1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 4 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @vid_hdr_offs: VID header offset 54 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 55 */ 56 struct mtd_dev_param { 57 char name[MTD_PARAM_LEN_MAX]; 58 int ubi_num; 59 int vid_hdr_offs; 60 int max_beb_per1024; 61 }; 62 63 /* Numbers of elements set in the @mtd_dev_param array */ 64 static int mtd_devs; 65 66 /* MTD devices specification parameters */ 67 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 68 #ifdef CONFIG_MTD_UBI_FASTMAP 69 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 70 static bool fm_autoconvert; 71 static bool fm_debug; 72 #endif 73 74 /* Slab cache for wear-leveling entries */ 75 struct kmem_cache *ubi_wl_entry_slab; 76 77 /* UBI control character device */ 78 static struct miscdevice ubi_ctrl_cdev = { 79 .minor = MISC_DYNAMIC_MINOR, 80 .name = "ubi_ctrl", 81 .fops = &ubi_ctrl_cdev_operations, 82 }; 83 84 /* All UBI devices in system */ 85 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 86 87 /* Serializes UBI devices creations and removals */ 88 DEFINE_MUTEX(ubi_devices_mutex); 89 90 /* Protects @ubi_devices and @ubi->ref_count */ 91 static DEFINE_SPINLOCK(ubi_devices_lock); 92 93 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 95 static ssize_t version_show(struct class *class, struct class_attribute *attr, 96 char *buf) 97 { 98 return sprintf(buf, "%d\n", UBI_VERSION); 99 } 100 static CLASS_ATTR_RO(version); 101 102 static struct attribute *ubi_class_attrs[] = { 103 &class_attr_version.attr, 104 NULL, 105 }; 106 ATTRIBUTE_GROUPS(ubi_class); 107 108 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 109 struct class ubi_class = { 110 .name = UBI_NAME_STR, 111 .owner = THIS_MODULE, 112 .class_groups = ubi_class_groups, 113 }; 114 115 static ssize_t dev_attribute_show(struct device *dev, 116 struct device_attribute *attr, char *buf); 117 118 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 119 static struct device_attribute dev_eraseblock_size = 120 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 121 static struct device_attribute dev_avail_eraseblocks = 122 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 123 static struct device_attribute dev_total_eraseblocks = 124 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 125 static struct device_attribute dev_volumes_count = 126 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 127 static struct device_attribute dev_max_ec = 128 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 129 static struct device_attribute dev_reserved_for_bad = 130 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 131 static struct device_attribute dev_bad_peb_count = 132 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 133 static struct device_attribute dev_max_vol_count = 134 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 135 static struct device_attribute dev_min_io_size = 136 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 137 static struct device_attribute dev_bgt_enabled = 138 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 139 static struct device_attribute dev_mtd_num = 140 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 141 static struct device_attribute dev_ro_mode = 142 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 143 144 /** 145 * ubi_volume_notify - send a volume change notification. 146 * @ubi: UBI device description object 147 * @vol: volume description object of the changed volume 148 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 149 * 150 * This is a helper function which notifies all subscribers about a volume 151 * change event (creation, removal, re-sizing, re-naming, updating). Returns 152 * zero in case of success and a negative error code in case of failure. 153 */ 154 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 155 { 156 int ret; 157 struct ubi_notification nt; 158 159 ubi_do_get_device_info(ubi, &nt.di); 160 ubi_do_get_volume_info(ubi, vol, &nt.vi); 161 162 switch (ntype) { 163 case UBI_VOLUME_ADDED: 164 case UBI_VOLUME_REMOVED: 165 case UBI_VOLUME_RESIZED: 166 case UBI_VOLUME_RENAMED: 167 ret = ubi_update_fastmap(ubi); 168 if (ret) 169 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 170 } 171 172 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 173 } 174 175 /** 176 * ubi_notify_all - send a notification to all volumes. 177 * @ubi: UBI device description object 178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 179 * @nb: the notifier to call 180 * 181 * This function walks all volumes of UBI device @ubi and sends the @ntype 182 * notification for each volume. If @nb is %NULL, then all registered notifiers 183 * are called, otherwise only the @nb notifier is called. Returns the number of 184 * sent notifications. 185 */ 186 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 187 { 188 struct ubi_notification nt; 189 int i, count = 0; 190 191 ubi_do_get_device_info(ubi, &nt.di); 192 193 mutex_lock(&ubi->device_mutex); 194 for (i = 0; i < ubi->vtbl_slots; i++) { 195 /* 196 * Since the @ubi->device is locked, and we are not going to 197 * change @ubi->volumes, we do not have to lock 198 * @ubi->volumes_lock. 199 */ 200 if (!ubi->volumes[i]) 201 continue; 202 203 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 204 if (nb) 205 nb->notifier_call(nb, ntype, &nt); 206 else 207 blocking_notifier_call_chain(&ubi_notifiers, ntype, 208 &nt); 209 count += 1; 210 } 211 mutex_unlock(&ubi->device_mutex); 212 213 return count; 214 } 215 216 /** 217 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 218 * @nb: the notifier to call 219 * 220 * This function walks all UBI devices and volumes and sends the 221 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 222 * registered notifiers are called, otherwise only the @nb notifier is called. 223 * Returns the number of sent notifications. 224 */ 225 int ubi_enumerate_volumes(struct notifier_block *nb) 226 { 227 int i, count = 0; 228 229 /* 230 * Since the @ubi_devices_mutex is locked, and we are not going to 231 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 232 */ 233 for (i = 0; i < UBI_MAX_DEVICES; i++) { 234 struct ubi_device *ubi = ubi_devices[i]; 235 236 if (!ubi) 237 continue; 238 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 239 } 240 241 return count; 242 } 243 244 /** 245 * ubi_get_device - get UBI device. 246 * @ubi_num: UBI device number 247 * 248 * This function returns UBI device description object for UBI device number 249 * @ubi_num, or %NULL if the device does not exist. This function increases the 250 * device reference count to prevent removal of the device. In other words, the 251 * device cannot be removed if its reference count is not zero. 252 */ 253 struct ubi_device *ubi_get_device(int ubi_num) 254 { 255 struct ubi_device *ubi; 256 257 spin_lock(&ubi_devices_lock); 258 ubi = ubi_devices[ubi_num]; 259 if (ubi) { 260 ubi_assert(ubi->ref_count >= 0); 261 ubi->ref_count += 1; 262 get_device(&ubi->dev); 263 } 264 spin_unlock(&ubi_devices_lock); 265 266 return ubi; 267 } 268 269 /** 270 * ubi_put_device - drop an UBI device reference. 271 * @ubi: UBI device description object 272 */ 273 void ubi_put_device(struct ubi_device *ubi) 274 { 275 spin_lock(&ubi_devices_lock); 276 ubi->ref_count -= 1; 277 put_device(&ubi->dev); 278 spin_unlock(&ubi_devices_lock); 279 } 280 281 /** 282 * ubi_get_by_major - get UBI device by character device major number. 283 * @major: major number 284 * 285 * This function is similar to 'ubi_get_device()', but it searches the device 286 * by its major number. 287 */ 288 struct ubi_device *ubi_get_by_major(int major) 289 { 290 int i; 291 struct ubi_device *ubi; 292 293 spin_lock(&ubi_devices_lock); 294 for (i = 0; i < UBI_MAX_DEVICES; i++) { 295 ubi = ubi_devices[i]; 296 if (ubi && MAJOR(ubi->cdev.dev) == major) { 297 ubi_assert(ubi->ref_count >= 0); 298 ubi->ref_count += 1; 299 get_device(&ubi->dev); 300 spin_unlock(&ubi_devices_lock); 301 return ubi; 302 } 303 } 304 spin_unlock(&ubi_devices_lock); 305 306 return NULL; 307 } 308 309 /** 310 * ubi_major2num - get UBI device number by character device major number. 311 * @major: major number 312 * 313 * This function searches UBI device number object by its major number. If UBI 314 * device was not found, this function returns -ENODEV, otherwise the UBI device 315 * number is returned. 316 */ 317 int ubi_major2num(int major) 318 { 319 int i, ubi_num = -ENODEV; 320 321 spin_lock(&ubi_devices_lock); 322 for (i = 0; i < UBI_MAX_DEVICES; i++) { 323 struct ubi_device *ubi = ubi_devices[i]; 324 325 if (ubi && MAJOR(ubi->cdev.dev) == major) { 326 ubi_num = ubi->ubi_num; 327 break; 328 } 329 } 330 spin_unlock(&ubi_devices_lock); 331 332 return ubi_num; 333 } 334 335 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 336 static ssize_t dev_attribute_show(struct device *dev, 337 struct device_attribute *attr, char *buf) 338 { 339 ssize_t ret; 340 struct ubi_device *ubi; 341 342 /* 343 * The below code looks weird, but it actually makes sense. We get the 344 * UBI device reference from the contained 'struct ubi_device'. But it 345 * is unclear if the device was removed or not yet. Indeed, if the 346 * device was removed before we increased its reference count, 347 * 'ubi_get_device()' will return -ENODEV and we fail. 348 * 349 * Remember, 'struct ubi_device' is freed in the release function, so 350 * we still can use 'ubi->ubi_num'. 351 */ 352 ubi = container_of(dev, struct ubi_device, dev); 353 ubi = ubi_get_device(ubi->ubi_num); 354 if (!ubi) 355 return -ENODEV; 356 357 if (attr == &dev_eraseblock_size) 358 ret = sprintf(buf, "%d\n", ubi->leb_size); 359 else if (attr == &dev_avail_eraseblocks) 360 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 361 else if (attr == &dev_total_eraseblocks) 362 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 363 else if (attr == &dev_volumes_count) 364 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 365 else if (attr == &dev_max_ec) 366 ret = sprintf(buf, "%d\n", ubi->max_ec); 367 else if (attr == &dev_reserved_for_bad) 368 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 369 else if (attr == &dev_bad_peb_count) 370 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 371 else if (attr == &dev_max_vol_count) 372 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 373 else if (attr == &dev_min_io_size) 374 ret = sprintf(buf, "%d\n", ubi->min_io_size); 375 else if (attr == &dev_bgt_enabled) 376 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 377 else if (attr == &dev_mtd_num) 378 ret = sprintf(buf, "%d\n", ubi->mtd->index); 379 else if (attr == &dev_ro_mode) 380 ret = sprintf(buf, "%d\n", ubi->ro_mode); 381 else 382 ret = -EINVAL; 383 384 ubi_put_device(ubi); 385 return ret; 386 } 387 388 static struct attribute *ubi_dev_attrs[] = { 389 &dev_eraseblock_size.attr, 390 &dev_avail_eraseblocks.attr, 391 &dev_total_eraseblocks.attr, 392 &dev_volumes_count.attr, 393 &dev_max_ec.attr, 394 &dev_reserved_for_bad.attr, 395 &dev_bad_peb_count.attr, 396 &dev_max_vol_count.attr, 397 &dev_min_io_size.attr, 398 &dev_bgt_enabled.attr, 399 &dev_mtd_num.attr, 400 &dev_ro_mode.attr, 401 NULL 402 }; 403 ATTRIBUTE_GROUPS(ubi_dev); 404 405 static void dev_release(struct device *dev) 406 { 407 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 408 409 kfree(ubi); 410 } 411 412 /** 413 * kill_volumes - destroy all user volumes. 414 * @ubi: UBI device description object 415 */ 416 static void kill_volumes(struct ubi_device *ubi) 417 { 418 int i; 419 420 for (i = 0; i < ubi->vtbl_slots; i++) 421 if (ubi->volumes[i]) 422 ubi_free_volume(ubi, ubi->volumes[i]); 423 } 424 425 /** 426 * uif_init - initialize user interfaces for an UBI device. 427 * @ubi: UBI device description object 428 * 429 * This function initializes various user interfaces for an UBI device. If the 430 * initialization fails at an early stage, this function frees all the 431 * resources it allocated, returns an error. 432 * 433 * This function returns zero in case of success and a negative error code in 434 * case of failure. 435 */ 436 static int uif_init(struct ubi_device *ubi) 437 { 438 int i, err; 439 dev_t dev; 440 441 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 442 443 /* 444 * Major numbers for the UBI character devices are allocated 445 * dynamically. Major numbers of volume character devices are 446 * equivalent to ones of the corresponding UBI character device. Minor 447 * numbers of UBI character devices are 0, while minor numbers of 448 * volume character devices start from 1. Thus, we allocate one major 449 * number and ubi->vtbl_slots + 1 minor numbers. 450 */ 451 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 452 if (err) { 453 ubi_err(ubi, "cannot register UBI character devices"); 454 return err; 455 } 456 457 ubi->dev.devt = dev; 458 459 ubi_assert(MINOR(dev) == 0); 460 cdev_init(&ubi->cdev, &ubi_cdev_operations); 461 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 462 ubi->cdev.owner = THIS_MODULE; 463 464 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 465 err = cdev_device_add(&ubi->cdev, &ubi->dev); 466 if (err) 467 goto out_unreg; 468 469 for (i = 0; i < ubi->vtbl_slots; i++) 470 if (ubi->volumes[i]) { 471 err = ubi_add_volume(ubi, ubi->volumes[i]); 472 if (err) { 473 ubi_err(ubi, "cannot add volume %d", i); 474 goto out_volumes; 475 } 476 } 477 478 return 0; 479 480 out_volumes: 481 kill_volumes(ubi); 482 cdev_device_del(&ubi->cdev, &ubi->dev); 483 out_unreg: 484 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 485 ubi_err(ubi, "cannot initialize UBI %s, error %d", 486 ubi->ubi_name, err); 487 return err; 488 } 489 490 /** 491 * uif_close - close user interfaces for an UBI device. 492 * @ubi: UBI device description object 493 * 494 * Note, since this function un-registers UBI volume device objects (@vol->dev), 495 * the memory allocated voe the volumes is freed as well (in the release 496 * function). 497 */ 498 static void uif_close(struct ubi_device *ubi) 499 { 500 kill_volumes(ubi); 501 cdev_device_del(&ubi->cdev, &ubi->dev); 502 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 503 } 504 505 /** 506 * ubi_free_volumes_from - free volumes from specific index. 507 * @ubi: UBI device description object 508 * @from: the start index used for volume free. 509 */ 510 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 511 { 512 int i; 513 514 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 515 if (!ubi->volumes[i]) 516 continue; 517 ubi_eba_replace_table(ubi->volumes[i], NULL); 518 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 519 kfree(ubi->volumes[i]); 520 ubi->volumes[i] = NULL; 521 } 522 } 523 524 /** 525 * ubi_free_all_volumes - free all volumes. 526 * @ubi: UBI device description object 527 */ 528 void ubi_free_all_volumes(struct ubi_device *ubi) 529 { 530 ubi_free_volumes_from(ubi, 0); 531 } 532 533 /** 534 * ubi_free_internal_volumes - free internal volumes. 535 * @ubi: UBI device description object 536 */ 537 void ubi_free_internal_volumes(struct ubi_device *ubi) 538 { 539 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 540 } 541 542 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 543 { 544 int limit, device_pebs; 545 uint64_t device_size; 546 547 if (!max_beb_per1024) { 548 /* 549 * Since max_beb_per1024 has not been set by the user in either 550 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 551 * limit if it is supported by the device. 552 */ 553 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 554 if (limit < 0) 555 return 0; 556 return limit; 557 } 558 559 /* 560 * Here we are using size of the entire flash chip and 561 * not just the MTD partition size because the maximum 562 * number of bad eraseblocks is a percentage of the 563 * whole device and bad eraseblocks are not fairly 564 * distributed over the flash chip. So the worst case 565 * is that all the bad eraseblocks of the chip are in 566 * the MTD partition we are attaching (ubi->mtd). 567 */ 568 device_size = mtd_get_device_size(ubi->mtd); 569 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 570 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 571 572 /* Round it up */ 573 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 574 limit += 1; 575 576 return limit; 577 } 578 579 /** 580 * io_init - initialize I/O sub-system for a given UBI device. 581 * @ubi: UBI device description object 582 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 583 * 584 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 585 * assumed: 586 * o EC header is always at offset zero - this cannot be changed; 587 * o VID header starts just after the EC header at the closest address 588 * aligned to @io->hdrs_min_io_size; 589 * o data starts just after the VID header at the closest address aligned to 590 * @io->min_io_size 591 * 592 * This function returns zero in case of success and a negative error code in 593 * case of failure. 594 */ 595 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 596 { 597 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 598 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 599 600 if (ubi->mtd->numeraseregions != 0) { 601 /* 602 * Some flashes have several erase regions. Different regions 603 * may have different eraseblock size and other 604 * characteristics. It looks like mostly multi-region flashes 605 * have one "main" region and one or more small regions to 606 * store boot loader code or boot parameters or whatever. I 607 * guess we should just pick the largest region. But this is 608 * not implemented. 609 */ 610 ubi_err(ubi, "multiple regions, not implemented"); 611 return -EINVAL; 612 } 613 614 if (ubi->vid_hdr_offset < 0) 615 return -EINVAL; 616 617 /* 618 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 619 * physical eraseblocks maximum. 620 */ 621 622 ubi->peb_size = ubi->mtd->erasesize; 623 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 624 ubi->flash_size = ubi->mtd->size; 625 626 if (mtd_can_have_bb(ubi->mtd)) { 627 ubi->bad_allowed = 1; 628 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 629 } 630 631 if (ubi->mtd->type == MTD_NORFLASH) { 632 ubi_assert(ubi->mtd->writesize == 1); 633 ubi->nor_flash = 1; 634 } 635 636 ubi->min_io_size = ubi->mtd->writesize; 637 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 638 639 /* 640 * Make sure minimal I/O unit is power of 2. Note, there is no 641 * fundamental reason for this assumption. It is just an optimization 642 * which allows us to avoid costly division operations. 643 */ 644 if (!is_power_of_2(ubi->min_io_size)) { 645 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 646 ubi->min_io_size); 647 return -EINVAL; 648 } 649 650 ubi_assert(ubi->hdrs_min_io_size > 0); 651 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 652 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 653 654 ubi->max_write_size = ubi->mtd->writebufsize; 655 /* 656 * Maximum write size has to be greater or equivalent to min. I/O 657 * size, and be multiple of min. I/O size. 658 */ 659 if (ubi->max_write_size < ubi->min_io_size || 660 ubi->max_write_size % ubi->min_io_size || 661 !is_power_of_2(ubi->max_write_size)) { 662 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 663 ubi->max_write_size, ubi->min_io_size); 664 return -EINVAL; 665 } 666 667 /* Calculate default aligned sizes of EC and VID headers */ 668 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 669 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 670 671 dbg_gen("min_io_size %d", ubi->min_io_size); 672 dbg_gen("max_write_size %d", ubi->max_write_size); 673 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 674 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 675 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 676 677 if (ubi->vid_hdr_offset == 0) 678 /* Default offset */ 679 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 680 ubi->ec_hdr_alsize; 681 else { 682 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 683 ~(ubi->hdrs_min_io_size - 1); 684 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 685 ubi->vid_hdr_aloffset; 686 } 687 688 /* Similar for the data offset */ 689 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 690 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 691 692 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 693 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 694 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 695 dbg_gen("leb_start %d", ubi->leb_start); 696 697 /* The shift must be aligned to 32-bit boundary */ 698 if (ubi->vid_hdr_shift % 4) { 699 ubi_err(ubi, "unaligned VID header shift %d", 700 ubi->vid_hdr_shift); 701 return -EINVAL; 702 } 703 704 /* Check sanity */ 705 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 706 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 707 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 708 ubi->leb_start & (ubi->min_io_size - 1)) { 709 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 710 ubi->vid_hdr_offset, ubi->leb_start); 711 return -EINVAL; 712 } 713 714 /* 715 * Set maximum amount of physical erroneous eraseblocks to be 10%. 716 * Erroneous PEB are those which have read errors. 717 */ 718 ubi->max_erroneous = ubi->peb_count / 10; 719 if (ubi->max_erroneous < 16) 720 ubi->max_erroneous = 16; 721 dbg_gen("max_erroneous %d", ubi->max_erroneous); 722 723 /* 724 * It may happen that EC and VID headers are situated in one minimal 725 * I/O unit. In this case we can only accept this UBI image in 726 * read-only mode. 727 */ 728 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 729 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 730 ubi->ro_mode = 1; 731 } 732 733 ubi->leb_size = ubi->peb_size - ubi->leb_start; 734 735 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 736 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 737 ubi->mtd->index); 738 ubi->ro_mode = 1; 739 } 740 741 /* 742 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 743 * unfortunately, MTD does not provide this information. We should loop 744 * over all physical eraseblocks and invoke mtd->block_is_bad() for 745 * each physical eraseblock. So, we leave @ubi->bad_peb_count 746 * uninitialized so far. 747 */ 748 749 return 0; 750 } 751 752 /** 753 * autoresize - re-size the volume which has the "auto-resize" flag set. 754 * @ubi: UBI device description object 755 * @vol_id: ID of the volume to re-size 756 * 757 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 758 * the volume table to the largest possible size. See comments in ubi-header.h 759 * for more description of the flag. Returns zero in case of success and a 760 * negative error code in case of failure. 761 */ 762 static int autoresize(struct ubi_device *ubi, int vol_id) 763 { 764 struct ubi_volume_desc desc; 765 struct ubi_volume *vol = ubi->volumes[vol_id]; 766 int err, old_reserved_pebs = vol->reserved_pebs; 767 768 if (ubi->ro_mode) { 769 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 770 return 0; 771 } 772 773 /* 774 * Clear the auto-resize flag in the volume in-memory copy of the 775 * volume table, and 'ubi_resize_volume()' will propagate this change 776 * to the flash. 777 */ 778 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 779 780 if (ubi->avail_pebs == 0) { 781 struct ubi_vtbl_record vtbl_rec; 782 783 /* 784 * No available PEBs to re-size the volume, clear the flag on 785 * flash and exit. 786 */ 787 vtbl_rec = ubi->vtbl[vol_id]; 788 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 789 if (err) 790 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 791 vol_id); 792 } else { 793 desc.vol = vol; 794 err = ubi_resize_volume(&desc, 795 old_reserved_pebs + ubi->avail_pebs); 796 if (err) 797 ubi_err(ubi, "cannot auto-resize volume %d", 798 vol_id); 799 } 800 801 if (err) 802 return err; 803 804 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 805 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 806 return 0; 807 } 808 809 /** 810 * ubi_attach_mtd_dev - attach an MTD device. 811 * @mtd: MTD device description object 812 * @ubi_num: number to assign to the new UBI device 813 * @vid_hdr_offset: VID header offset 814 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 815 * 816 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 817 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 818 * which case this function finds a vacant device number and assigns it 819 * automatically. Returns the new UBI device number in case of success and a 820 * negative error code in case of failure. 821 * 822 * Note, the invocations of this function has to be serialized by the 823 * @ubi_devices_mutex. 824 */ 825 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 826 int vid_hdr_offset, int max_beb_per1024) 827 { 828 struct ubi_device *ubi; 829 int i, err; 830 831 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 832 return -EINVAL; 833 834 if (!max_beb_per1024) 835 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 836 837 /* 838 * Check if we already have the same MTD device attached. 839 * 840 * Note, this function assumes that UBI devices creations and deletions 841 * are serialized, so it does not take the &ubi_devices_lock. 842 */ 843 for (i = 0; i < UBI_MAX_DEVICES; i++) { 844 ubi = ubi_devices[i]; 845 if (ubi && mtd->index == ubi->mtd->index) { 846 pr_err("ubi: mtd%d is already attached to ubi%d\n", 847 mtd->index, i); 848 return -EEXIST; 849 } 850 } 851 852 /* 853 * Make sure this MTD device is not emulated on top of an UBI volume 854 * already. Well, generally this recursion works fine, but there are 855 * different problems like the UBI module takes a reference to itself 856 * by attaching (and thus, opening) the emulated MTD device. This 857 * results in inability to unload the module. And in general it makes 858 * no sense to attach emulated MTD devices, so we prohibit this. 859 */ 860 if (mtd->type == MTD_UBIVOLUME) { 861 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 862 mtd->index); 863 return -EINVAL; 864 } 865 866 /* 867 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 868 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 869 * will die soon and you will lose all your data. 870 */ 871 if (mtd->type == MTD_MLCNANDFLASH) { 872 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 873 mtd->index); 874 return -EINVAL; 875 } 876 877 if (ubi_num == UBI_DEV_NUM_AUTO) { 878 /* Search for an empty slot in the @ubi_devices array */ 879 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 880 if (!ubi_devices[ubi_num]) 881 break; 882 if (ubi_num == UBI_MAX_DEVICES) { 883 pr_err("ubi: only %d UBI devices may be created\n", 884 UBI_MAX_DEVICES); 885 return -ENFILE; 886 } 887 } else { 888 if (ubi_num >= UBI_MAX_DEVICES) 889 return -EINVAL; 890 891 /* Make sure ubi_num is not busy */ 892 if (ubi_devices[ubi_num]) { 893 pr_err("ubi: ubi%i already exists\n", ubi_num); 894 return -EEXIST; 895 } 896 } 897 898 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 899 if (!ubi) 900 return -ENOMEM; 901 902 device_initialize(&ubi->dev); 903 ubi->dev.release = dev_release; 904 ubi->dev.class = &ubi_class; 905 ubi->dev.groups = ubi_dev_groups; 906 907 ubi->mtd = mtd; 908 ubi->ubi_num = ubi_num; 909 ubi->vid_hdr_offset = vid_hdr_offset; 910 ubi->autoresize_vol_id = -1; 911 912 #ifdef CONFIG_MTD_UBI_FASTMAP 913 ubi->fm_pool.used = ubi->fm_pool.size = 0; 914 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 915 916 /* 917 * fm_pool.max_size is 5% of the total number of PEBs but it's also 918 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 919 */ 920 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 921 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 922 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 923 UBI_FM_MIN_POOL_SIZE); 924 925 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 926 ubi->fm_disabled = !fm_autoconvert; 927 if (fm_debug) 928 ubi_enable_dbg_chk_fastmap(ubi); 929 930 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 931 <= UBI_FM_MAX_START) { 932 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 933 UBI_FM_MAX_START); 934 ubi->fm_disabled = 1; 935 } 936 937 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 938 ubi_msg(ubi, "default fastmap WL pool size: %d", 939 ubi->fm_wl_pool.max_size); 940 #else 941 ubi->fm_disabled = 1; 942 #endif 943 mutex_init(&ubi->buf_mutex); 944 mutex_init(&ubi->ckvol_mutex); 945 mutex_init(&ubi->device_mutex); 946 spin_lock_init(&ubi->volumes_lock); 947 init_rwsem(&ubi->fm_protect); 948 init_rwsem(&ubi->fm_eba_sem); 949 950 ubi_msg(ubi, "attaching mtd%d", mtd->index); 951 952 err = io_init(ubi, max_beb_per1024); 953 if (err) 954 goto out_free; 955 956 err = -ENOMEM; 957 ubi->peb_buf = vmalloc(ubi->peb_size); 958 if (!ubi->peb_buf) 959 goto out_free; 960 961 #ifdef CONFIG_MTD_UBI_FASTMAP 962 ubi->fm_size = ubi_calc_fm_size(ubi); 963 ubi->fm_buf = vzalloc(ubi->fm_size); 964 if (!ubi->fm_buf) 965 goto out_free; 966 #endif 967 err = ubi_attach(ubi, 0); 968 if (err) { 969 ubi_err(ubi, "failed to attach mtd%d, error %d", 970 mtd->index, err); 971 goto out_free; 972 } 973 974 if (ubi->autoresize_vol_id != -1) { 975 err = autoresize(ubi, ubi->autoresize_vol_id); 976 if (err) 977 goto out_detach; 978 } 979 980 /* Make device "available" before it becomes accessible via sysfs */ 981 ubi_devices[ubi_num] = ubi; 982 983 err = uif_init(ubi); 984 if (err) 985 goto out_detach; 986 987 err = ubi_debugfs_init_dev(ubi); 988 if (err) 989 goto out_uif; 990 991 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 992 if (IS_ERR(ubi->bgt_thread)) { 993 err = PTR_ERR(ubi->bgt_thread); 994 ubi_err(ubi, "cannot spawn \"%s\", error %d", 995 ubi->bgt_name, err); 996 goto out_debugfs; 997 } 998 999 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1000 mtd->index, mtd->name, ubi->flash_size >> 20); 1001 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1002 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1003 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1004 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1005 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1006 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1007 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1008 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1009 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1010 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1011 ubi->vtbl_slots); 1012 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1013 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1014 ubi->image_seq); 1015 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1016 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1017 1018 /* 1019 * The below lock makes sure we do not race with 'ubi_thread()' which 1020 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1021 */ 1022 spin_lock(&ubi->wl_lock); 1023 ubi->thread_enabled = 1; 1024 wake_up_process(ubi->bgt_thread); 1025 spin_unlock(&ubi->wl_lock); 1026 1027 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1028 return ubi_num; 1029 1030 out_debugfs: 1031 ubi_debugfs_exit_dev(ubi); 1032 out_uif: 1033 uif_close(ubi); 1034 out_detach: 1035 ubi_devices[ubi_num] = NULL; 1036 ubi_wl_close(ubi); 1037 ubi_free_all_volumes(ubi); 1038 vfree(ubi->vtbl); 1039 out_free: 1040 vfree(ubi->peb_buf); 1041 vfree(ubi->fm_buf); 1042 put_device(&ubi->dev); 1043 return err; 1044 } 1045 1046 /** 1047 * ubi_detach_mtd_dev - detach an MTD device. 1048 * @ubi_num: UBI device number to detach from 1049 * @anyway: detach MTD even if device reference count is not zero 1050 * 1051 * This function destroys an UBI device number @ubi_num and detaches the 1052 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1053 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1054 * exist. 1055 * 1056 * Note, the invocations of this function has to be serialized by the 1057 * @ubi_devices_mutex. 1058 */ 1059 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1060 { 1061 struct ubi_device *ubi; 1062 1063 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1064 return -EINVAL; 1065 1066 ubi = ubi_get_device(ubi_num); 1067 if (!ubi) 1068 return -EINVAL; 1069 1070 spin_lock(&ubi_devices_lock); 1071 put_device(&ubi->dev); 1072 ubi->ref_count -= 1; 1073 if (ubi->ref_count) { 1074 if (!anyway) { 1075 spin_unlock(&ubi_devices_lock); 1076 return -EBUSY; 1077 } 1078 /* This may only happen if there is a bug */ 1079 ubi_err(ubi, "%s reference count %d, destroy anyway", 1080 ubi->ubi_name, ubi->ref_count); 1081 } 1082 ubi_devices[ubi_num] = NULL; 1083 spin_unlock(&ubi_devices_lock); 1084 1085 ubi_assert(ubi_num == ubi->ubi_num); 1086 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1087 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1088 #ifdef CONFIG_MTD_UBI_FASTMAP 1089 /* If we don't write a new fastmap at detach time we lose all 1090 * EC updates that have been made since the last written fastmap. 1091 * In case of fastmap debugging we omit the update to simulate an 1092 * unclean shutdown. */ 1093 if (!ubi_dbg_chk_fastmap(ubi)) 1094 ubi_update_fastmap(ubi); 1095 #endif 1096 /* 1097 * Before freeing anything, we have to stop the background thread to 1098 * prevent it from doing anything on this device while we are freeing. 1099 */ 1100 if (ubi->bgt_thread) 1101 kthread_stop(ubi->bgt_thread); 1102 1103 #ifdef CONFIG_MTD_UBI_FASTMAP 1104 cancel_work_sync(&ubi->fm_work); 1105 #endif 1106 ubi_debugfs_exit_dev(ubi); 1107 uif_close(ubi); 1108 1109 ubi_wl_close(ubi); 1110 ubi_free_internal_volumes(ubi); 1111 vfree(ubi->vtbl); 1112 vfree(ubi->peb_buf); 1113 vfree(ubi->fm_buf); 1114 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1115 put_mtd_device(ubi->mtd); 1116 put_device(&ubi->dev); 1117 return 0; 1118 } 1119 1120 /** 1121 * open_mtd_by_chdev - open an MTD device by its character device node path. 1122 * @mtd_dev: MTD character device node path 1123 * 1124 * This helper function opens an MTD device by its character node device path. 1125 * Returns MTD device description object in case of success and a negative 1126 * error code in case of failure. 1127 */ 1128 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1129 { 1130 int err, minor; 1131 struct path path; 1132 struct kstat stat; 1133 1134 /* Probably this is an MTD character device node path */ 1135 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1136 if (err) 1137 return ERR_PTR(err); 1138 1139 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1140 path_put(&path); 1141 if (err) 1142 return ERR_PTR(err); 1143 1144 /* MTD device number is defined by the major / minor numbers */ 1145 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1146 return ERR_PTR(-EINVAL); 1147 1148 minor = MINOR(stat.rdev); 1149 1150 if (minor & 1) 1151 /* 1152 * Just do not think the "/dev/mtdrX" devices support is need, 1153 * so do not support them to avoid doing extra work. 1154 */ 1155 return ERR_PTR(-EINVAL); 1156 1157 return get_mtd_device(NULL, minor / 2); 1158 } 1159 1160 /** 1161 * open_mtd_device - open MTD device by name, character device path, or number. 1162 * @mtd_dev: name, character device node path, or MTD device device number 1163 * 1164 * This function tries to open and MTD device described by @mtd_dev string, 1165 * which is first treated as ASCII MTD device number, and if it is not true, it 1166 * is treated as MTD device name, and if that is also not true, it is treated 1167 * as MTD character device node path. Returns MTD device description object in 1168 * case of success and a negative error code in case of failure. 1169 */ 1170 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1171 { 1172 struct mtd_info *mtd; 1173 int mtd_num; 1174 char *endp; 1175 1176 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1177 if (*endp != '\0' || mtd_dev == endp) { 1178 /* 1179 * This does not look like an ASCII integer, probably this is 1180 * MTD device name. 1181 */ 1182 mtd = get_mtd_device_nm(mtd_dev); 1183 if (PTR_ERR(mtd) == -ENODEV) 1184 /* Probably this is an MTD character device node path */ 1185 mtd = open_mtd_by_chdev(mtd_dev); 1186 } else 1187 mtd = get_mtd_device(NULL, mtd_num); 1188 1189 return mtd; 1190 } 1191 1192 static int __init ubi_init(void) 1193 { 1194 int err, i, k; 1195 1196 /* Ensure that EC and VID headers have correct size */ 1197 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1198 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1199 1200 if (mtd_devs > UBI_MAX_DEVICES) { 1201 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1202 UBI_MAX_DEVICES); 1203 return -EINVAL; 1204 } 1205 1206 /* Create base sysfs directory and sysfs files */ 1207 err = class_register(&ubi_class); 1208 if (err < 0) 1209 return err; 1210 1211 err = misc_register(&ubi_ctrl_cdev); 1212 if (err) { 1213 pr_err("UBI error: cannot register device\n"); 1214 goto out; 1215 } 1216 1217 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1218 sizeof(struct ubi_wl_entry), 1219 0, 0, NULL); 1220 if (!ubi_wl_entry_slab) { 1221 err = -ENOMEM; 1222 goto out_dev_unreg; 1223 } 1224 1225 err = ubi_debugfs_init(); 1226 if (err) 1227 goto out_slab; 1228 1229 1230 /* Attach MTD devices */ 1231 for (i = 0; i < mtd_devs; i++) { 1232 struct mtd_dev_param *p = &mtd_dev_param[i]; 1233 struct mtd_info *mtd; 1234 1235 cond_resched(); 1236 1237 mtd = open_mtd_device(p->name); 1238 if (IS_ERR(mtd)) { 1239 err = PTR_ERR(mtd); 1240 pr_err("UBI error: cannot open mtd %s, error %d\n", 1241 p->name, err); 1242 /* See comment below re-ubi_is_module(). */ 1243 if (ubi_is_module()) 1244 goto out_detach; 1245 continue; 1246 } 1247 1248 mutex_lock(&ubi_devices_mutex); 1249 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1250 p->vid_hdr_offs, p->max_beb_per1024); 1251 mutex_unlock(&ubi_devices_mutex); 1252 if (err < 0) { 1253 pr_err("UBI error: cannot attach mtd%d\n", 1254 mtd->index); 1255 put_mtd_device(mtd); 1256 1257 /* 1258 * Originally UBI stopped initializing on any error. 1259 * However, later on it was found out that this 1260 * behavior is not very good when UBI is compiled into 1261 * the kernel and the MTD devices to attach are passed 1262 * through the command line. Indeed, UBI failure 1263 * stopped whole boot sequence. 1264 * 1265 * To fix this, we changed the behavior for the 1266 * non-module case, but preserved the old behavior for 1267 * the module case, just for compatibility. This is a 1268 * little inconsistent, though. 1269 */ 1270 if (ubi_is_module()) 1271 goto out_detach; 1272 } 1273 } 1274 1275 err = ubiblock_init(); 1276 if (err) { 1277 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1278 1279 /* See comment above re-ubi_is_module(). */ 1280 if (ubi_is_module()) 1281 goto out_detach; 1282 } 1283 1284 return 0; 1285 1286 out_detach: 1287 for (k = 0; k < i; k++) 1288 if (ubi_devices[k]) { 1289 mutex_lock(&ubi_devices_mutex); 1290 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1291 mutex_unlock(&ubi_devices_mutex); 1292 } 1293 ubi_debugfs_exit(); 1294 out_slab: 1295 kmem_cache_destroy(ubi_wl_entry_slab); 1296 out_dev_unreg: 1297 misc_deregister(&ubi_ctrl_cdev); 1298 out: 1299 class_unregister(&ubi_class); 1300 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1301 return err; 1302 } 1303 late_initcall(ubi_init); 1304 1305 static void __exit ubi_exit(void) 1306 { 1307 int i; 1308 1309 ubiblock_exit(); 1310 1311 for (i = 0; i < UBI_MAX_DEVICES; i++) 1312 if (ubi_devices[i]) { 1313 mutex_lock(&ubi_devices_mutex); 1314 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1315 mutex_unlock(&ubi_devices_mutex); 1316 } 1317 ubi_debugfs_exit(); 1318 kmem_cache_destroy(ubi_wl_entry_slab); 1319 misc_deregister(&ubi_ctrl_cdev); 1320 class_unregister(&ubi_class); 1321 } 1322 module_exit(ubi_exit); 1323 1324 /** 1325 * bytes_str_to_int - convert a number of bytes string into an integer. 1326 * @str: the string to convert 1327 * 1328 * This function returns positive resulting integer in case of success and a 1329 * negative error code in case of failure. 1330 */ 1331 static int bytes_str_to_int(const char *str) 1332 { 1333 char *endp; 1334 unsigned long result; 1335 1336 result = simple_strtoul(str, &endp, 0); 1337 if (str == endp || result >= INT_MAX) { 1338 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1339 return -EINVAL; 1340 } 1341 1342 switch (*endp) { 1343 case 'G': 1344 result *= 1024; 1345 fallthrough; 1346 case 'M': 1347 result *= 1024; 1348 fallthrough; 1349 case 'K': 1350 result *= 1024; 1351 if (endp[1] == 'i' && endp[2] == 'B') 1352 endp += 2; 1353 case '\0': 1354 break; 1355 default: 1356 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1357 return -EINVAL; 1358 } 1359 1360 return result; 1361 } 1362 1363 /** 1364 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1365 * @val: the parameter value to parse 1366 * @kp: not used 1367 * 1368 * This function returns zero in case of success and a negative error code in 1369 * case of error. 1370 */ 1371 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1372 { 1373 int i, len; 1374 struct mtd_dev_param *p; 1375 char buf[MTD_PARAM_LEN_MAX]; 1376 char *pbuf = &buf[0]; 1377 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1378 1379 if (!val) 1380 return -EINVAL; 1381 1382 if (mtd_devs == UBI_MAX_DEVICES) { 1383 pr_err("UBI error: too many parameters, max. is %d\n", 1384 UBI_MAX_DEVICES); 1385 return -EINVAL; 1386 } 1387 1388 len = strnlen(val, MTD_PARAM_LEN_MAX); 1389 if (len == MTD_PARAM_LEN_MAX) { 1390 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1391 val, MTD_PARAM_LEN_MAX); 1392 return -EINVAL; 1393 } 1394 1395 if (len == 0) { 1396 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1397 return 0; 1398 } 1399 1400 strcpy(buf, val); 1401 1402 /* Get rid of the final newline */ 1403 if (buf[len - 1] == '\n') 1404 buf[len - 1] = '\0'; 1405 1406 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1407 tokens[i] = strsep(&pbuf, ","); 1408 1409 if (pbuf) { 1410 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1411 return -EINVAL; 1412 } 1413 1414 p = &mtd_dev_param[mtd_devs]; 1415 strcpy(&p->name[0], tokens[0]); 1416 1417 token = tokens[1]; 1418 if (token) { 1419 p->vid_hdr_offs = bytes_str_to_int(token); 1420 1421 if (p->vid_hdr_offs < 0) 1422 return p->vid_hdr_offs; 1423 } 1424 1425 token = tokens[2]; 1426 if (token) { 1427 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1428 1429 if (err) { 1430 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1431 token); 1432 return -EINVAL; 1433 } 1434 } 1435 1436 token = tokens[3]; 1437 if (token) { 1438 int err = kstrtoint(token, 10, &p->ubi_num); 1439 1440 if (err) { 1441 pr_err("UBI error: bad value for ubi_num parameter: %s", 1442 token); 1443 return -EINVAL; 1444 } 1445 } else 1446 p->ubi_num = UBI_DEV_NUM_AUTO; 1447 1448 mtd_devs += 1; 1449 return 0; 1450 } 1451 1452 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1453 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1454 "Multiple \"mtd\" parameters may be specified.\n" 1455 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1456 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1457 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1458 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1459 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1460 "\n" 1461 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1462 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1463 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1464 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1465 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1466 #ifdef CONFIG_MTD_UBI_FASTMAP 1467 module_param(fm_autoconvert, bool, 0644); 1468 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1469 module_param(fm_debug, bool, 0); 1470 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1471 #endif 1472 MODULE_VERSION(__stringify(UBI_VERSION)); 1473 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1474 MODULE_AUTHOR("Artem Bityutskiy"); 1475 MODULE_LICENSE("GPL"); 1476