vtbl);
1064 out_free:
1065 	vfree(ubi->peb_buf);
1066 	vfree(ubi->fm_buf);
1067 	if (ref)
1068 		put_device(&ubi->dev);
1069 	else
1070 		kfree(ubi);
1071 	return err;
1072 }
1073 
1074 /**
1075  * ubi_detach_mtd_dev - detach an MTD device.
1076  * @ubi_num: UBI device number to detach from
1077  * @anyway: detach MTD even if device reference count is not zero
1078  *
1079  * This function destroys an UBI device number @ubi_num and detaches the
1080  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1081  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1082  * exist.
1083  *
1084  * Note, the invocations of this function has to be serialized by the
1085  * @ubi_devices_mutex.
1086  */
1087 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1088 {
1089 	struct ubi_device *ubi;
1090 
1091 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1092 		return -EINVAL;
1093 
1094 	ubi = ubi_get_device(ubi_num);
1095 	if (!ubi)
1096 		return -EINVAL;
1097 
1098 	spin_lock(&ubi_devices_lock);
1099 	put_device(&ubi->dev);
1100 	ubi->ref_count -= 1;
1101 	if (ubi->ref_count) {
1102 		if (!anyway) {
1103 			spin_unlock(&ubi_devices_lock);
1104 			return -EBUSY;
1105 		}
1106 		/* This may only happen if there is a bug */
1107 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1108 			ubi->ubi_name, ubi->ref_count);
1109 	}
1110 	ubi_devices[ubi_num] = NULL;
1111 	spin_unlock(&ubi_devices_lock);
1112 
1113 	ubi_assert(ubi_num == ubi->ubi_num);
1114 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1115 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1116 #ifdef CONFIG_MTD_UBI_FASTMAP
1117 	/* If we don't write a new fastmap at detach time we lose all
1118 	 * EC updates that have been made since the last written fastmap. */
1119 	ubi_update_fastmap(ubi);
1120 #endif
1121 	/*
1122 	 * Before freeing anything, we have to stop the background thread to
1123 	 * prevent it from doing anything on this device while we are freeing.
1124 	 */
1125 	if (ubi->bgt_thread)
1126 		kthread_stop(ubi->bgt_thread);
1127 
1128 	/*
1129 	 * Get a reference to the device in order to prevent 'dev_release()'
1130 	 * from freeing the @ubi object.
1131 	 */
1132 	get_device(&ubi->dev);
1133 
1134 	ubi_debugfs_exit_dev(ubi);
1135 	uif_close(ubi);
1136 
1137 	ubi_wl_close(ubi);
1138 	ubi_free_internal_volumes(ubi);
1139 	vfree(ubi->vtbl);
1140 	put_mtd_device(ubi->mtd);
1141 	vfree(ubi->peb_buf);
1142 	vfree(ubi->fm_buf);
1143 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1144 	put_device(&ubi->dev);
1145 	return 0;
1146 }
1147 
1148 /**
1149  * open_mtd_by_chdev - open an MTD device by its character device node path.
1150  * @mtd_dev: MTD character device node path
1151  *
1152  * This helper function opens an MTD device by its character node device path.
1153  * Returns MTD device description object in case of success and a negative
1154  * error code in case of failure.
1155  */
1156 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1157 {
1158 	int err, major, minor, mode;
1159 	struct path path;
1160 
1161 	/* Probably this is an MTD character device node path */
1162 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1163 	if (err)
1164 		return ERR_PTR(err);
1165 
1166 	/* MTD device number is defined by the major / minor numbers */
1167 	major = imajor(path.dentry->d_inode);
1168 	minor = iminor(path.dentry->d_inode);
1169 	mode = path.dentry->d_inode->i_mode;
1170 	path_put(&path);
1171 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1172 		return ERR_PTR(-EINVAL);
1173 
1174 	if (minor & 1)
1175 		/*
1176 		 * Just do not think the "/dev/mtdrX" devices support is need,
1177 		 * so do not support them to avoid doing extra work.
1178 		 */
1179 		return ERR_PTR(-EINVAL);
1180 
1181 	return get_mtd_device(NULL, minor / 2);
1182 }
1183 
1184 /**
1185  * open_mtd_device - open MTD device by name, character device path, or number.
1186  * @mtd_dev: name, character device node path, or MTD device device number
1187  *
1188  * This function tries to open and MTD device described by @mtd_dev string,
1189  * which is first treated as ASCII MTD device number, and if it is not true, it
1190  * is treated as MTD device name, and if that is also not true, it is treated
1191  * as MTD character device node path. Returns MTD device description object in
1192  * case of success and a negative error code in case of failure.
1193  */
1194 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1195 {
1196 	struct mtd_info *mtd;
1197 	int mtd_num;
1198 	char *endp;
1199 
1200 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1201 	if (*endp != '\0' || mtd_dev == endp) {
1202 		/*
1203 		 * This does not look like an ASCII integer, probably this is
1204 		 * MTD device name.
1205 		 */
1206 		mtd = get_mtd_device_nm(mtd_dev);
1207 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1208 			/* Probably this is an MTD character device node path */
1209 			mtd = open_mtd_by_chdev(mtd_dev);
1210 	} else
1211 		mtd = get_mtd_device(NULL, mtd_num);
1212 
1213 	return mtd;
1214 }
1215 
1216 static int __init ubi_init(void)
1217 {
1218 	int err, i, k;
1219 
1220 	/* Ensure that EC and VID headers have correct size */
1221 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1222 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1223 
1224 	if (mtd_devs > UBI_MAX_DEVICES) {
1225 		pr_err("UBI error: too many MTD devices, maximum is %d",
1226 		       UBI_MAX_DEVICES);
1227 		return -EINVAL;
1228 	}
1229 
1230 	/* Create base sysfs directory and sysfs files */
1231 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1232 	if (IS_ERR(ubi_class)) {
1233 		err = PTR_ERR(ubi_class);
1234 		pr_err("UBI error: cannot create UBI class");
1235 		goto out;
1236 	}
1237 
1238 	err = class_create_file(ubi_class, &ubi_version);
1239 	if (err) {
1240 		pr_err("UBI error: cannot create sysfs file");
1241 		goto out_class;
1242 	}
1243 
1244 	err = misc_register(&ubi_ctrl_cdev);
1245 	if (err) {
1246 		pr_err("UBI error: cannot register device");
1247 		goto out_version;
1248 	}
1249 
1250 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1251 					      sizeof(struct ubi_wl_entry),
1252 					      0, 0, NULL);
1253 	if (!ubi_wl_entry_slab) {
1254 		err = -ENOMEM;
1255 		goto out_dev_unreg;
1256 	}
1257 
1258 	err = ubi_debugfs_init();
1259 	if (err)
1260 		goto out_slab;
1261 
1262 
1263 	/* Attach MTD devices */
1264 	for (i = 0; i < mtd_devs; i++) {
1265 		struct mtd_dev_param *p = &mtd_dev_param[i];
1266 		struct mtd_info *mtd;
1267 
1268 		cond_resched();
1269 
1270 		mtd = open_mtd_device(p->name);
1271 		if (IS_ERR(mtd)) {
1272 			err = PTR_ERR(mtd);
1273 			pr_err("UBI error: cannot open mtd %s, error %d",
1274 			       p->name, err);
1275 			/* See comment below re-ubi_is_module(). */
1276 			if (ubi_is_module())
1277 				goto out_detach;
1278 			continue;
1279 		}
1280 
1281 		mutex_lock(&ubi_devices_mutex);
1282 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1283 					 p->vid_hdr_offs, p->max_beb_per1024);
1284 		mutex_unlock(&ubi_devices_mutex);
1285 		if (err < 0) {
1286 			pr_err("UBI error: cannot attach mtd%d",
1287 			       mtd->index);
1288 			put_mtd_device(mtd);
1289 
1290 			/*
1291 			 * Originally UBI stopped initializing on any error.
1292 			 * However, later on it was found out that this
1293 			 * behavior is not very good when UBI is compiled into
1294 			 * the kernel and the MTD devices to attach are passed
1295 			 * through the command line. Indeed, UBI failure
1296 			 * stopped whole boot sequence.
1297 			 *
1298 			 * To fix this, we changed the behavior for the
1299 			 * non-module case, but preserved the old behavior for
1300 			 * the module case, just for compatibility. This is a
1301 			 * little inconsistent, though.
1302 			 */
1303 			if (ubi_is_module())
1304 				goto out_detach;
1305 		}
1306 	}
1307 
1308 	err = ubiblock_init();
1309 	if (err) {
1310 		pr_err("UBI error: block: cannot initialize, error %d", err);
1311 
1312 		/* See comment above re-ubi_is_module(). */
1313 		if (ubi_is_module())
1314 			goto out_detach;
1315 	}
1316 
1317 	return 0;
1318 
1319 out_detach:
1320 	for (k = 0; k < i; k++)
1321 		if (ubi_devices[k]) {
1322 			mutex_lock(&ubi_devices_mutex);
1323 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1324 			mutex_unlock(&ubi_devices_mutex);
1325 		}
1326 	ubi_debugfs_exit();
1327 out_slab:
1328 	kmem_cache_destroy(ubi_wl_entry_slab);
1329 out_dev_unreg:
1330 	misc_deregister(&ubi_ctrl_cdev);
1331 out_version:
1332 	class_remove_file(ubi_class, &ubi_version);
1333 out_class:
1334 	class_destroy(ubi_class);
1335 out:
1336 	pr_err("UBI error: cannot initialize UBI, error %d", err);
1337 	return err;
1338 }
1339 late_initcall(ubi_init);
1340 
1341 static void __exit ubi_exit(void)
1342 {
1343 	int i;
1344 
1345 	ubiblock_exit();
1346 
1347 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1348 		if (ubi_devices[i]) {
1349 			mutex_lock(&ubi_devices_mutex);
1350 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1351 			mutex_unlock(&ubi_devices_mutex);
1352 		}
1353 	ubi_debugfs_exit();
1354 	kmem_cache_destroy(ubi_wl_entry_slab);
1355 	misc_deregister(&ubi_ctrl_cdev);
1356 	class_remove_file(ubi_class, &ubi_version);
1357 	class_destroy(ubi_class);
1358 }
1359 module_exit(ubi_exit);
1360 
1361 /**
1362  * bytes_str_to_int - convert a number of bytes string into an integer.
1363  * @str: the string to convert
1364  *
1365  * This function returns positive resulting integer in case of success and a
1366  * negative error code in case of failure.
1367  */
1368 static int __init bytes_str_to_int(const char *str)
1369 {
1370 	char *endp;
1371 	unsigned long result;
1372 
1373 	result = simple_strtoul(str, &endp, 0);
1374 	if (str == endp || result >= INT_MAX) {
1375 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1376 		return -EINVAL;
1377 	}
1378 
1379 	switch (*endp) {
1380 	case 'G':
1381 		result *= 1024;
1382 	case 'M':
1383 		result *= 1024;
1384 	case 'K':
1385 		result *= 1024;
1386 		if (endp[1] == 'i' && endp[2] == 'B')
1387 			endp += 2;
1388 	case '\0':
1389 		break;
1390 	default:
1391 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1392 		return -EINVAL;
1393 	}
1394 
1395 	return result;
1396 }
1397 
1398 /**
1399  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1400  * @val: the parameter value to parse
1401  * @kp: not used
1402  *
1403  * This function returns zero in case of success and a negative error code in
1404  * case of error.
1405  */
1406 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1407 {
1408 	int i, len;
1409 	struct mtd_dev_param *p;
1410 	char buf[MTD_PARAM_LEN_MAX];
1411 	char *pbuf = &buf[0];
1412 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1413 
1414 	if (!val)
1415 		return -EINVAL;
1416 
1417 	if (mtd_devs == UBI_MAX_DEVICES) {
1418 		pr_err("UBI error: too many parameters, max. is %d\n",
1419 		       UBI_MAX_DEVICES);
1420 		return -EINVAL;
1421 	}
1422 
1423 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1424 	if (len == MTD_PARAM_LEN_MAX) {
1425 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1426 		       val, MTD_PARAM_LEN_MAX);
1427 		return -EINVAL;
1428 	}
1429 
1430 	if (len == 0) {
1431 		pr_err("UBI warning: empty 'mtd=' parameter - ignored\n");
1432 		return 0;
1433 	}
1434 
1435 	strcpy(buf, val);
1436 
1437 	/* Get rid of the final newline */
1438 	if (buf[len - 1] == '\n')
1439 		buf[len - 1] = '\0';
1440 
1441 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1442 		tokens[i] = strsep(&pbuf, ",");
1443 
1444 	if (pbuf) {
1445 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1446 		return -EINVAL;
1447 	}
1448 
1449 	p = &mtd_dev_param[mtd_devs];
1450 	strcpy(&p->name[0], tokens[0]);
1451 
1452 	token = tokens[1];
1453 	if (token) {
1454 		p->vid_hdr_offs = bytes_str_to_int(token);
1455 
1456 		if (p->vid_hdr_offs < 0)
1457 			return p->vid_hdr_offs;
1458 	}
1459 
1460 	token = tokens[2];
1461 	if (token) {
1462 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1463 
1464 		if (err) {
1465 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1466 			       token);
1467 			return -EINVAL;
1468 		}
1469 	}
1470 
1471 	token = tokens[3];
1472 	if (token) {
1473 		int err = kstrtoint(token, 10, &p->ubi_num);
1474 
1475 		if (err) {
1476 			pr_err("UBI error: bad value for ubi_num parameter: %s",
1477 			       token);
1478 			return -EINVAL;
1479 		}
1480 	} else
1481 		p->ubi_num = UBI_DEV_NUM_AUTO;
1482 
1483 	mtd_devs += 1;
1484 	return 0;
1485 }
1486 
1487 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1488 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1489 		      "Multiple \"mtd\" parameters may be specified.\n"
1490 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1491 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1492 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1493 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1494 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1495 		      "\n"
1496 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1497 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1498 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1499 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1500 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1501 #ifdef CONFIG_MTD_UBI_FASTMAP
1502 module_param(fm_autoconvert, bool, 0644);
1503 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1504 #endif
1505 MODULE_VERSION(__stringify(UBI_VERSION));
1506 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1507 MODULE_AUTHOR("Artem Bityutskiy");
1508 MODULE_LICENSE("GPL");
1509