1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * Copyright (c) Nokia Corporation, 2007 5 * 6 * Author: Artem Bityutskiy (Битюцкий Артём), 7 * Frank Haverkamp 8 */ 9 10 /* 11 * This file includes UBI initialization and building of UBI devices. 12 * 13 * When UBI is initialized, it attaches all the MTD devices specified as the 14 * module load parameters or the kernel boot parameters. If MTD devices were 15 * specified, UBI does not attach any MTD device, but it is possible to do 16 * later using the "UBI control device". 17 */ 18 19 #include <linux/err.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/stringify.h> 23 #include <linux/namei.h> 24 #include <linux/stat.h> 25 #include <linux/miscdevice.h> 26 #include <linux/mtd/partitions.h> 27 #include <linux/log2.h> 28 #include <linux/kthread.h> 29 #include <linux/kernel.h> 30 #include <linux/slab.h> 31 #include <linux/major.h> 32 #include "ubi.h" 33 34 /* Maximum length of the 'mtd=' parameter */ 35 #define MTD_PARAM_LEN_MAX 64 36 37 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 38 #define MTD_PARAM_MAX_COUNT 4 39 40 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 41 #define MAX_MTD_UBI_BEB_LIMIT 768 42 43 #ifdef CONFIG_MTD_UBI_MODULE 44 #define ubi_is_module() 1 45 #else 46 #define ubi_is_module() 0 47 #endif 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD character device node path, MTD device name, or MTD device number 52 * string 53 * @ubi_num: UBI number 54 * @vid_hdr_offs: VID header offset 55 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 56 */ 57 struct mtd_dev_param { 58 char name[MTD_PARAM_LEN_MAX]; 59 int ubi_num; 60 int vid_hdr_offs; 61 int max_beb_per1024; 62 }; 63 64 /* Numbers of elements set in the @mtd_dev_param array */ 65 static int mtd_devs; 66 67 /* MTD devices specification parameters */ 68 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 69 #ifdef CONFIG_MTD_UBI_FASTMAP 70 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 71 static bool fm_autoconvert; 72 static bool fm_debug; 73 #endif 74 75 /* Slab cache for wear-leveling entries */ 76 struct kmem_cache *ubi_wl_entry_slab; 77 78 /* UBI control character device */ 79 static struct miscdevice ubi_ctrl_cdev = { 80 .minor = MISC_DYNAMIC_MINOR, 81 .name = "ubi_ctrl", 82 .fops = &ubi_ctrl_cdev_operations, 83 }; 84 85 /* All UBI devices in system */ 86 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 87 88 /* Serializes UBI devices creations and removals */ 89 DEFINE_MUTEX(ubi_devices_mutex); 90 91 /* Protects @ubi_devices and @ubi->ref_count */ 92 static DEFINE_SPINLOCK(ubi_devices_lock); 93 94 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 95 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 96 static ssize_t version_show(struct class *class, struct class_attribute *attr, 97 char *buf) 98 { 99 return sprintf(buf, "%d\n", UBI_VERSION); 100 } 101 static CLASS_ATTR_RO(version); 102 103 static struct attribute *ubi_class_attrs[] = { 104 &class_attr_version.attr, 105 NULL, 106 }; 107 ATTRIBUTE_GROUPS(ubi_class); 108 109 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 110 struct class ubi_class = { 111 .name = UBI_NAME_STR, 112 .owner = THIS_MODULE, 113 .class_groups = ubi_class_groups, 114 }; 115 116 static ssize_t dev_attribute_show(struct device *dev, 117 struct device_attribute *attr, char *buf); 118 119 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 120 static struct device_attribute dev_eraseblock_size = 121 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 122 static struct device_attribute dev_avail_eraseblocks = 123 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 124 static struct device_attribute dev_total_eraseblocks = 125 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 126 static struct device_attribute dev_volumes_count = 127 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 128 static struct device_attribute dev_max_ec = 129 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 130 static struct device_attribute dev_reserved_for_bad = 131 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_bad_peb_count = 133 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_max_vol_count = 135 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_min_io_size = 137 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_bgt_enabled = 139 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_mtd_num = 141 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_ro_mode = 143 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 144 145 /** 146 * ubi_volume_notify - send a volume change notification. 147 * @ubi: UBI device description object 148 * @vol: volume description object of the changed volume 149 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 150 * 151 * This is a helper function which notifies all subscribers about a volume 152 * change event (creation, removal, re-sizing, re-naming, updating). Returns 153 * zero in case of success and a negative error code in case of failure. 154 */ 155 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 156 { 157 int ret; 158 struct ubi_notification nt; 159 160 ubi_do_get_device_info(ubi, &nt.di); 161 ubi_do_get_volume_info(ubi, vol, &nt.vi); 162 163 switch (ntype) { 164 case UBI_VOLUME_ADDED: 165 case UBI_VOLUME_REMOVED: 166 case UBI_VOLUME_RESIZED: 167 case UBI_VOLUME_RENAMED: 168 ret = ubi_update_fastmap(ubi); 169 if (ret) 170 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 171 } 172 173 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 174 } 175 176 /** 177 * ubi_notify_all - send a notification to all volumes. 178 * @ubi: UBI device description object 179 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 180 * @nb: the notifier to call 181 * 182 * This function walks all volumes of UBI device @ubi and sends the @ntype 183 * notification for each volume. If @nb is %NULL, then all registered notifiers 184 * are called, otherwise only the @nb notifier is called. Returns the number of 185 * sent notifications. 186 */ 187 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 188 { 189 struct ubi_notification nt; 190 int i, count = 0; 191 192 ubi_do_get_device_info(ubi, &nt.di); 193 194 mutex_lock(&ubi->device_mutex); 195 for (i = 0; i < ubi->vtbl_slots; i++) { 196 /* 197 * Since the @ubi->device is locked, and we are not going to 198 * change @ubi->volumes, we do not have to lock 199 * @ubi->volumes_lock. 200 */ 201 if (!ubi->volumes[i]) 202 continue; 203 204 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 205 if (nb) 206 nb->notifier_call(nb, ntype, &nt); 207 else 208 blocking_notifier_call_chain(&ubi_notifiers, ntype, 209 &nt); 210 count += 1; 211 } 212 mutex_unlock(&ubi->device_mutex); 213 214 return count; 215 } 216 217 /** 218 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 219 * @nb: the notifier to call 220 * 221 * This function walks all UBI devices and volumes and sends the 222 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 223 * registered notifiers are called, otherwise only the @nb notifier is called. 224 * Returns the number of sent notifications. 225 */ 226 int ubi_enumerate_volumes(struct notifier_block *nb) 227 { 228 int i, count = 0; 229 230 /* 231 * Since the @ubi_devices_mutex is locked, and we are not going to 232 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 233 */ 234 for (i = 0; i < UBI_MAX_DEVICES; i++) { 235 struct ubi_device *ubi = ubi_devices[i]; 236 237 if (!ubi) 238 continue; 239 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 240 } 241 242 return count; 243 } 244 245 /** 246 * ubi_get_device - get UBI device. 247 * @ubi_num: UBI device number 248 * 249 * This function returns UBI device description object for UBI device number 250 * @ubi_num, or %NULL if the device does not exist. This function increases the 251 * device reference count to prevent removal of the device. In other words, the 252 * device cannot be removed if its reference count is not zero. 253 */ 254 struct ubi_device *ubi_get_device(int ubi_num) 255 { 256 struct ubi_device *ubi; 257 258 spin_lock(&ubi_devices_lock); 259 ubi = ubi_devices[ubi_num]; 260 if (ubi) { 261 ubi_assert(ubi->ref_count >= 0); 262 ubi->ref_count += 1; 263 get_device(&ubi->dev); 264 } 265 spin_unlock(&ubi_devices_lock); 266 267 return ubi; 268 } 269 270 /** 271 * ubi_put_device - drop an UBI device reference. 272 * @ubi: UBI device description object 273 */ 274 void ubi_put_device(struct ubi_device *ubi) 275 { 276 spin_lock(&ubi_devices_lock); 277 ubi->ref_count -= 1; 278 put_device(&ubi->dev); 279 spin_unlock(&ubi_devices_lock); 280 } 281 282 /** 283 * ubi_get_by_major - get UBI device by character device major number. 284 * @major: major number 285 * 286 * This function is similar to 'ubi_get_device()', but it searches the device 287 * by its major number. 288 */ 289 struct ubi_device *ubi_get_by_major(int major) 290 { 291 int i; 292 struct ubi_device *ubi; 293 294 spin_lock(&ubi_devices_lock); 295 for (i = 0; i < UBI_MAX_DEVICES; i++) { 296 ubi = ubi_devices[i]; 297 if (ubi && MAJOR(ubi->cdev.dev) == major) { 298 ubi_assert(ubi->ref_count >= 0); 299 ubi->ref_count += 1; 300 get_device(&ubi->dev); 301 spin_unlock(&ubi_devices_lock); 302 return ubi; 303 } 304 } 305 spin_unlock(&ubi_devices_lock); 306 307 return NULL; 308 } 309 310 /** 311 * ubi_major2num - get UBI device number by character device major number. 312 * @major: major number 313 * 314 * This function searches UBI device number object by its major number. If UBI 315 * device was not found, this function returns -ENODEV, otherwise the UBI device 316 * number is returned. 317 */ 318 int ubi_major2num(int major) 319 { 320 int i, ubi_num = -ENODEV; 321 322 spin_lock(&ubi_devices_lock); 323 for (i = 0; i < UBI_MAX_DEVICES; i++) { 324 struct ubi_device *ubi = ubi_devices[i]; 325 326 if (ubi && MAJOR(ubi->cdev.dev) == major) { 327 ubi_num = ubi->ubi_num; 328 break; 329 } 330 } 331 spin_unlock(&ubi_devices_lock); 332 333 return ubi_num; 334 } 335 336 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 337 static ssize_t dev_attribute_show(struct device *dev, 338 struct device_attribute *attr, char *buf) 339 { 340 ssize_t ret; 341 struct ubi_device *ubi; 342 343 /* 344 * The below code looks weird, but it actually makes sense. We get the 345 * UBI device reference from the contained 'struct ubi_device'. But it 346 * is unclear if the device was removed or not yet. Indeed, if the 347 * device was removed before we increased its reference count, 348 * 'ubi_get_device()' will return -ENODEV and we fail. 349 * 350 * Remember, 'struct ubi_device' is freed in the release function, so 351 * we still can use 'ubi->ubi_num'. 352 */ 353 ubi = container_of(dev, struct ubi_device, dev); 354 ubi = ubi_get_device(ubi->ubi_num); 355 if (!ubi) 356 return -ENODEV; 357 358 if (attr == &dev_eraseblock_size) 359 ret = sprintf(buf, "%d\n", ubi->leb_size); 360 else if (attr == &dev_avail_eraseblocks) 361 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 362 else if (attr == &dev_total_eraseblocks) 363 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 364 else if (attr == &dev_volumes_count) 365 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 366 else if (attr == &dev_max_ec) 367 ret = sprintf(buf, "%d\n", ubi->max_ec); 368 else if (attr == &dev_reserved_for_bad) 369 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 370 else if (attr == &dev_bad_peb_count) 371 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 372 else if (attr == &dev_max_vol_count) 373 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 374 else if (attr == &dev_min_io_size) 375 ret = sprintf(buf, "%d\n", ubi->min_io_size); 376 else if (attr == &dev_bgt_enabled) 377 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 378 else if (attr == &dev_mtd_num) 379 ret = sprintf(buf, "%d\n", ubi->mtd->index); 380 else if (attr == &dev_ro_mode) 381 ret = sprintf(buf, "%d\n", ubi->ro_mode); 382 else 383 ret = -EINVAL; 384 385 ubi_put_device(ubi); 386 return ret; 387 } 388 389 static struct attribute *ubi_dev_attrs[] = { 390 &dev_eraseblock_size.attr, 391 &dev_avail_eraseblocks.attr, 392 &dev_total_eraseblocks.attr, 393 &dev_volumes_count.attr, 394 &dev_max_ec.attr, 395 &dev_reserved_for_bad.attr, 396 &dev_bad_peb_count.attr, 397 &dev_max_vol_count.attr, 398 &dev_min_io_size.attr, 399 &dev_bgt_enabled.attr, 400 &dev_mtd_num.attr, 401 &dev_ro_mode.attr, 402 NULL 403 }; 404 ATTRIBUTE_GROUPS(ubi_dev); 405 406 static void dev_release(struct device *dev) 407 { 408 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 409 410 kfree(ubi); 411 } 412 413 /** 414 * kill_volumes - destroy all user volumes. 415 * @ubi: UBI device description object 416 */ 417 static void kill_volumes(struct ubi_device *ubi) 418 { 419 int i; 420 421 for (i = 0; i < ubi->vtbl_slots; i++) 422 if (ubi->volumes[i]) 423 ubi_free_volume(ubi, ubi->volumes[i]); 424 } 425 426 /** 427 * uif_init - initialize user interfaces for an UBI device. 428 * @ubi: UBI device description object 429 * 430 * This function initializes various user interfaces for an UBI device. If the 431 * initialization fails at an early stage, this function frees all the 432 * resources it allocated, returns an error. 433 * 434 * This function returns zero in case of success and a negative error code in 435 * case of failure. 436 */ 437 static int uif_init(struct ubi_device *ubi) 438 { 439 int i, err; 440 dev_t dev; 441 442 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 443 444 /* 445 * Major numbers for the UBI character devices are allocated 446 * dynamically. Major numbers of volume character devices are 447 * equivalent to ones of the corresponding UBI character device. Minor 448 * numbers of UBI character devices are 0, while minor numbers of 449 * volume character devices start from 1. Thus, we allocate one major 450 * number and ubi->vtbl_slots + 1 minor numbers. 451 */ 452 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 453 if (err) { 454 ubi_err(ubi, "cannot register UBI character devices"); 455 return err; 456 } 457 458 ubi->dev.devt = dev; 459 460 ubi_assert(MINOR(dev) == 0); 461 cdev_init(&ubi->cdev, &ubi_cdev_operations); 462 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 463 ubi->cdev.owner = THIS_MODULE; 464 465 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 466 err = cdev_device_add(&ubi->cdev, &ubi->dev); 467 if (err) 468 goto out_unreg; 469 470 for (i = 0; i < ubi->vtbl_slots; i++) 471 if (ubi->volumes[i]) { 472 err = ubi_add_volume(ubi, ubi->volumes[i]); 473 if (err) { 474 ubi_err(ubi, "cannot add volume %d", i); 475 goto out_volumes; 476 } 477 } 478 479 return 0; 480 481 out_volumes: 482 kill_volumes(ubi); 483 cdev_device_del(&ubi->cdev, &ubi->dev); 484 out_unreg: 485 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 486 ubi_err(ubi, "cannot initialize UBI %s, error %d", 487 ubi->ubi_name, err); 488 return err; 489 } 490 491 /** 492 * uif_close - close user interfaces for an UBI device. 493 * @ubi: UBI device description object 494 * 495 * Note, since this function un-registers UBI volume device objects (@vol->dev), 496 * the memory allocated voe the volumes is freed as well (in the release 497 * function). 498 */ 499 static void uif_close(struct ubi_device *ubi) 500 { 501 kill_volumes(ubi); 502 cdev_device_del(&ubi->cdev, &ubi->dev); 503 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 504 } 505 506 /** 507 * ubi_free_volumes_from - free volumes from specific index. 508 * @ubi: UBI device description object 509 * @from: the start index used for volume free. 510 */ 511 static void ubi_free_volumes_from(struct ubi_device *ubi, int from) 512 { 513 int i; 514 515 for (i = from; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 516 if (!ubi->volumes[i]) 517 continue; 518 ubi_eba_replace_table(ubi->volumes[i], NULL); 519 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 520 kfree(ubi->volumes[i]); 521 ubi->volumes[i] = NULL; 522 } 523 } 524 525 /** 526 * ubi_free_all_volumes - free all volumes. 527 * @ubi: UBI device description object 528 */ 529 void ubi_free_all_volumes(struct ubi_device *ubi) 530 { 531 ubi_free_volumes_from(ubi, 0); 532 } 533 534 /** 535 * ubi_free_internal_volumes - free internal volumes. 536 * @ubi: UBI device description object 537 */ 538 void ubi_free_internal_volumes(struct ubi_device *ubi) 539 { 540 ubi_free_volumes_from(ubi, ubi->vtbl_slots); 541 } 542 543 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 544 { 545 int limit, device_pebs; 546 uint64_t device_size; 547 548 if (!max_beb_per1024) { 549 /* 550 * Since max_beb_per1024 has not been set by the user in either 551 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 552 * limit if it is supported by the device. 553 */ 554 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 555 if (limit < 0) 556 return 0; 557 return limit; 558 } 559 560 /* 561 * Here we are using size of the entire flash chip and 562 * not just the MTD partition size because the maximum 563 * number of bad eraseblocks is a percentage of the 564 * whole device and bad eraseblocks are not fairly 565 * distributed over the flash chip. So the worst case 566 * is that all the bad eraseblocks of the chip are in 567 * the MTD partition we are attaching (ubi->mtd). 568 */ 569 device_size = mtd_get_device_size(ubi->mtd); 570 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 571 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 572 573 /* Round it up */ 574 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 575 limit += 1; 576 577 return limit; 578 } 579 580 /** 581 * io_init - initialize I/O sub-system for a given UBI device. 582 * @ubi: UBI device description object 583 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 584 * 585 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 586 * assumed: 587 * o EC header is always at offset zero - this cannot be changed; 588 * o VID header starts just after the EC header at the closest address 589 * aligned to @io->hdrs_min_io_size; 590 * o data starts just after the VID header at the closest address aligned to 591 * @io->min_io_size 592 * 593 * This function returns zero in case of success and a negative error code in 594 * case of failure. 595 */ 596 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 597 { 598 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 599 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 600 601 if (ubi->mtd->numeraseregions != 0) { 602 /* 603 * Some flashes have several erase regions. Different regions 604 * may have different eraseblock size and other 605 * characteristics. It looks like mostly multi-region flashes 606 * have one "main" region and one or more small regions to 607 * store boot loader code or boot parameters or whatever. I 608 * guess we should just pick the largest region. But this is 609 * not implemented. 610 */ 611 ubi_err(ubi, "multiple regions, not implemented"); 612 return -EINVAL; 613 } 614 615 if (ubi->vid_hdr_offset < 0) 616 return -EINVAL; 617 618 /* 619 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 620 * physical eraseblocks maximum. 621 */ 622 623 ubi->peb_size = ubi->mtd->erasesize; 624 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 625 ubi->flash_size = ubi->mtd->size; 626 627 if (mtd_can_have_bb(ubi->mtd)) { 628 ubi->bad_allowed = 1; 629 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 630 } 631 632 if (ubi->mtd->type == MTD_NORFLASH) { 633 ubi_assert(ubi->mtd->writesize == 1); 634 ubi->nor_flash = 1; 635 } 636 637 ubi->min_io_size = ubi->mtd->writesize; 638 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 639 640 /* 641 * Make sure minimal I/O unit is power of 2. Note, there is no 642 * fundamental reason for this assumption. It is just an optimization 643 * which allows us to avoid costly division operations. 644 */ 645 if (!is_power_of_2(ubi->min_io_size)) { 646 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 647 ubi->min_io_size); 648 return -EINVAL; 649 } 650 651 ubi_assert(ubi->hdrs_min_io_size > 0); 652 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 653 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 654 655 ubi->max_write_size = ubi->mtd->writebufsize; 656 /* 657 * Maximum write size has to be greater or equivalent to min. I/O 658 * size, and be multiple of min. I/O size. 659 */ 660 if (ubi->max_write_size < ubi->min_io_size || 661 ubi->max_write_size % ubi->min_io_size || 662 !is_power_of_2(ubi->max_write_size)) { 663 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 664 ubi->max_write_size, ubi->min_io_size); 665 return -EINVAL; 666 } 667 668 /* Calculate default aligned sizes of EC and VID headers */ 669 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 670 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 671 672 dbg_gen("min_io_size %d", ubi->min_io_size); 673 dbg_gen("max_write_size %d", ubi->max_write_size); 674 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 675 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 676 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 677 678 if (ubi->vid_hdr_offset == 0) 679 /* Default offset */ 680 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 681 ubi->ec_hdr_alsize; 682 else { 683 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 684 ~(ubi->hdrs_min_io_size - 1); 685 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 686 ubi->vid_hdr_aloffset; 687 } 688 689 /* Similar for the data offset */ 690 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 691 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 692 693 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 694 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 695 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 696 dbg_gen("leb_start %d", ubi->leb_start); 697 698 /* The shift must be aligned to 32-bit boundary */ 699 if (ubi->vid_hdr_shift % 4) { 700 ubi_err(ubi, "unaligned VID header shift %d", 701 ubi->vid_hdr_shift); 702 return -EINVAL; 703 } 704 705 /* Check sanity */ 706 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 707 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 708 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 709 ubi->leb_start & (ubi->min_io_size - 1)) { 710 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 711 ubi->vid_hdr_offset, ubi->leb_start); 712 return -EINVAL; 713 } 714 715 /* 716 * Set maximum amount of physical erroneous eraseblocks to be 10%. 717 * Erroneous PEB are those which have read errors. 718 */ 719 ubi->max_erroneous = ubi->peb_count / 10; 720 if (ubi->max_erroneous < 16) 721 ubi->max_erroneous = 16; 722 dbg_gen("max_erroneous %d", ubi->max_erroneous); 723 724 /* 725 * It may happen that EC and VID headers are situated in one minimal 726 * I/O unit. In this case we can only accept this UBI image in 727 * read-only mode. 728 */ 729 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 730 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 731 ubi->ro_mode = 1; 732 } 733 734 ubi->leb_size = ubi->peb_size - ubi->leb_start; 735 736 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 737 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 738 ubi->mtd->index); 739 ubi->ro_mode = 1; 740 } 741 742 /* 743 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 744 * unfortunately, MTD does not provide this information. We should loop 745 * over all physical eraseblocks and invoke mtd->block_is_bad() for 746 * each physical eraseblock. So, we leave @ubi->bad_peb_count 747 * uninitialized so far. 748 */ 749 750 return 0; 751 } 752 753 /** 754 * autoresize - re-size the volume which has the "auto-resize" flag set. 755 * @ubi: UBI device description object 756 * @vol_id: ID of the volume to re-size 757 * 758 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 759 * the volume table to the largest possible size. See comments in ubi-header.h 760 * for more description of the flag. Returns zero in case of success and a 761 * negative error code in case of failure. 762 */ 763 static int autoresize(struct ubi_device *ubi, int vol_id) 764 { 765 struct ubi_volume_desc desc; 766 struct ubi_volume *vol = ubi->volumes[vol_id]; 767 int err, old_reserved_pebs = vol->reserved_pebs; 768 769 if (ubi->ro_mode) { 770 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 771 return 0; 772 } 773 774 /* 775 * Clear the auto-resize flag in the volume in-memory copy of the 776 * volume table, and 'ubi_resize_volume()' will propagate this change 777 * to the flash. 778 */ 779 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 780 781 if (ubi->avail_pebs == 0) { 782 struct ubi_vtbl_record vtbl_rec; 783 784 /* 785 * No available PEBs to re-size the volume, clear the flag on 786 * flash and exit. 787 */ 788 vtbl_rec = ubi->vtbl[vol_id]; 789 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 790 if (err) 791 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 792 vol_id); 793 } else { 794 desc.vol = vol; 795 err = ubi_resize_volume(&desc, 796 old_reserved_pebs + ubi->avail_pebs); 797 if (err) 798 ubi_err(ubi, "cannot auto-resize volume %d", 799 vol_id); 800 } 801 802 if (err) 803 return err; 804 805 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 806 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 807 return 0; 808 } 809 810 /** 811 * ubi_attach_mtd_dev - attach an MTD device. 812 * @mtd: MTD device description object 813 * @ubi_num: number to assign to the new UBI device 814 * @vid_hdr_offset: VID header offset 815 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 816 * 817 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 818 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 819 * which case this function finds a vacant device number and assigns it 820 * automatically. Returns the new UBI device number in case of success and a 821 * negative error code in case of failure. 822 * 823 * Note, the invocations of this function has to be serialized by the 824 * @ubi_devices_mutex. 825 */ 826 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 827 int vid_hdr_offset, int max_beb_per1024) 828 { 829 struct ubi_device *ubi; 830 int i, err; 831 832 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 833 return -EINVAL; 834 835 if (!max_beb_per1024) 836 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 837 838 /* 839 * Check if we already have the same MTD device attached. 840 * 841 * Note, this function assumes that UBI devices creations and deletions 842 * are serialized, so it does not take the &ubi_devices_lock. 843 */ 844 for (i = 0; i < UBI_MAX_DEVICES; i++) { 845 ubi = ubi_devices[i]; 846 if (ubi && mtd->index == ubi->mtd->index) { 847 pr_err("ubi: mtd%d is already attached to ubi%d\n", 848 mtd->index, i); 849 return -EEXIST; 850 } 851 } 852 853 /* 854 * Make sure this MTD device is not emulated on top of an UBI volume 855 * already. Well, generally this recursion works fine, but there are 856 * different problems like the UBI module takes a reference to itself 857 * by attaching (and thus, opening) the emulated MTD device. This 858 * results in inability to unload the module. And in general it makes 859 * no sense to attach emulated MTD devices, so we prohibit this. 860 */ 861 if (mtd->type == MTD_UBIVOLUME) { 862 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 863 mtd->index); 864 return -EINVAL; 865 } 866 867 /* 868 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 869 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 870 * will die soon and you will lose all your data. 871 * Relax this rule if the partition we're attaching to operates in SLC 872 * mode. 873 */ 874 if (mtd->type == MTD_MLCNANDFLASH && 875 !(mtd->flags & MTD_SLC_ON_MLC_EMULATION)) { 876 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 877 mtd->index); 878 return -EINVAL; 879 } 880 881 if (ubi_num == UBI_DEV_NUM_AUTO) { 882 /* Search for an empty slot in the @ubi_devices array */ 883 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 884 if (!ubi_devices[ubi_num]) 885 break; 886 if (ubi_num == UBI_MAX_DEVICES) { 887 pr_err("ubi: only %d UBI devices may be created\n", 888 UBI_MAX_DEVICES); 889 return -ENFILE; 890 } 891 } else { 892 if (ubi_num >= UBI_MAX_DEVICES) 893 return -EINVAL; 894 895 /* Make sure ubi_num is not busy */ 896 if (ubi_devices[ubi_num]) { 897 pr_err("ubi: ubi%i already exists\n", ubi_num); 898 return -EEXIST; 899 } 900 } 901 902 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 903 if (!ubi) 904 return -ENOMEM; 905 906 device_initialize(&ubi->dev); 907 ubi->dev.release = dev_release; 908 ubi->dev.class = &ubi_class; 909 ubi->dev.groups = ubi_dev_groups; 910 911 ubi->mtd = mtd; 912 ubi->ubi_num = ubi_num; 913 ubi->vid_hdr_offset = vid_hdr_offset; 914 ubi->autoresize_vol_id = -1; 915 916 #ifdef CONFIG_MTD_UBI_FASTMAP 917 ubi->fm_pool.used = ubi->fm_pool.size = 0; 918 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 919 920 /* 921 * fm_pool.max_size is 5% of the total number of PEBs but it's also 922 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 923 */ 924 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 925 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 926 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 927 UBI_FM_MIN_POOL_SIZE); 928 929 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 930 ubi->fm_disabled = !fm_autoconvert; 931 if (fm_debug) 932 ubi_enable_dbg_chk_fastmap(ubi); 933 934 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 935 <= UBI_FM_MAX_START) { 936 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 937 UBI_FM_MAX_START); 938 ubi->fm_disabled = 1; 939 } 940 941 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 942 ubi_msg(ubi, "default fastmap WL pool size: %d", 943 ubi->fm_wl_pool.max_size); 944 #else 945 ubi->fm_disabled = 1; 946 #endif 947 mutex_init(&ubi->buf_mutex); 948 mutex_init(&ubi->ckvol_mutex); 949 mutex_init(&ubi->device_mutex); 950 spin_lock_init(&ubi->volumes_lock); 951 init_rwsem(&ubi->fm_protect); 952 init_rwsem(&ubi->fm_eba_sem); 953 954 ubi_msg(ubi, "attaching mtd%d", mtd->index); 955 956 err = io_init(ubi, max_beb_per1024); 957 if (err) 958 goto out_free; 959 960 err = -ENOMEM; 961 ubi->peb_buf = vmalloc(ubi->peb_size); 962 if (!ubi->peb_buf) 963 goto out_free; 964 965 #ifdef CONFIG_MTD_UBI_FASTMAP 966 ubi->fm_size = ubi_calc_fm_size(ubi); 967 ubi->fm_buf = vzalloc(ubi->fm_size); 968 if (!ubi->fm_buf) 969 goto out_free; 970 #endif 971 err = ubi_attach(ubi, 0); 972 if (err) { 973 ubi_err(ubi, "failed to attach mtd%d, error %d", 974 mtd->index, err); 975 goto out_free; 976 } 977 978 if (ubi->autoresize_vol_id != -1) { 979 err = autoresize(ubi, ubi->autoresize_vol_id); 980 if (err) 981 goto out_detach; 982 } 983 984 /* Make device "available" before it becomes accessible via sysfs */ 985 ubi_devices[ubi_num] = ubi; 986 987 err = uif_init(ubi); 988 if (err) 989 goto out_detach; 990 991 err = ubi_debugfs_init_dev(ubi); 992 if (err) 993 goto out_uif; 994 995 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 996 if (IS_ERR(ubi->bgt_thread)) { 997 err = PTR_ERR(ubi->bgt_thread); 998 ubi_err(ubi, "cannot spawn \"%s\", error %d", 999 ubi->bgt_name, err); 1000 goto out_debugfs; 1001 } 1002 1003 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1004 mtd->index, mtd->name, ubi->flash_size >> 20); 1005 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1006 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1007 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1008 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1009 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1010 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1011 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1012 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1013 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1014 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1015 ubi->vtbl_slots); 1016 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1017 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1018 ubi->image_seq); 1019 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1020 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1021 1022 /* 1023 * The below lock makes sure we do not race with 'ubi_thread()' which 1024 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1025 */ 1026 spin_lock(&ubi->wl_lock); 1027 ubi->thread_enabled = 1; 1028 wake_up_process(ubi->bgt_thread); 1029 spin_unlock(&ubi->wl_lock); 1030 1031 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1032 return ubi_num; 1033 1034 out_debugfs: 1035 ubi_debugfs_exit_dev(ubi); 1036 out_uif: 1037 uif_close(ubi); 1038 out_detach: 1039 ubi_devices[ubi_num] = NULL; 1040 ubi_wl_close(ubi); 1041 ubi_free_all_volumes(ubi); 1042 vfree(ubi->vtbl); 1043 out_free: 1044 vfree(ubi->peb_buf); 1045 vfree(ubi->fm_buf); 1046 put_device(&ubi->dev); 1047 return err; 1048 } 1049 1050 /** 1051 * ubi_detach_mtd_dev - detach an MTD device. 1052 * @ubi_num: UBI device number to detach from 1053 * @anyway: detach MTD even if device reference count is not zero 1054 * 1055 * This function destroys an UBI device number @ubi_num and detaches the 1056 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1057 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1058 * exist. 1059 * 1060 * Note, the invocations of this function has to be serialized by the 1061 * @ubi_devices_mutex. 1062 */ 1063 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1064 { 1065 struct ubi_device *ubi; 1066 1067 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1068 return -EINVAL; 1069 1070 ubi = ubi_get_device(ubi_num); 1071 if (!ubi) 1072 return -EINVAL; 1073 1074 spin_lock(&ubi_devices_lock); 1075 put_device(&ubi->dev); 1076 ubi->ref_count -= 1; 1077 if (ubi->ref_count) { 1078 if (!anyway) { 1079 spin_unlock(&ubi_devices_lock); 1080 return -EBUSY; 1081 } 1082 /* This may only happen if there is a bug */ 1083 ubi_err(ubi, "%s reference count %d, destroy anyway", 1084 ubi->ubi_name, ubi->ref_count); 1085 } 1086 ubi_devices[ubi_num] = NULL; 1087 spin_unlock(&ubi_devices_lock); 1088 1089 ubi_assert(ubi_num == ubi->ubi_num); 1090 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1091 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1092 #ifdef CONFIG_MTD_UBI_FASTMAP 1093 /* If we don't write a new fastmap at detach time we lose all 1094 * EC updates that have been made since the last written fastmap. 1095 * In case of fastmap debugging we omit the update to simulate an 1096 * unclean shutdown. */ 1097 if (!ubi_dbg_chk_fastmap(ubi)) 1098 ubi_update_fastmap(ubi); 1099 #endif 1100 /* 1101 * Before freeing anything, we have to stop the background thread to 1102 * prevent it from doing anything on this device while we are freeing. 1103 */ 1104 if (ubi->bgt_thread) 1105 kthread_stop(ubi->bgt_thread); 1106 1107 #ifdef CONFIG_MTD_UBI_FASTMAP 1108 cancel_work_sync(&ubi->fm_work); 1109 #endif 1110 ubi_debugfs_exit_dev(ubi); 1111 uif_close(ubi); 1112 1113 ubi_wl_close(ubi); 1114 ubi_free_internal_volumes(ubi); 1115 vfree(ubi->vtbl); 1116 vfree(ubi->peb_buf); 1117 vfree(ubi->fm_buf); 1118 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1119 put_mtd_device(ubi->mtd); 1120 put_device(&ubi->dev); 1121 return 0; 1122 } 1123 1124 /** 1125 * open_mtd_by_chdev - open an MTD device by its character device node path. 1126 * @mtd_dev: MTD character device node path 1127 * 1128 * This helper function opens an MTD device by its character node device path. 1129 * Returns MTD device description object in case of success and a negative 1130 * error code in case of failure. 1131 */ 1132 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1133 { 1134 int err, minor; 1135 struct path path; 1136 struct kstat stat; 1137 1138 /* Probably this is an MTD character device node path */ 1139 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1140 if (err) 1141 return ERR_PTR(err); 1142 1143 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1144 path_put(&path); 1145 if (err) 1146 return ERR_PTR(err); 1147 1148 /* MTD device number is defined by the major / minor numbers */ 1149 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1150 return ERR_PTR(-EINVAL); 1151 1152 minor = MINOR(stat.rdev); 1153 1154 if (minor & 1) 1155 /* 1156 * Just do not think the "/dev/mtdrX" devices support is need, 1157 * so do not support them to avoid doing extra work. 1158 */ 1159 return ERR_PTR(-EINVAL); 1160 1161 return get_mtd_device(NULL, minor / 2); 1162 } 1163 1164 /** 1165 * open_mtd_device - open MTD device by name, character device path, or number. 1166 * @mtd_dev: name, character device node path, or MTD device device number 1167 * 1168 * This function tries to open and MTD device described by @mtd_dev string, 1169 * which is first treated as ASCII MTD device number, and if it is not true, it 1170 * is treated as MTD device name, and if that is also not true, it is treated 1171 * as MTD character device node path. Returns MTD device description object in 1172 * case of success and a negative error code in case of failure. 1173 */ 1174 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1175 { 1176 struct mtd_info *mtd; 1177 int mtd_num; 1178 char *endp; 1179 1180 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1181 if (*endp != '\0' || mtd_dev == endp) { 1182 /* 1183 * This does not look like an ASCII integer, probably this is 1184 * MTD device name. 1185 */ 1186 mtd = get_mtd_device_nm(mtd_dev); 1187 if (PTR_ERR(mtd) == -ENODEV) 1188 /* Probably this is an MTD character device node path */ 1189 mtd = open_mtd_by_chdev(mtd_dev); 1190 } else 1191 mtd = get_mtd_device(NULL, mtd_num); 1192 1193 return mtd; 1194 } 1195 1196 static int __init ubi_init(void) 1197 { 1198 int err, i, k; 1199 1200 /* Ensure that EC and VID headers have correct size */ 1201 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1202 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1203 1204 if (mtd_devs > UBI_MAX_DEVICES) { 1205 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1206 UBI_MAX_DEVICES); 1207 return -EINVAL; 1208 } 1209 1210 /* Create base sysfs directory and sysfs files */ 1211 err = class_register(&ubi_class); 1212 if (err < 0) 1213 return err; 1214 1215 err = misc_register(&ubi_ctrl_cdev); 1216 if (err) { 1217 pr_err("UBI error: cannot register device\n"); 1218 goto out; 1219 } 1220 1221 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1222 sizeof(struct ubi_wl_entry), 1223 0, 0, NULL); 1224 if (!ubi_wl_entry_slab) { 1225 err = -ENOMEM; 1226 goto out_dev_unreg; 1227 } 1228 1229 err = ubi_debugfs_init(); 1230 if (err) 1231 goto out_slab; 1232 1233 1234 /* Attach MTD devices */ 1235 for (i = 0; i < mtd_devs; i++) { 1236 struct mtd_dev_param *p = &mtd_dev_param[i]; 1237 struct mtd_info *mtd; 1238 1239 cond_resched(); 1240 1241 mtd = open_mtd_device(p->name); 1242 if (IS_ERR(mtd)) { 1243 err = PTR_ERR(mtd); 1244 pr_err("UBI error: cannot open mtd %s, error %d\n", 1245 p->name, err); 1246 /* See comment below re-ubi_is_module(). */ 1247 if (ubi_is_module()) 1248 goto out_detach; 1249 continue; 1250 } 1251 1252 mutex_lock(&ubi_devices_mutex); 1253 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1254 p->vid_hdr_offs, p->max_beb_per1024); 1255 mutex_unlock(&ubi_devices_mutex); 1256 if (err < 0) { 1257 pr_err("UBI error: cannot attach mtd%d\n", 1258 mtd->index); 1259 put_mtd_device(mtd); 1260 1261 /* 1262 * Originally UBI stopped initializing on any error. 1263 * However, later on it was found out that this 1264 * behavior is not very good when UBI is compiled into 1265 * the kernel and the MTD devices to attach are passed 1266 * through the command line. Indeed, UBI failure 1267 * stopped whole boot sequence. 1268 * 1269 * To fix this, we changed the behavior for the 1270 * non-module case, but preserved the old behavior for 1271 * the module case, just for compatibility. This is a 1272 * little inconsistent, though. 1273 */ 1274 if (ubi_is_module()) 1275 goto out_detach; 1276 } 1277 } 1278 1279 err = ubiblock_init(); 1280 if (err) { 1281 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1282 1283 /* See comment above re-ubi_is_module(). */ 1284 if (ubi_is_module()) 1285 goto out_detach; 1286 } 1287 1288 return 0; 1289 1290 out_detach: 1291 for (k = 0; k < i; k++) 1292 if (ubi_devices[k]) { 1293 mutex_lock(&ubi_devices_mutex); 1294 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1295 mutex_unlock(&ubi_devices_mutex); 1296 } 1297 ubi_debugfs_exit(); 1298 out_slab: 1299 kmem_cache_destroy(ubi_wl_entry_slab); 1300 out_dev_unreg: 1301 misc_deregister(&ubi_ctrl_cdev); 1302 out: 1303 class_unregister(&ubi_class); 1304 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1305 return err; 1306 } 1307 late_initcall(ubi_init); 1308 1309 static void __exit ubi_exit(void) 1310 { 1311 int i; 1312 1313 ubiblock_exit(); 1314 1315 for (i = 0; i < UBI_MAX_DEVICES; i++) 1316 if (ubi_devices[i]) { 1317 mutex_lock(&ubi_devices_mutex); 1318 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1319 mutex_unlock(&ubi_devices_mutex); 1320 } 1321 ubi_debugfs_exit(); 1322 kmem_cache_destroy(ubi_wl_entry_slab); 1323 misc_deregister(&ubi_ctrl_cdev); 1324 class_unregister(&ubi_class); 1325 } 1326 module_exit(ubi_exit); 1327 1328 /** 1329 * bytes_str_to_int - convert a number of bytes string into an integer. 1330 * @str: the string to convert 1331 * 1332 * This function returns positive resulting integer in case of success and a 1333 * negative error code in case of failure. 1334 */ 1335 static int bytes_str_to_int(const char *str) 1336 { 1337 char *endp; 1338 unsigned long result; 1339 1340 result = simple_strtoul(str, &endp, 0); 1341 if (str == endp || result >= INT_MAX) { 1342 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1343 return -EINVAL; 1344 } 1345 1346 switch (*endp) { 1347 case 'G': 1348 result *= 1024; 1349 fallthrough; 1350 case 'M': 1351 result *= 1024; 1352 fallthrough; 1353 case 'K': 1354 result *= 1024; 1355 if (endp[1] == 'i' && endp[2] == 'B') 1356 endp += 2; 1357 case '\0': 1358 break; 1359 default: 1360 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1361 return -EINVAL; 1362 } 1363 1364 return result; 1365 } 1366 1367 /** 1368 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1369 * @val: the parameter value to parse 1370 * @kp: not used 1371 * 1372 * This function returns zero in case of success and a negative error code in 1373 * case of error. 1374 */ 1375 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1376 { 1377 int i, len; 1378 struct mtd_dev_param *p; 1379 char buf[MTD_PARAM_LEN_MAX]; 1380 char *pbuf = &buf[0]; 1381 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1382 1383 if (!val) 1384 return -EINVAL; 1385 1386 if (mtd_devs == UBI_MAX_DEVICES) { 1387 pr_err("UBI error: too many parameters, max. is %d\n", 1388 UBI_MAX_DEVICES); 1389 return -EINVAL; 1390 } 1391 1392 len = strnlen(val, MTD_PARAM_LEN_MAX); 1393 if (len == MTD_PARAM_LEN_MAX) { 1394 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1395 val, MTD_PARAM_LEN_MAX); 1396 return -EINVAL; 1397 } 1398 1399 if (len == 0) { 1400 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1401 return 0; 1402 } 1403 1404 strcpy(buf, val); 1405 1406 /* Get rid of the final newline */ 1407 if (buf[len - 1] == '\n') 1408 buf[len - 1] = '\0'; 1409 1410 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1411 tokens[i] = strsep(&pbuf, ","); 1412 1413 if (pbuf) { 1414 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1415 return -EINVAL; 1416 } 1417 1418 p = &mtd_dev_param[mtd_devs]; 1419 strcpy(&p->name[0], tokens[0]); 1420 1421 token = tokens[1]; 1422 if (token) { 1423 p->vid_hdr_offs = bytes_str_to_int(token); 1424 1425 if (p->vid_hdr_offs < 0) 1426 return p->vid_hdr_offs; 1427 } 1428 1429 token = tokens[2]; 1430 if (token) { 1431 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1432 1433 if (err) { 1434 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1435 token); 1436 return -EINVAL; 1437 } 1438 } 1439 1440 token = tokens[3]; 1441 if (token) { 1442 int err = kstrtoint(token, 10, &p->ubi_num); 1443 1444 if (err) { 1445 pr_err("UBI error: bad value for ubi_num parameter: %s", 1446 token); 1447 return -EINVAL; 1448 } 1449 } else 1450 p->ubi_num = UBI_DEV_NUM_AUTO; 1451 1452 mtd_devs += 1; 1453 return 0; 1454 } 1455 1456 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1457 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1458 "Multiple \"mtd\" parameters may be specified.\n" 1459 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1460 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1461 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1462 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1463 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1464 "\n" 1465 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1466 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1467 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1468 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1469 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1470 #ifdef CONFIG_MTD_UBI_FASTMAP 1471 module_param(fm_autoconvert, bool, 0644); 1472 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1473 module_param(fm_debug, bool, 0); 1474 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1475 #endif 1476 MODULE_VERSION(__stringify(UBI_VERSION)); 1477 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1478 MODULE_AUTHOR("Artem Bityutskiy"); 1479 MODULE_LICENSE("GPL"); 1480