xref: /openbmc/linux/drivers/mtd/ubi/build.c (revision 82ced6fd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  * Copyright (c) Nokia Corporation, 2007
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Author: Artem Bityutskiy (Битюцкий Артём),
20  *         Frank Haverkamp
21  */
22 
23 /*
24  * This file includes UBI initialization and building of UBI devices.
25  *
26  * When UBI is initialized, it attaches all the MTD devices specified as the
27  * module load parameters or the kernel boot parameters. If MTD devices were
28  * specified, UBI does not attach any MTD device, but it is possible to do
29  * later using the "UBI control device".
30  *
31  * At the moment we only attach UBI devices by scanning, which will become a
32  * bottleneck when flashes reach certain large size. Then one may improve UBI
33  * and add other methods, although it does not seem to be easy to do.
34  */
35 
36 #include <linux/err.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/stringify.h>
40 #include <linux/stat.h>
41 #include <linux/miscdevice.h>
42 #include <linux/log2.h>
43 #include <linux/kthread.h>
44 #include "ubi.h"
45 
46 /* Maximum length of the 'mtd=' parameter */
47 #define MTD_PARAM_LEN_MAX 64
48 
49 /**
50  * struct mtd_dev_param - MTD device parameter description data structure.
51  * @name: MTD device name or number string
52  * @vid_hdr_offs: VID header offset
53  */
54 struct mtd_dev_param {
55 	char name[MTD_PARAM_LEN_MAX];
56 	int vid_hdr_offs;
57 };
58 
59 /* Numbers of elements set in the @mtd_dev_param array */
60 static int mtd_devs;
61 
62 /* MTD devices specification parameters */
63 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES];
64 
65 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
66 struct class *ubi_class;
67 
68 /* Slab cache for wear-leveling entries */
69 struct kmem_cache *ubi_wl_entry_slab;
70 
71 /* UBI control character device */
72 static struct miscdevice ubi_ctrl_cdev = {
73 	.minor = MISC_DYNAMIC_MINOR,
74 	.name = "ubi_ctrl",
75 	.fops = &ubi_ctrl_cdev_operations,
76 };
77 
78 /* All UBI devices in system */
79 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
80 
81 /* Serializes UBI devices creations and removals */
82 DEFINE_MUTEX(ubi_devices_mutex);
83 
84 /* Protects @ubi_devices and @ubi->ref_count */
85 static DEFINE_SPINLOCK(ubi_devices_lock);
86 
87 /* "Show" method for files in '/<sysfs>/class/ubi/' */
88 static ssize_t ubi_version_show(struct class *class, char *buf)
89 {
90 	return sprintf(buf, "%d\n", UBI_VERSION);
91 }
92 
93 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
94 static struct class_attribute ubi_version =
95 	__ATTR(version, S_IRUGO, ubi_version_show, NULL);
96 
97 static ssize_t dev_attribute_show(struct device *dev,
98 				  struct device_attribute *attr, char *buf);
99 
100 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
101 static struct device_attribute dev_eraseblock_size =
102 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
103 static struct device_attribute dev_avail_eraseblocks =
104 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
105 static struct device_attribute dev_total_eraseblocks =
106 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
107 static struct device_attribute dev_volumes_count =
108 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
109 static struct device_attribute dev_max_ec =
110 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
111 static struct device_attribute dev_reserved_for_bad =
112 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
113 static struct device_attribute dev_bad_peb_count =
114 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
115 static struct device_attribute dev_max_vol_count =
116 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
117 static struct device_attribute dev_min_io_size =
118 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
119 static struct device_attribute dev_bgt_enabled =
120 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
121 static struct device_attribute dev_mtd_num =
122 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
123 
124 /**
125  * ubi_get_device - get UBI device.
126  * @ubi_num: UBI device number
127  *
128  * This function returns UBI device description object for UBI device number
129  * @ubi_num, or %NULL if the device does not exist. This function increases the
130  * device reference count to prevent removal of the device. In other words, the
131  * device cannot be removed if its reference count is not zero.
132  */
133 struct ubi_device *ubi_get_device(int ubi_num)
134 {
135 	struct ubi_device *ubi;
136 
137 	spin_lock(&ubi_devices_lock);
138 	ubi = ubi_devices[ubi_num];
139 	if (ubi) {
140 		ubi_assert(ubi->ref_count >= 0);
141 		ubi->ref_count += 1;
142 		get_device(&ubi->dev);
143 	}
144 	spin_unlock(&ubi_devices_lock);
145 
146 	return ubi;
147 }
148 
149 /**
150  * ubi_put_device - drop an UBI device reference.
151  * @ubi: UBI device description object
152  */
153 void ubi_put_device(struct ubi_device *ubi)
154 {
155 	spin_lock(&ubi_devices_lock);
156 	ubi->ref_count -= 1;
157 	put_device(&ubi->dev);
158 	spin_unlock(&ubi_devices_lock);
159 }
160 
161 /**
162  * ubi_get_by_major - get UBI device by character device major number.
163  * @major: major number
164  *
165  * This function is similar to 'ubi_get_device()', but it searches the device
166  * by its major number.
167  */
168 struct ubi_device *ubi_get_by_major(int major)
169 {
170 	int i;
171 	struct ubi_device *ubi;
172 
173 	spin_lock(&ubi_devices_lock);
174 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
175 		ubi = ubi_devices[i];
176 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
177 			ubi_assert(ubi->ref_count >= 0);
178 			ubi->ref_count += 1;
179 			get_device(&ubi->dev);
180 			spin_unlock(&ubi_devices_lock);
181 			return ubi;
182 		}
183 	}
184 	spin_unlock(&ubi_devices_lock);
185 
186 	return NULL;
187 }
188 
189 /**
190  * ubi_major2num - get UBI device number by character device major number.
191  * @major: major number
192  *
193  * This function searches UBI device number object by its major number. If UBI
194  * device was not found, this function returns -ENODEV, otherwise the UBI device
195  * number is returned.
196  */
197 int ubi_major2num(int major)
198 {
199 	int i, ubi_num = -ENODEV;
200 
201 	spin_lock(&ubi_devices_lock);
202 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
203 		struct ubi_device *ubi = ubi_devices[i];
204 
205 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
206 			ubi_num = ubi->ubi_num;
207 			break;
208 		}
209 	}
210 	spin_unlock(&ubi_devices_lock);
211 
212 	return ubi_num;
213 }
214 
215 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
216 static ssize_t dev_attribute_show(struct device *dev,
217 				  struct device_attribute *attr, char *buf)
218 {
219 	ssize_t ret;
220 	struct ubi_device *ubi;
221 
222 	/*
223 	 * The below code looks weird, but it actually makes sense. We get the
224 	 * UBI device reference from the contained 'struct ubi_device'. But it
225 	 * is unclear if the device was removed or not yet. Indeed, if the
226 	 * device was removed before we increased its reference count,
227 	 * 'ubi_get_device()' will return -ENODEV and we fail.
228 	 *
229 	 * Remember, 'struct ubi_device' is freed in the release function, so
230 	 * we still can use 'ubi->ubi_num'.
231 	 */
232 	ubi = container_of(dev, struct ubi_device, dev);
233 	ubi = ubi_get_device(ubi->ubi_num);
234 	if (!ubi)
235 		return -ENODEV;
236 
237 	if (attr == &dev_eraseblock_size)
238 		ret = sprintf(buf, "%d\n", ubi->leb_size);
239 	else if (attr == &dev_avail_eraseblocks)
240 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
241 	else if (attr == &dev_total_eraseblocks)
242 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
243 	else if (attr == &dev_volumes_count)
244 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
245 	else if (attr == &dev_max_ec)
246 		ret = sprintf(buf, "%d\n", ubi->max_ec);
247 	else if (attr == &dev_reserved_for_bad)
248 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
249 	else if (attr == &dev_bad_peb_count)
250 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
251 	else if (attr == &dev_max_vol_count)
252 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
253 	else if (attr == &dev_min_io_size)
254 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
255 	else if (attr == &dev_bgt_enabled)
256 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
257 	else if (attr == &dev_mtd_num)
258 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
259 	else
260 		ret = -EINVAL;
261 
262 	ubi_put_device(ubi);
263 	return ret;
264 }
265 
266 static void dev_release(struct device *dev)
267 {
268 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
269 
270 	kfree(ubi);
271 }
272 
273 /**
274  * ubi_sysfs_init - initialize sysfs for an UBI device.
275  * @ubi: UBI device description object
276  *
277  * This function returns zero in case of success and a negative error code in
278  * case of failure.
279  */
280 static int ubi_sysfs_init(struct ubi_device *ubi)
281 {
282 	int err;
283 
284 	ubi->dev.release = dev_release;
285 	ubi->dev.devt = ubi->cdev.dev;
286 	ubi->dev.class = ubi_class;
287 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
288 	err = device_register(&ubi->dev);
289 	if (err)
290 		return err;
291 
292 	err = device_create_file(&ubi->dev, &dev_eraseblock_size);
293 	if (err)
294 		return err;
295 	err = device_create_file(&ubi->dev, &dev_avail_eraseblocks);
296 	if (err)
297 		return err;
298 	err = device_create_file(&ubi->dev, &dev_total_eraseblocks);
299 	if (err)
300 		return err;
301 	err = device_create_file(&ubi->dev, &dev_volumes_count);
302 	if (err)
303 		return err;
304 	err = device_create_file(&ubi->dev, &dev_max_ec);
305 	if (err)
306 		return err;
307 	err = device_create_file(&ubi->dev, &dev_reserved_for_bad);
308 	if (err)
309 		return err;
310 	err = device_create_file(&ubi->dev, &dev_bad_peb_count);
311 	if (err)
312 		return err;
313 	err = device_create_file(&ubi->dev, &dev_max_vol_count);
314 	if (err)
315 		return err;
316 	err = device_create_file(&ubi->dev, &dev_min_io_size);
317 	if (err)
318 		return err;
319 	err = device_create_file(&ubi->dev, &dev_bgt_enabled);
320 	if (err)
321 		return err;
322 	err = device_create_file(&ubi->dev, &dev_mtd_num);
323 	return err;
324 }
325 
326 /**
327  * ubi_sysfs_close - close sysfs for an UBI device.
328  * @ubi: UBI device description object
329  */
330 static void ubi_sysfs_close(struct ubi_device *ubi)
331 {
332 	device_remove_file(&ubi->dev, &dev_mtd_num);
333 	device_remove_file(&ubi->dev, &dev_bgt_enabled);
334 	device_remove_file(&ubi->dev, &dev_min_io_size);
335 	device_remove_file(&ubi->dev, &dev_max_vol_count);
336 	device_remove_file(&ubi->dev, &dev_bad_peb_count);
337 	device_remove_file(&ubi->dev, &dev_reserved_for_bad);
338 	device_remove_file(&ubi->dev, &dev_max_ec);
339 	device_remove_file(&ubi->dev, &dev_volumes_count);
340 	device_remove_file(&ubi->dev, &dev_total_eraseblocks);
341 	device_remove_file(&ubi->dev, &dev_avail_eraseblocks);
342 	device_remove_file(&ubi->dev, &dev_eraseblock_size);
343 	device_unregister(&ubi->dev);
344 }
345 
346 /**
347  * kill_volumes - destroy all volumes.
348  * @ubi: UBI device description object
349  */
350 static void kill_volumes(struct ubi_device *ubi)
351 {
352 	int i;
353 
354 	for (i = 0; i < ubi->vtbl_slots; i++)
355 		if (ubi->volumes[i])
356 			ubi_free_volume(ubi, ubi->volumes[i]);
357 }
358 
359 /**
360  * free_user_volumes - free all user volumes.
361  * @ubi: UBI device description object
362  *
363  * Normally the volumes are freed at the release function of the volume device
364  * objects. However, on error paths the volumes have to be freed before the
365  * device objects have been initialized.
366  */
367 static void free_user_volumes(struct ubi_device *ubi)
368 {
369 	int i;
370 
371 	for (i = 0; i < ubi->vtbl_slots; i++)
372 		if (ubi->volumes[i]) {
373 			kfree(ubi->volumes[i]->eba_tbl);
374 			kfree(ubi->volumes[i]);
375 		}
376 }
377 
378 /**
379  * uif_init - initialize user interfaces for an UBI device.
380  * @ubi: UBI device description object
381  *
382  * This function returns zero in case of success and a negative error code in
383  * case of failure. Note, this function destroys all volumes if it failes.
384  */
385 static int uif_init(struct ubi_device *ubi)
386 {
387 	int i, err;
388 	dev_t dev;
389 
390 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
391 
392 	/*
393 	 * Major numbers for the UBI character devices are allocated
394 	 * dynamically. Major numbers of volume character devices are
395 	 * equivalent to ones of the corresponding UBI character device. Minor
396 	 * numbers of UBI character devices are 0, while minor numbers of
397 	 * volume character devices start from 1. Thus, we allocate one major
398 	 * number and ubi->vtbl_slots + 1 minor numbers.
399 	 */
400 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
401 	if (err) {
402 		ubi_err("cannot register UBI character devices");
403 		return err;
404 	}
405 
406 	ubi_assert(MINOR(dev) == 0);
407 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
408 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
409 	ubi->cdev.owner = THIS_MODULE;
410 
411 	err = cdev_add(&ubi->cdev, dev, 1);
412 	if (err) {
413 		ubi_err("cannot add character device");
414 		goto out_unreg;
415 	}
416 
417 	err = ubi_sysfs_init(ubi);
418 	if (err)
419 		goto out_sysfs;
420 
421 	for (i = 0; i < ubi->vtbl_slots; i++)
422 		if (ubi->volumes[i]) {
423 			err = ubi_add_volume(ubi, ubi->volumes[i]);
424 			if (err) {
425 				ubi_err("cannot add volume %d", i);
426 				goto out_volumes;
427 			}
428 		}
429 
430 	return 0;
431 
432 out_volumes:
433 	kill_volumes(ubi);
434 out_sysfs:
435 	ubi_sysfs_close(ubi);
436 	cdev_del(&ubi->cdev);
437 out_unreg:
438 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
439 	ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err);
440 	return err;
441 }
442 
443 /**
444  * uif_close - close user interfaces for an UBI device.
445  * @ubi: UBI device description object
446  *
447  * Note, since this function un-registers UBI volume device objects (@vol->dev),
448  * the memory allocated voe the volumes is freed as well (in the release
449  * function).
450  */
451 static void uif_close(struct ubi_device *ubi)
452 {
453 	kill_volumes(ubi);
454 	ubi_sysfs_close(ubi);
455 	cdev_del(&ubi->cdev);
456 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
457 }
458 
459 /**
460  * free_internal_volumes - free internal volumes.
461  * @ubi: UBI device description object
462  */
463 static void free_internal_volumes(struct ubi_device *ubi)
464 {
465 	int i;
466 
467 	for (i = ubi->vtbl_slots;
468 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
469 		kfree(ubi->volumes[i]->eba_tbl);
470 		kfree(ubi->volumes[i]);
471 	}
472 }
473 
474 /**
475  * attach_by_scanning - attach an MTD device using scanning method.
476  * @ubi: UBI device descriptor
477  *
478  * This function returns zero in case of success and a negative error code in
479  * case of failure.
480  *
481  * Note, currently this is the only method to attach UBI devices. Hopefully in
482  * the future we'll have more scalable attaching methods and avoid full media
483  * scanning. But even in this case scanning will be needed as a fall-back
484  * attaching method if there are some on-flash table corruptions.
485  */
486 static int attach_by_scanning(struct ubi_device *ubi)
487 {
488 	int err;
489 	struct ubi_scan_info *si;
490 
491 	si = ubi_scan(ubi);
492 	if (IS_ERR(si))
493 		return PTR_ERR(si);
494 
495 	ubi->bad_peb_count = si->bad_peb_count;
496 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
497 	ubi->max_ec = si->max_ec;
498 	ubi->mean_ec = si->mean_ec;
499 
500 	err = ubi_read_volume_table(ubi, si);
501 	if (err)
502 		goto out_si;
503 
504 	err = ubi_wl_init_scan(ubi, si);
505 	if (err)
506 		goto out_vtbl;
507 
508 	err = ubi_eba_init_scan(ubi, si);
509 	if (err)
510 		goto out_wl;
511 
512 	ubi_scan_destroy_si(si);
513 	return 0;
514 
515 out_wl:
516 	ubi_wl_close(ubi);
517 out_vtbl:
518 	free_internal_volumes(ubi);
519 	vfree(ubi->vtbl);
520 out_si:
521 	ubi_scan_destroy_si(si);
522 	return err;
523 }
524 
525 /**
526  * io_init - initialize I/O sub-system for a given UBI device.
527  * @ubi: UBI device description object
528  *
529  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
530  * assumed:
531  *   o EC header is always at offset zero - this cannot be changed;
532  *   o VID header starts just after the EC header at the closest address
533  *     aligned to @io->hdrs_min_io_size;
534  *   o data starts just after the VID header at the closest address aligned to
535  *     @io->min_io_size
536  *
537  * This function returns zero in case of success and a negative error code in
538  * case of failure.
539  */
540 static int io_init(struct ubi_device *ubi)
541 {
542 	if (ubi->mtd->numeraseregions != 0) {
543 		/*
544 		 * Some flashes have several erase regions. Different regions
545 		 * may have different eraseblock size and other
546 		 * characteristics. It looks like mostly multi-region flashes
547 		 * have one "main" region and one or more small regions to
548 		 * store boot loader code or boot parameters or whatever. I
549 		 * guess we should just pick the largest region. But this is
550 		 * not implemented.
551 		 */
552 		ubi_err("multiple regions, not implemented");
553 		return -EINVAL;
554 	}
555 
556 	if (ubi->vid_hdr_offset < 0)
557 		return -EINVAL;
558 
559 	/*
560 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
561 	 * physical eraseblocks maximum.
562 	 */
563 
564 	ubi->peb_size   = ubi->mtd->erasesize;
565 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
566 	ubi->flash_size = ubi->mtd->size;
567 
568 	if (ubi->mtd->block_isbad && ubi->mtd->block_markbad)
569 		ubi->bad_allowed = 1;
570 
571 	ubi->min_io_size = ubi->mtd->writesize;
572 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
573 
574 	/*
575 	 * Make sure minimal I/O unit is power of 2. Note, there is no
576 	 * fundamental reason for this assumption. It is just an optimization
577 	 * which allows us to avoid costly division operations.
578 	 */
579 	if (!is_power_of_2(ubi->min_io_size)) {
580 		ubi_err("min. I/O unit (%d) is not power of 2",
581 			ubi->min_io_size);
582 		return -EINVAL;
583 	}
584 
585 	ubi_assert(ubi->hdrs_min_io_size > 0);
586 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
587 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
588 
589 	/* Calculate default aligned sizes of EC and VID headers */
590 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
591 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
592 
593 	dbg_msg("min_io_size      %d", ubi->min_io_size);
594 	dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
595 	dbg_msg("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
596 	dbg_msg("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
597 
598 	if (ubi->vid_hdr_offset == 0)
599 		/* Default offset */
600 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
601 				      ubi->ec_hdr_alsize;
602 	else {
603 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
604 						~(ubi->hdrs_min_io_size - 1);
605 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
606 						ubi->vid_hdr_aloffset;
607 	}
608 
609 	/* Similar for the data offset */
610 	ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE;
611 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
612 
613 	dbg_msg("vid_hdr_offset   %d", ubi->vid_hdr_offset);
614 	dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
615 	dbg_msg("vid_hdr_shift    %d", ubi->vid_hdr_shift);
616 	dbg_msg("leb_start        %d", ubi->leb_start);
617 
618 	/* The shift must be aligned to 32-bit boundary */
619 	if (ubi->vid_hdr_shift % 4) {
620 		ubi_err("unaligned VID header shift %d",
621 			ubi->vid_hdr_shift);
622 		return -EINVAL;
623 	}
624 
625 	/* Check sanity */
626 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
627 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
628 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
629 	    ubi->leb_start & (ubi->min_io_size - 1)) {
630 		ubi_err("bad VID header (%d) or data offsets (%d)",
631 			ubi->vid_hdr_offset, ubi->leb_start);
632 		return -EINVAL;
633 	}
634 
635 	/*
636 	 * It may happen that EC and VID headers are situated in one minimal
637 	 * I/O unit. In this case we can only accept this UBI image in
638 	 * read-only mode.
639 	 */
640 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
641 		ubi_warn("EC and VID headers are in the same minimal I/O unit, "
642 			 "switch to read-only mode");
643 		ubi->ro_mode = 1;
644 	}
645 
646 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
647 
648 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
649 		ubi_msg("MTD device %d is write-protected, attach in "
650 			"read-only mode", ubi->mtd->index);
651 		ubi->ro_mode = 1;
652 	}
653 
654 	ubi_msg("physical eraseblock size:   %d bytes (%d KiB)",
655 		ubi->peb_size, ubi->peb_size >> 10);
656 	ubi_msg("logical eraseblock size:    %d bytes", ubi->leb_size);
657 	ubi_msg("smallest flash I/O unit:    %d", ubi->min_io_size);
658 	if (ubi->hdrs_min_io_size != ubi->min_io_size)
659 		ubi_msg("sub-page size:              %d",
660 			ubi->hdrs_min_io_size);
661 	ubi_msg("VID header offset:          %d (aligned %d)",
662 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset);
663 	ubi_msg("data offset:                %d", ubi->leb_start);
664 
665 	/*
666 	 * Note, ideally, we have to initialize ubi->bad_peb_count here. But
667 	 * unfortunately, MTD does not provide this information. We should loop
668 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
669 	 * each physical eraseblock. So, we skip ubi->bad_peb_count
670 	 * uninitialized and initialize it after scanning.
671 	 */
672 
673 	return 0;
674 }
675 
676 /**
677  * autoresize - re-size the volume which has the "auto-resize" flag set.
678  * @ubi: UBI device description object
679  * @vol_id: ID of the volume to re-size
680  *
681  * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in
682  * the volume table to the largest possible size. See comments in ubi-header.h
683  * for more description of the flag. Returns zero in case of success and a
684  * negative error code in case of failure.
685  */
686 static int autoresize(struct ubi_device *ubi, int vol_id)
687 {
688 	struct ubi_volume_desc desc;
689 	struct ubi_volume *vol = ubi->volumes[vol_id];
690 	int err, old_reserved_pebs = vol->reserved_pebs;
691 
692 	/*
693 	 * Clear the auto-resize flag in the volume in-memory copy of the
694 	 * volume table, and 'ubi_resize_volume()' will propagate this change
695 	 * to the flash.
696 	 */
697 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
698 
699 	if (ubi->avail_pebs == 0) {
700 		struct ubi_vtbl_record vtbl_rec;
701 
702 		/*
703 		 * No available PEBs to re-size the volume, clear the flag on
704 		 * flash and exit.
705 		 */
706 		memcpy(&vtbl_rec, &ubi->vtbl[vol_id],
707 		       sizeof(struct ubi_vtbl_record));
708 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
709 		if (err)
710 			ubi_err("cannot clean auto-resize flag for volume %d",
711 				vol_id);
712 	} else {
713 		desc.vol = vol;
714 		err = ubi_resize_volume(&desc,
715 					old_reserved_pebs + ubi->avail_pebs);
716 		if (err)
717 			ubi_err("cannot auto-resize volume %d", vol_id);
718 	}
719 
720 	if (err)
721 		return err;
722 
723 	ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id,
724 		vol->name, old_reserved_pebs, vol->reserved_pebs);
725 	return 0;
726 }
727 
728 /**
729  * ubi_attach_mtd_dev - attach an MTD device.
730  * @mtd: MTD device description object
731  * @ubi_num: number to assign to the new UBI device
732  * @vid_hdr_offset: VID header offset
733  *
734  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
735  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
736  * which case this function finds a vacant device number and assigns it
737  * automatically. Returns the new UBI device number in case of success and a
738  * negative error code in case of failure.
739  *
740  * Note, the invocations of this function has to be serialized by the
741  * @ubi_devices_mutex.
742  */
743 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset)
744 {
745 	struct ubi_device *ubi;
746 	int i, err, do_free = 1;
747 
748 	/*
749 	 * Check if we already have the same MTD device attached.
750 	 *
751 	 * Note, this function assumes that UBI devices creations and deletions
752 	 * are serialized, so it does not take the &ubi_devices_lock.
753 	 */
754 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
755 		ubi = ubi_devices[i];
756 		if (ubi && mtd->index == ubi->mtd->index) {
757 			dbg_err("mtd%d is already attached to ubi%d",
758 				mtd->index, i);
759 			return -EEXIST;
760 		}
761 	}
762 
763 	/*
764 	 * Make sure this MTD device is not emulated on top of an UBI volume
765 	 * already. Well, generally this recursion works fine, but there are
766 	 * different problems like the UBI module takes a reference to itself
767 	 * by attaching (and thus, opening) the emulated MTD device. This
768 	 * results in inability to unload the module. And in general it makes
769 	 * no sense to attach emulated MTD devices, so we prohibit this.
770 	 */
771 	if (mtd->type == MTD_UBIVOLUME) {
772 		ubi_err("refuse attaching mtd%d - it is already emulated on "
773 			"top of UBI", mtd->index);
774 		return -EINVAL;
775 	}
776 
777 	if (ubi_num == UBI_DEV_NUM_AUTO) {
778 		/* Search for an empty slot in the @ubi_devices array */
779 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
780 			if (!ubi_devices[ubi_num])
781 				break;
782 		if (ubi_num == UBI_MAX_DEVICES) {
783 			dbg_err("only %d UBI devices may be created",
784 				UBI_MAX_DEVICES);
785 			return -ENFILE;
786 		}
787 	} else {
788 		if (ubi_num >= UBI_MAX_DEVICES)
789 			return -EINVAL;
790 
791 		/* Make sure ubi_num is not busy */
792 		if (ubi_devices[ubi_num]) {
793 			dbg_err("ubi%d already exists", ubi_num);
794 			return -EEXIST;
795 		}
796 	}
797 
798 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
799 	if (!ubi)
800 		return -ENOMEM;
801 
802 	ubi->mtd = mtd;
803 	ubi->ubi_num = ubi_num;
804 	ubi->vid_hdr_offset = vid_hdr_offset;
805 	ubi->autoresize_vol_id = -1;
806 
807 	mutex_init(&ubi->buf_mutex);
808 	mutex_init(&ubi->ckvol_mutex);
809 	mutex_init(&ubi->mult_mutex);
810 	mutex_init(&ubi->volumes_mutex);
811 	spin_lock_init(&ubi->volumes_lock);
812 
813 	ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num);
814 
815 	err = io_init(ubi);
816 	if (err)
817 		goto out_free;
818 
819 	err = -ENOMEM;
820 	ubi->peb_buf1 = vmalloc(ubi->peb_size);
821 	if (!ubi->peb_buf1)
822 		goto out_free;
823 
824 	ubi->peb_buf2 = vmalloc(ubi->peb_size);
825 	if (!ubi->peb_buf2)
826 		goto out_free;
827 
828 #ifdef CONFIG_MTD_UBI_DEBUG
829 	mutex_init(&ubi->dbg_buf_mutex);
830 	ubi->dbg_peb_buf = vmalloc(ubi->peb_size);
831 	if (!ubi->dbg_peb_buf)
832 		goto out_free;
833 #endif
834 
835 	err = attach_by_scanning(ubi);
836 	if (err) {
837 		dbg_err("failed to attach by scanning, error %d", err);
838 		goto out_free;
839 	}
840 
841 	if (ubi->autoresize_vol_id != -1) {
842 		err = autoresize(ubi, ubi->autoresize_vol_id);
843 		if (err)
844 			goto out_detach;
845 	}
846 
847 	err = uif_init(ubi);
848 	if (err)
849 		goto out_nofree;
850 
851 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name);
852 	if (IS_ERR(ubi->bgt_thread)) {
853 		err = PTR_ERR(ubi->bgt_thread);
854 		ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name,
855 			err);
856 		goto out_uif;
857 	}
858 
859 	ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num);
860 	ubi_msg("MTD device name:            \"%s\"", mtd->name);
861 	ubi_msg("MTD device size:            %llu MiB", ubi->flash_size >> 20);
862 	ubi_msg("number of good PEBs:        %d", ubi->good_peb_count);
863 	ubi_msg("number of bad PEBs:         %d", ubi->bad_peb_count);
864 	ubi_msg("max. allowed volumes:       %d", ubi->vtbl_slots);
865 	ubi_msg("wear-leveling threshold:    %d", CONFIG_MTD_UBI_WL_THRESHOLD);
866 	ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT);
867 	ubi_msg("number of user volumes:     %d",
868 		ubi->vol_count - UBI_INT_VOL_COUNT);
869 	ubi_msg("available PEBs:             %d", ubi->avail_pebs);
870 	ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs);
871 	ubi_msg("number of PEBs reserved for bad PEB handling: %d",
872 		ubi->beb_rsvd_pebs);
873 	ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec);
874 
875 	if (!DBG_DISABLE_BGT)
876 		ubi->thread_enabled = 1;
877 	wake_up_process(ubi->bgt_thread);
878 
879 	ubi_devices[ubi_num] = ubi;
880 	return ubi_num;
881 
882 out_uif:
883 	uif_close(ubi);
884 out_nofree:
885 	do_free = 0;
886 out_detach:
887 	ubi_wl_close(ubi);
888 	if (do_free)
889 		free_user_volumes(ubi);
890 	free_internal_volumes(ubi);
891 	vfree(ubi->vtbl);
892 out_free:
893 	vfree(ubi->peb_buf1);
894 	vfree(ubi->peb_buf2);
895 #ifdef CONFIG_MTD_UBI_DEBUG
896 	vfree(ubi->dbg_peb_buf);
897 #endif
898 	kfree(ubi);
899 	return err;
900 }
901 
902 /**
903  * ubi_detach_mtd_dev - detach an MTD device.
904  * @ubi_num: UBI device number to detach from
905  * @anyway: detach MTD even if device reference count is not zero
906  *
907  * This function destroys an UBI device number @ubi_num and detaches the
908  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
909  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
910  * exist.
911  *
912  * Note, the invocations of this function has to be serialized by the
913  * @ubi_devices_mutex.
914  */
915 int ubi_detach_mtd_dev(int ubi_num, int anyway)
916 {
917 	struct ubi_device *ubi;
918 
919 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
920 		return -EINVAL;
921 
922 	spin_lock(&ubi_devices_lock);
923 	ubi = ubi_devices[ubi_num];
924 	if (!ubi) {
925 		spin_unlock(&ubi_devices_lock);
926 		return -EINVAL;
927 	}
928 
929 	if (ubi->ref_count) {
930 		if (!anyway) {
931 			spin_unlock(&ubi_devices_lock);
932 			return -EBUSY;
933 		}
934 		/* This may only happen if there is a bug */
935 		ubi_err("%s reference count %d, destroy anyway",
936 			ubi->ubi_name, ubi->ref_count);
937 	}
938 	ubi_devices[ubi_num] = NULL;
939 	spin_unlock(&ubi_devices_lock);
940 
941 	ubi_assert(ubi_num == ubi->ubi_num);
942 	dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num);
943 
944 	/*
945 	 * Before freeing anything, we have to stop the background thread to
946 	 * prevent it from doing anything on this device while we are freeing.
947 	 */
948 	if (ubi->bgt_thread)
949 		kthread_stop(ubi->bgt_thread);
950 
951 	/*
952 	 * Get a reference to the device in order to prevent 'dev_release()'
953 	 * from freeing @ubi object.
954 	 */
955 	get_device(&ubi->dev);
956 
957 	uif_close(ubi);
958 	ubi_wl_close(ubi);
959 	free_internal_volumes(ubi);
960 	vfree(ubi->vtbl);
961 	put_mtd_device(ubi->mtd);
962 	vfree(ubi->peb_buf1);
963 	vfree(ubi->peb_buf2);
964 #ifdef CONFIG_MTD_UBI_DEBUG
965 	vfree(ubi->dbg_peb_buf);
966 #endif
967 	ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num);
968 	put_device(&ubi->dev);
969 	return 0;
970 }
971 
972 /**
973  * find_mtd_device - open an MTD device by its name or number.
974  * @mtd_dev: name or number of the device
975  *
976  * This function tries to open and MTD device described by @mtd_dev string,
977  * which is first treated as an ASCII number, and if it is not true, it is
978  * treated as MTD device name. Returns MTD device description object in case of
979  * success and a negative error code in case of failure.
980  */
981 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
982 {
983 	struct mtd_info *mtd;
984 	int mtd_num;
985 	char *endp;
986 
987 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
988 	if (*endp != '\0' || mtd_dev == endp) {
989 		/*
990 		 * This does not look like an ASCII integer, probably this is
991 		 * MTD device name.
992 		 */
993 		mtd = get_mtd_device_nm(mtd_dev);
994 	} else
995 		mtd = get_mtd_device(NULL, mtd_num);
996 
997 	return mtd;
998 }
999 
1000 static int __init ubi_init(void)
1001 {
1002 	int err, i, k;
1003 
1004 	/* Ensure that EC and VID headers have correct size */
1005 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1006 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1007 
1008 	if (mtd_devs > UBI_MAX_DEVICES) {
1009 		ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES);
1010 		return -EINVAL;
1011 	}
1012 
1013 	/* Create base sysfs directory and sysfs files */
1014 	ubi_class = class_create(THIS_MODULE, UBI_NAME_STR);
1015 	if (IS_ERR(ubi_class)) {
1016 		err = PTR_ERR(ubi_class);
1017 		ubi_err("cannot create UBI class");
1018 		goto out;
1019 	}
1020 
1021 	err = class_create_file(ubi_class, &ubi_version);
1022 	if (err) {
1023 		ubi_err("cannot create sysfs file");
1024 		goto out_class;
1025 	}
1026 
1027 	err = misc_register(&ubi_ctrl_cdev);
1028 	if (err) {
1029 		ubi_err("cannot register device");
1030 		goto out_version;
1031 	}
1032 
1033 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1034 					      sizeof(struct ubi_wl_entry),
1035 					      0, 0, NULL);
1036 	if (!ubi_wl_entry_slab)
1037 		goto out_dev_unreg;
1038 
1039 	/* Attach MTD devices */
1040 	for (i = 0; i < mtd_devs; i++) {
1041 		struct mtd_dev_param *p = &mtd_dev_param[i];
1042 		struct mtd_info *mtd;
1043 
1044 		cond_resched();
1045 
1046 		mtd = open_mtd_device(p->name);
1047 		if (IS_ERR(mtd)) {
1048 			err = PTR_ERR(mtd);
1049 			goto out_detach;
1050 		}
1051 
1052 		mutex_lock(&ubi_devices_mutex);
1053 		err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO,
1054 					 p->vid_hdr_offs);
1055 		mutex_unlock(&ubi_devices_mutex);
1056 		if (err < 0) {
1057 			put_mtd_device(mtd);
1058 			ubi_err("cannot attach mtd%d", mtd->index);
1059 			goto out_detach;
1060 		}
1061 	}
1062 
1063 	return 0;
1064 
1065 out_detach:
1066 	for (k = 0; k < i; k++)
1067 		if (ubi_devices[k]) {
1068 			mutex_lock(&ubi_devices_mutex);
1069 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1070 			mutex_unlock(&ubi_devices_mutex);
1071 		}
1072 	kmem_cache_destroy(ubi_wl_entry_slab);
1073 out_dev_unreg:
1074 	misc_deregister(&ubi_ctrl_cdev);
1075 out_version:
1076 	class_remove_file(ubi_class, &ubi_version);
1077 out_class:
1078 	class_destroy(ubi_class);
1079 out:
1080 	ubi_err("UBI error: cannot initialize UBI, error %d", err);
1081 	return err;
1082 }
1083 module_init(ubi_init);
1084 
1085 static void __exit ubi_exit(void)
1086 {
1087 	int i;
1088 
1089 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1090 		if (ubi_devices[i]) {
1091 			mutex_lock(&ubi_devices_mutex);
1092 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1093 			mutex_unlock(&ubi_devices_mutex);
1094 		}
1095 	kmem_cache_destroy(ubi_wl_entry_slab);
1096 	misc_deregister(&ubi_ctrl_cdev);
1097 	class_remove_file(ubi_class, &ubi_version);
1098 	class_destroy(ubi_class);
1099 }
1100 module_exit(ubi_exit);
1101 
1102 /**
1103  * bytes_str_to_int - convert a number of bytes string into an integer.
1104  * @str: the string to convert
1105  *
1106  * This function returns positive resulting integer in case of success and a
1107  * negative error code in case of failure.
1108  */
1109 static int __init bytes_str_to_int(const char *str)
1110 {
1111 	char *endp;
1112 	unsigned long result;
1113 
1114 	result = simple_strtoul(str, &endp, 0);
1115 	if (str == endp || result < 0) {
1116 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1117 		       str);
1118 		return -EINVAL;
1119 	}
1120 
1121 	switch (*endp) {
1122 	case 'G':
1123 		result *= 1024;
1124 	case 'M':
1125 		result *= 1024;
1126 	case 'K':
1127 		result *= 1024;
1128 		if (endp[1] == 'i' && endp[2] == 'B')
1129 			endp += 2;
1130 	case '\0':
1131 		break;
1132 	default:
1133 		printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n",
1134 		       str);
1135 		return -EINVAL;
1136 	}
1137 
1138 	return result;
1139 }
1140 
1141 /**
1142  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1143  * @val: the parameter value to parse
1144  * @kp: not used
1145  *
1146  * This function returns zero in case of success and a negative error code in
1147  * case of error.
1148  */
1149 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1150 {
1151 	int i, len;
1152 	struct mtd_dev_param *p;
1153 	char buf[MTD_PARAM_LEN_MAX];
1154 	char *pbuf = &buf[0];
1155 	char *tokens[2] = {NULL, NULL};
1156 
1157 	if (!val)
1158 		return -EINVAL;
1159 
1160 	if (mtd_devs == UBI_MAX_DEVICES) {
1161 		printk(KERN_ERR "UBI error: too many parameters, max. is %d\n",
1162 		       UBI_MAX_DEVICES);
1163 		return -EINVAL;
1164 	}
1165 
1166 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1167 	if (len == MTD_PARAM_LEN_MAX) {
1168 		printk(KERN_ERR "UBI error: parameter \"%s\" is too long, "
1169 		       "max. is %d\n", val, MTD_PARAM_LEN_MAX);
1170 		return -EINVAL;
1171 	}
1172 
1173 	if (len == 0) {
1174 		printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - "
1175 		       "ignored\n");
1176 		return 0;
1177 	}
1178 
1179 	strcpy(buf, val);
1180 
1181 	/* Get rid of the final newline */
1182 	if (buf[len - 1] == '\n')
1183 		buf[len - 1] = '\0';
1184 
1185 	for (i = 0; i < 2; i++)
1186 		tokens[i] = strsep(&pbuf, ",");
1187 
1188 	if (pbuf) {
1189 		printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n",
1190 		       val);
1191 		return -EINVAL;
1192 	}
1193 
1194 	p = &mtd_dev_param[mtd_devs];
1195 	strcpy(&p->name[0], tokens[0]);
1196 
1197 	if (tokens[1])
1198 		p->vid_hdr_offs = bytes_str_to_int(tokens[1]);
1199 
1200 	if (p->vid_hdr_offs < 0)
1201 		return p->vid_hdr_offs;
1202 
1203 	mtd_devs += 1;
1204 	return 0;
1205 }
1206 
1207 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1208 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: "
1209 		      "mtd=<name|num>[,<vid_hdr_offs>].\n"
1210 		      "Multiple \"mtd\" parameters may be specified.\n"
1211 		      "MTD devices may be specified by their number or name.\n"
1212 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID "
1213 		      "header position and data starting position to be used "
1214 		      "by UBI.\n"
1215 		      "Example: mtd=content,1984 mtd=4 - attach MTD device"
1216 		      "with name \"content\" using VID header offset 1984, and "
1217 		      "MTD device number 4 with default VID header offset.");
1218 
1219 MODULE_VERSION(__stringify(UBI_VERSION));
1220 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1221 MODULE_AUTHOR("Artem Bityutskiy");
1222 MODULE_LICENSE("GPL");
1223