1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 * 31 * At the moment we only attach UBI devices by scanning, which will become a 32 * bottleneck when flashes reach certain large size. Then one may improve UBI 33 * and add other methods, although it does not seem to be easy to do. 34 */ 35 36 #include <linux/err.h> 37 #include <linux/module.h> 38 #include <linux/moduleparam.h> 39 #include <linux/stringify.h> 40 #include <linux/stat.h> 41 #include <linux/miscdevice.h> 42 #include <linux/log2.h> 43 #include <linux/kthread.h> 44 #include "ubi.h" 45 46 /* Maximum length of the 'mtd=' parameter */ 47 #define MTD_PARAM_LEN_MAX 64 48 49 /** 50 * struct mtd_dev_param - MTD device parameter description data structure. 51 * @name: MTD device name or number string 52 * @vid_hdr_offs: VID header offset 53 */ 54 struct mtd_dev_param 55 { 56 char name[MTD_PARAM_LEN_MAX]; 57 int vid_hdr_offs; 58 }; 59 60 /* Numbers of elements set in the @mtd_dev_param array */ 61 static int mtd_devs = 0; 62 63 /* MTD devices specification parameters */ 64 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 65 66 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 67 struct class *ubi_class; 68 69 /* Slab cache for wear-leveling entries */ 70 struct kmem_cache *ubi_wl_entry_slab; 71 72 /* UBI control character device */ 73 static struct miscdevice ubi_ctrl_cdev = { 74 .minor = MISC_DYNAMIC_MINOR, 75 .name = "ubi_ctrl", 76 .fops = &ubi_ctrl_cdev_operations, 77 }; 78 79 /* All UBI devices in system */ 80 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 81 82 /* Serializes UBI devices creations and removals */ 83 DEFINE_MUTEX(ubi_devices_mutex); 84 85 /* Protects @ubi_devices and @ubi->ref_count */ 86 static DEFINE_SPINLOCK(ubi_devices_lock); 87 88 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 89 static ssize_t ubi_version_show(struct class *class, char *buf) 90 { 91 return sprintf(buf, "%d\n", UBI_VERSION); 92 } 93 94 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 95 static struct class_attribute ubi_version = 96 __ATTR(version, S_IRUGO, ubi_version_show, NULL); 97 98 static ssize_t dev_attribute_show(struct device *dev, 99 struct device_attribute *attr, char *buf); 100 101 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 102 static struct device_attribute dev_eraseblock_size = 103 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 104 static struct device_attribute dev_avail_eraseblocks = 105 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 106 static struct device_attribute dev_total_eraseblocks = 107 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 108 static struct device_attribute dev_volumes_count = 109 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 110 static struct device_attribute dev_max_ec = 111 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 112 static struct device_attribute dev_reserved_for_bad = 113 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 114 static struct device_attribute dev_bad_peb_count = 115 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 116 static struct device_attribute dev_max_vol_count = 117 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 118 static struct device_attribute dev_min_io_size = 119 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 120 static struct device_attribute dev_bgt_enabled = 121 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 122 static struct device_attribute dev_mtd_num = 123 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 124 125 /** 126 * ubi_get_device - get UBI device. 127 * @ubi_num: UBI device number 128 * 129 * This function returns UBI device description object for UBI device number 130 * @ubi_num, or %NULL if the device does not exist. This function increases the 131 * device reference count to prevent removal of the device. In other words, the 132 * device cannot be removed if its reference count is not zero. 133 */ 134 struct ubi_device *ubi_get_device(int ubi_num) 135 { 136 struct ubi_device *ubi; 137 138 spin_lock(&ubi_devices_lock); 139 ubi = ubi_devices[ubi_num]; 140 if (ubi) { 141 ubi_assert(ubi->ref_count >= 0); 142 ubi->ref_count += 1; 143 get_device(&ubi->dev); 144 } 145 spin_unlock(&ubi_devices_lock); 146 147 return ubi; 148 } 149 150 /** 151 * ubi_put_device - drop an UBI device reference. 152 * @ubi: UBI device description object 153 */ 154 void ubi_put_device(struct ubi_device *ubi) 155 { 156 spin_lock(&ubi_devices_lock); 157 ubi->ref_count -= 1; 158 put_device(&ubi->dev); 159 spin_unlock(&ubi_devices_lock); 160 } 161 162 /** 163 * ubi_get_by_major - get UBI device description object by character device 164 * major number. 165 * @major: major number 166 * 167 * This function is similar to 'ubi_get_device()', but it searches the device 168 * by its major number. 169 */ 170 struct ubi_device *ubi_get_by_major(int major) 171 { 172 int i; 173 struct ubi_device *ubi; 174 175 spin_lock(&ubi_devices_lock); 176 for (i = 0; i < UBI_MAX_DEVICES; i++) { 177 ubi = ubi_devices[i]; 178 if (ubi && MAJOR(ubi->cdev.dev) == major) { 179 ubi_assert(ubi->ref_count >= 0); 180 ubi->ref_count += 1; 181 get_device(&ubi->dev); 182 spin_unlock(&ubi_devices_lock); 183 return ubi; 184 } 185 } 186 spin_unlock(&ubi_devices_lock); 187 188 return NULL; 189 } 190 191 /** 192 * ubi_major2num - get UBI device number by character device major number. 193 * @major: major number 194 * 195 * This function searches UBI device number object by its major number. If UBI 196 * device was not found, this function returns -ENODEV, otherwise the UBI device 197 * number is returned. 198 */ 199 int ubi_major2num(int major) 200 { 201 int i, ubi_num = -ENODEV; 202 203 spin_lock(&ubi_devices_lock); 204 for (i = 0; i < UBI_MAX_DEVICES; i++) { 205 struct ubi_device *ubi = ubi_devices[i]; 206 207 if (ubi && MAJOR(ubi->cdev.dev) == major) { 208 ubi_num = ubi->ubi_num; 209 break; 210 } 211 } 212 spin_unlock(&ubi_devices_lock); 213 214 return ubi_num; 215 } 216 217 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 218 static ssize_t dev_attribute_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 ssize_t ret; 222 struct ubi_device *ubi; 223 224 /* 225 * The below code looks weird, but it actually makes sense. We get the 226 * UBI device reference from the contained 'struct ubi_device'. But it 227 * is unclear if the device was removed or not yet. Indeed, if the 228 * device was removed before we increased its reference count, 229 * 'ubi_get_device()' will return -ENODEV and we fail. 230 * 231 * Remember, 'struct ubi_device' is freed in the release function, so 232 * we still can use 'ubi->ubi_num'. 233 */ 234 ubi = container_of(dev, struct ubi_device, dev); 235 ubi = ubi_get_device(ubi->ubi_num); 236 if (!ubi) 237 return -ENODEV; 238 239 if (attr == &dev_eraseblock_size) 240 ret = sprintf(buf, "%d\n", ubi->leb_size); 241 else if (attr == &dev_avail_eraseblocks) 242 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 243 else if (attr == &dev_total_eraseblocks) 244 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 245 else if (attr == &dev_volumes_count) 246 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 247 else if (attr == &dev_max_ec) 248 ret = sprintf(buf, "%d\n", ubi->max_ec); 249 else if (attr == &dev_reserved_for_bad) 250 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 251 else if (attr == &dev_bad_peb_count) 252 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 253 else if (attr == &dev_max_vol_count) 254 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 255 else if (attr == &dev_min_io_size) 256 ret = sprintf(buf, "%d\n", ubi->min_io_size); 257 else if (attr == &dev_bgt_enabled) 258 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 259 else if (attr == &dev_mtd_num) 260 ret = sprintf(buf, "%d\n", ubi->mtd->index); 261 else 262 ret = -EINVAL; 263 264 ubi_put_device(ubi); 265 return ret; 266 } 267 268 /* Fake "release" method for UBI devices */ 269 static void dev_release(struct device *dev) { } 270 271 /** 272 * ubi_sysfs_init - initialize sysfs for an UBI device. 273 * @ubi: UBI device description object 274 * 275 * This function returns zero in case of success and a negative error code in 276 * case of failure. 277 */ 278 static int ubi_sysfs_init(struct ubi_device *ubi) 279 { 280 int err; 281 282 ubi->dev.release = dev_release; 283 ubi->dev.devt = ubi->cdev.dev; 284 ubi->dev.class = ubi_class; 285 sprintf(&ubi->dev.bus_id[0], UBI_NAME_STR"%d", ubi->ubi_num); 286 err = device_register(&ubi->dev); 287 if (err) 288 return err; 289 290 err = device_create_file(&ubi->dev, &dev_eraseblock_size); 291 if (err) 292 return err; 293 err = device_create_file(&ubi->dev, &dev_avail_eraseblocks); 294 if (err) 295 return err; 296 err = device_create_file(&ubi->dev, &dev_total_eraseblocks); 297 if (err) 298 return err; 299 err = device_create_file(&ubi->dev, &dev_volumes_count); 300 if (err) 301 return err; 302 err = device_create_file(&ubi->dev, &dev_max_ec); 303 if (err) 304 return err; 305 err = device_create_file(&ubi->dev, &dev_reserved_for_bad); 306 if (err) 307 return err; 308 err = device_create_file(&ubi->dev, &dev_bad_peb_count); 309 if (err) 310 return err; 311 err = device_create_file(&ubi->dev, &dev_max_vol_count); 312 if (err) 313 return err; 314 err = device_create_file(&ubi->dev, &dev_min_io_size); 315 if (err) 316 return err; 317 err = device_create_file(&ubi->dev, &dev_bgt_enabled); 318 if (err) 319 return err; 320 err = device_create_file(&ubi->dev, &dev_mtd_num); 321 return err; 322 } 323 324 /** 325 * ubi_sysfs_close - close sysfs for an UBI device. 326 * @ubi: UBI device description object 327 */ 328 static void ubi_sysfs_close(struct ubi_device *ubi) 329 { 330 device_remove_file(&ubi->dev, &dev_mtd_num); 331 device_remove_file(&ubi->dev, &dev_bgt_enabled); 332 device_remove_file(&ubi->dev, &dev_min_io_size); 333 device_remove_file(&ubi->dev, &dev_max_vol_count); 334 device_remove_file(&ubi->dev, &dev_bad_peb_count); 335 device_remove_file(&ubi->dev, &dev_reserved_for_bad); 336 device_remove_file(&ubi->dev, &dev_max_ec); 337 device_remove_file(&ubi->dev, &dev_volumes_count); 338 device_remove_file(&ubi->dev, &dev_total_eraseblocks); 339 device_remove_file(&ubi->dev, &dev_avail_eraseblocks); 340 device_remove_file(&ubi->dev, &dev_eraseblock_size); 341 device_unregister(&ubi->dev); 342 } 343 344 /** 345 * kill_volumes - destroy all volumes. 346 * @ubi: UBI device description object 347 */ 348 static void kill_volumes(struct ubi_device *ubi) 349 { 350 int i; 351 352 for (i = 0; i < ubi->vtbl_slots; i++) 353 if (ubi->volumes[i]) 354 ubi_free_volume(ubi, ubi->volumes[i]); 355 } 356 357 /** 358 * uif_init - initialize user interfaces for an UBI device. 359 * @ubi: UBI device description object 360 * 361 * This function returns zero in case of success and a negative error code in 362 * case of failure. 363 */ 364 static int uif_init(struct ubi_device *ubi) 365 { 366 int i, err; 367 dev_t dev; 368 369 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 370 371 /* 372 * Major numbers for the UBI character devices are allocated 373 * dynamically. Major numbers of volume character devices are 374 * equivalent to ones of the corresponding UBI character device. Minor 375 * numbers of UBI character devices are 0, while minor numbers of 376 * volume character devices start from 1. Thus, we allocate one major 377 * number and ubi->vtbl_slots + 1 minor numbers. 378 */ 379 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 380 if (err) { 381 ubi_err("cannot register UBI character devices"); 382 return err; 383 } 384 385 ubi_assert(MINOR(dev) == 0); 386 cdev_init(&ubi->cdev, &ubi_cdev_operations); 387 dbg_msg("%s major is %u", ubi->ubi_name, MAJOR(dev)); 388 ubi->cdev.owner = THIS_MODULE; 389 390 err = cdev_add(&ubi->cdev, dev, 1); 391 if (err) { 392 ubi_err("cannot add character device"); 393 goto out_unreg; 394 } 395 396 err = ubi_sysfs_init(ubi); 397 if (err) 398 goto out_sysfs; 399 400 for (i = 0; i < ubi->vtbl_slots; i++) 401 if (ubi->volumes[i]) { 402 err = ubi_add_volume(ubi, ubi->volumes[i]); 403 if (err) { 404 ubi_err("cannot add volume %d", i); 405 goto out_volumes; 406 } 407 } 408 409 return 0; 410 411 out_volumes: 412 kill_volumes(ubi); 413 out_sysfs: 414 ubi_sysfs_close(ubi); 415 cdev_del(&ubi->cdev); 416 out_unreg: 417 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 418 ubi_err("cannot initialize UBI %s, error %d", ubi->ubi_name, err); 419 return err; 420 } 421 422 /** 423 * uif_close - close user interfaces for an UBI device. 424 * @ubi: UBI device description object 425 */ 426 static void uif_close(struct ubi_device *ubi) 427 { 428 kill_volumes(ubi); 429 ubi_sysfs_close(ubi); 430 cdev_del(&ubi->cdev); 431 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 432 } 433 434 /** 435 * attach_by_scanning - attach an MTD device using scanning method. 436 * @ubi: UBI device descriptor 437 * 438 * This function returns zero in case of success and a negative error code in 439 * case of failure. 440 * 441 * Note, currently this is the only method to attach UBI devices. Hopefully in 442 * the future we'll have more scalable attaching methods and avoid full media 443 * scanning. But even in this case scanning will be needed as a fall-back 444 * attaching method if there are some on-flash table corruptions. 445 */ 446 static int attach_by_scanning(struct ubi_device *ubi) 447 { 448 int err; 449 struct ubi_scan_info *si; 450 451 si = ubi_scan(ubi); 452 if (IS_ERR(si)) 453 return PTR_ERR(si); 454 455 ubi->bad_peb_count = si->bad_peb_count; 456 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 457 ubi->max_ec = si->max_ec; 458 ubi->mean_ec = si->mean_ec; 459 460 err = ubi_read_volume_table(ubi, si); 461 if (err) 462 goto out_si; 463 464 err = ubi_wl_init_scan(ubi, si); 465 if (err) 466 goto out_vtbl; 467 468 err = ubi_eba_init_scan(ubi, si); 469 if (err) 470 goto out_wl; 471 472 ubi_scan_destroy_si(si); 473 return 0; 474 475 out_wl: 476 ubi_wl_close(ubi); 477 out_vtbl: 478 vfree(ubi->vtbl); 479 out_si: 480 ubi_scan_destroy_si(si); 481 return err; 482 } 483 484 /** 485 * io_init - initialize I/O unit for a given UBI device. 486 * @ubi: UBI device description object 487 * 488 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 489 * assumed: 490 * o EC header is always at offset zero - this cannot be changed; 491 * o VID header starts just after the EC header at the closest address 492 * aligned to @io->hdrs_min_io_size; 493 * o data starts just after the VID header at the closest address aligned to 494 * @io->min_io_size 495 * 496 * This function returns zero in case of success and a negative error code in 497 * case of failure. 498 */ 499 static int io_init(struct ubi_device *ubi) 500 { 501 if (ubi->mtd->numeraseregions != 0) { 502 /* 503 * Some flashes have several erase regions. Different regions 504 * may have different eraseblock size and other 505 * characteristics. It looks like mostly multi-region flashes 506 * have one "main" region and one or more small regions to 507 * store boot loader code or boot parameters or whatever. I 508 * guess we should just pick the largest region. But this is 509 * not implemented. 510 */ 511 ubi_err("multiple regions, not implemented"); 512 return -EINVAL; 513 } 514 515 if (ubi->vid_hdr_offset < 0) 516 return -EINVAL; 517 518 /* 519 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 520 * physical eraseblocks maximum. 521 */ 522 523 ubi->peb_size = ubi->mtd->erasesize; 524 ubi->peb_count = ubi->mtd->size / ubi->mtd->erasesize; 525 ubi->flash_size = ubi->mtd->size; 526 527 if (ubi->mtd->block_isbad && ubi->mtd->block_markbad) 528 ubi->bad_allowed = 1; 529 530 ubi->min_io_size = ubi->mtd->writesize; 531 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 532 533 /* Make sure minimal I/O unit is power of 2 */ 534 if (!is_power_of_2(ubi->min_io_size)) { 535 ubi_err("min. I/O unit (%d) is not power of 2", 536 ubi->min_io_size); 537 return -EINVAL; 538 } 539 540 ubi_assert(ubi->hdrs_min_io_size > 0); 541 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 542 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 543 544 /* Calculate default aligned sizes of EC and VID headers */ 545 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 546 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 547 548 dbg_msg("min_io_size %d", ubi->min_io_size); 549 dbg_msg("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 550 dbg_msg("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 551 dbg_msg("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 552 553 if (ubi->vid_hdr_offset == 0) 554 /* Default offset */ 555 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 556 ubi->ec_hdr_alsize; 557 else { 558 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 559 ~(ubi->hdrs_min_io_size - 1); 560 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 561 ubi->vid_hdr_aloffset; 562 } 563 564 /* Similar for the data offset */ 565 ubi->leb_start = ubi->vid_hdr_offset + UBI_EC_HDR_SIZE; 566 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 567 568 dbg_msg("vid_hdr_offset %d", ubi->vid_hdr_offset); 569 dbg_msg("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 570 dbg_msg("vid_hdr_shift %d", ubi->vid_hdr_shift); 571 dbg_msg("leb_start %d", ubi->leb_start); 572 573 /* The shift must be aligned to 32-bit boundary */ 574 if (ubi->vid_hdr_shift % 4) { 575 ubi_err("unaligned VID header shift %d", 576 ubi->vid_hdr_shift); 577 return -EINVAL; 578 } 579 580 /* Check sanity */ 581 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 582 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 583 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 584 ubi->leb_start % ubi->min_io_size) { 585 ubi_err("bad VID header (%d) or data offsets (%d)", 586 ubi->vid_hdr_offset, ubi->leb_start); 587 return -EINVAL; 588 } 589 590 /* 591 * It may happen that EC and VID headers are situated in one minimal 592 * I/O unit. In this case we can only accept this UBI image in 593 * read-only mode. 594 */ 595 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 596 ubi_warn("EC and VID headers are in the same minimal I/O unit, " 597 "switch to read-only mode"); 598 ubi->ro_mode = 1; 599 } 600 601 ubi->leb_size = ubi->peb_size - ubi->leb_start; 602 603 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 604 ubi_msg("MTD device %d is write-protected, attach in " 605 "read-only mode", ubi->mtd->index); 606 ubi->ro_mode = 1; 607 } 608 609 ubi_msg("physical eraseblock size: %d bytes (%d KiB)", 610 ubi->peb_size, ubi->peb_size >> 10); 611 ubi_msg("logical eraseblock size: %d bytes", ubi->leb_size); 612 ubi_msg("smallest flash I/O unit: %d", ubi->min_io_size); 613 if (ubi->hdrs_min_io_size != ubi->min_io_size) 614 ubi_msg("sub-page size: %d", 615 ubi->hdrs_min_io_size); 616 ubi_msg("VID header offset: %d (aligned %d)", 617 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset); 618 ubi_msg("data offset: %d", ubi->leb_start); 619 620 /* 621 * Note, ideally, we have to initialize ubi->bad_peb_count here. But 622 * unfortunately, MTD does not provide this information. We should loop 623 * over all physical eraseblocks and invoke mtd->block_is_bad() for 624 * each physical eraseblock. So, we skip ubi->bad_peb_count 625 * uninitialized and initialize it after scanning. 626 */ 627 628 return 0; 629 } 630 631 /** 632 * autoresize - re-size the volume which has the "auto-resize" flag set. 633 * @ubi: UBI device description object 634 * @vol_id: ID of the volume to re-size 635 * 636 * This function re-sizes the volume marked by the @UBI_VTBL_AUTORESIZE_FLG in 637 * the volume table to the largest possible size. See comments in ubi-header.h 638 * for more description of the flag. Returns zero in case of success and a 639 * negative error code in case of failure. 640 */ 641 static int autoresize(struct ubi_device *ubi, int vol_id) 642 { 643 struct ubi_volume_desc desc; 644 struct ubi_volume *vol = ubi->volumes[vol_id]; 645 int err, old_reserved_pebs = vol->reserved_pebs; 646 647 /* 648 * Clear the auto-resize flag in the volume in-memory copy of the 649 * volume table, and 'ubi_resize_volume()' will propogate this change 650 * to the flash. 651 */ 652 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 653 654 if (ubi->avail_pebs == 0) { 655 struct ubi_vtbl_record vtbl_rec; 656 657 /* 658 * No avalilable PEBs to re-size the volume, clear the flag on 659 * flash and exit. 660 */ 661 memcpy(&vtbl_rec, &ubi->vtbl[vol_id], 662 sizeof(struct ubi_vtbl_record)); 663 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 664 if (err) 665 ubi_err("cannot clean auto-resize flag for volume %d", 666 vol_id); 667 } else { 668 desc.vol = vol; 669 err = ubi_resize_volume(&desc, 670 old_reserved_pebs + ubi->avail_pebs); 671 if (err) 672 ubi_err("cannot auto-resize volume %d", vol_id); 673 } 674 675 if (err) 676 return err; 677 678 ubi_msg("volume %d (\"%s\") re-sized from %d to %d LEBs", vol_id, 679 vol->name, old_reserved_pebs, vol->reserved_pebs); 680 return 0; 681 } 682 683 /** 684 * ubi_attach_mtd_dev - attach an MTD device. 685 * @mtd_dev: MTD device description object 686 * @ubi_num: number to assign to the new UBI device 687 * @vid_hdr_offset: VID header offset 688 * 689 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 690 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 691 * which case this function finds a vacant device nubert and assings it 692 * automatically. Returns the new UBI device number in case of success and a 693 * negative error code in case of failure. 694 * 695 * Note, the invocations of this function has to be serialized by the 696 * @ubi_devices_mutex. 697 */ 698 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) 699 { 700 struct ubi_device *ubi; 701 int i, err; 702 703 /* 704 * Check if we already have the same MTD device attached. 705 * 706 * Note, this function assumes that UBI devices creations and deletions 707 * are serialized, so it does not take the &ubi_devices_lock. 708 */ 709 for (i = 0; i < UBI_MAX_DEVICES; i++) { 710 ubi = ubi_devices[i]; 711 if (ubi && mtd->index == ubi->mtd->index) { 712 dbg_err("mtd%d is already attached to ubi%d", 713 mtd->index, i); 714 return -EEXIST; 715 } 716 } 717 718 /* 719 * Make sure this MTD device is not emulated on top of an UBI volume 720 * already. Well, generally this recursion works fine, but there are 721 * different problems like the UBI module takes a reference to itself 722 * by attaching (and thus, opening) the emulated MTD device. This 723 * results in inability to unload the module. And in general it makes 724 * no sense to attach emulated MTD devices, so we prohibit this. 725 */ 726 if (mtd->type == MTD_UBIVOLUME) { 727 ubi_err("refuse attaching mtd%d - it is already emulated on " 728 "top of UBI", mtd->index); 729 return -EINVAL; 730 } 731 732 if (ubi_num == UBI_DEV_NUM_AUTO) { 733 /* Search for an empty slot in the @ubi_devices array */ 734 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 735 if (!ubi_devices[ubi_num]) 736 break; 737 if (ubi_num == UBI_MAX_DEVICES) { 738 dbg_err("only %d UBI devices may be created", UBI_MAX_DEVICES); 739 return -ENFILE; 740 } 741 } else { 742 if (ubi_num >= UBI_MAX_DEVICES) 743 return -EINVAL; 744 745 /* Make sure ubi_num is not busy */ 746 if (ubi_devices[ubi_num]) { 747 dbg_err("ubi%d already exists", ubi_num); 748 return -EEXIST; 749 } 750 } 751 752 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 753 if (!ubi) 754 return -ENOMEM; 755 756 ubi->mtd = mtd; 757 ubi->ubi_num = ubi_num; 758 ubi->vid_hdr_offset = vid_hdr_offset; 759 ubi->autoresize_vol_id = -1; 760 761 mutex_init(&ubi->buf_mutex); 762 mutex_init(&ubi->ckvol_mutex); 763 mutex_init(&ubi->volumes_mutex); 764 spin_lock_init(&ubi->volumes_lock); 765 766 ubi_msg("attaching mtd%d to ubi%d", mtd->index, ubi_num); 767 768 err = io_init(ubi); 769 if (err) 770 goto out_free; 771 772 ubi->peb_buf1 = vmalloc(ubi->peb_size); 773 if (!ubi->peb_buf1) 774 goto out_free; 775 776 ubi->peb_buf2 = vmalloc(ubi->peb_size); 777 if (!ubi->peb_buf2) 778 goto out_free; 779 780 #ifdef CONFIG_MTD_UBI_DEBUG 781 mutex_init(&ubi->dbg_buf_mutex); 782 ubi->dbg_peb_buf = vmalloc(ubi->peb_size); 783 if (!ubi->dbg_peb_buf) 784 goto out_free; 785 #endif 786 787 err = attach_by_scanning(ubi); 788 if (err) { 789 dbg_err("failed to attach by scanning, error %d", err); 790 goto out_free; 791 } 792 793 if (ubi->autoresize_vol_id != -1) { 794 err = autoresize(ubi, ubi->autoresize_vol_id); 795 if (err) 796 goto out_detach; 797 } 798 799 err = uif_init(ubi); 800 if (err) 801 goto out_detach; 802 803 ubi->bgt_thread = kthread_create(ubi_thread, ubi, ubi->bgt_name); 804 if (IS_ERR(ubi->bgt_thread)) { 805 err = PTR_ERR(ubi->bgt_thread); 806 ubi_err("cannot spawn \"%s\", error %d", ubi->bgt_name, 807 err); 808 goto out_uif; 809 } 810 811 ubi_msg("attached mtd%d to ubi%d", mtd->index, ubi_num); 812 ubi_msg("MTD device name: \"%s\"", mtd->name); 813 ubi_msg("MTD device size: %llu MiB", ubi->flash_size >> 20); 814 ubi_msg("number of good PEBs: %d", ubi->good_peb_count); 815 ubi_msg("number of bad PEBs: %d", ubi->bad_peb_count); 816 ubi_msg("max. allowed volumes: %d", ubi->vtbl_slots); 817 ubi_msg("wear-leveling threshold: %d", CONFIG_MTD_UBI_WL_THRESHOLD); 818 ubi_msg("number of internal volumes: %d", UBI_INT_VOL_COUNT); 819 ubi_msg("number of user volumes: %d", 820 ubi->vol_count - UBI_INT_VOL_COUNT); 821 ubi_msg("available PEBs: %d", ubi->avail_pebs); 822 ubi_msg("total number of reserved PEBs: %d", ubi->rsvd_pebs); 823 ubi_msg("number of PEBs reserved for bad PEB handling: %d", 824 ubi->beb_rsvd_pebs); 825 ubi_msg("max/mean erase counter: %d/%d", ubi->max_ec, ubi->mean_ec); 826 827 /* Enable the background thread */ 828 if (!DBG_DISABLE_BGT) { 829 ubi->thread_enabled = 1; 830 wake_up_process(ubi->bgt_thread); 831 } 832 833 ubi_devices[ubi_num] = ubi; 834 return ubi_num; 835 836 out_uif: 837 uif_close(ubi); 838 out_detach: 839 ubi_eba_close(ubi); 840 ubi_wl_close(ubi); 841 vfree(ubi->vtbl); 842 out_free: 843 vfree(ubi->peb_buf1); 844 vfree(ubi->peb_buf2); 845 #ifdef CONFIG_MTD_UBI_DEBUG 846 vfree(ubi->dbg_peb_buf); 847 #endif 848 kfree(ubi); 849 return err; 850 } 851 852 /** 853 * ubi_detach_mtd_dev - detach an MTD device. 854 * @ubi_num: UBI device number to detach from 855 * @anyway: detach MTD even if device reference count is not zero 856 * 857 * This function destroys an UBI device number @ubi_num and detaches the 858 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 859 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 860 * exist. 861 * 862 * Note, the invocations of this function has to be serialized by the 863 * @ubi_devices_mutex. 864 */ 865 int ubi_detach_mtd_dev(int ubi_num, int anyway) 866 { 867 struct ubi_device *ubi; 868 869 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 870 return -EINVAL; 871 872 spin_lock(&ubi_devices_lock); 873 ubi = ubi_devices[ubi_num]; 874 if (!ubi) { 875 spin_unlock(&ubi_devices_lock); 876 return -EINVAL; 877 } 878 879 if (ubi->ref_count) { 880 if (!anyway) { 881 spin_unlock(&ubi_devices_lock); 882 return -EBUSY; 883 } 884 /* This may only happen if there is a bug */ 885 ubi_err("%s reference count %d, destroy anyway", 886 ubi->ubi_name, ubi->ref_count); 887 } 888 ubi_devices[ubi_num] = NULL; 889 spin_unlock(&ubi_devices_lock); 890 891 ubi_assert(ubi_num == ubi->ubi_num); 892 dbg_msg("detaching mtd%d from ubi%d", ubi->mtd->index, ubi_num); 893 894 /* 895 * Before freeing anything, we have to stop the background thread to 896 * prevent it from doing anything on this device while we are freeing. 897 */ 898 if (ubi->bgt_thread) 899 kthread_stop(ubi->bgt_thread); 900 901 uif_close(ubi); 902 ubi_eba_close(ubi); 903 ubi_wl_close(ubi); 904 vfree(ubi->vtbl); 905 put_mtd_device(ubi->mtd); 906 vfree(ubi->peb_buf1); 907 vfree(ubi->peb_buf2); 908 #ifdef CONFIG_MTD_UBI_DEBUG 909 vfree(ubi->dbg_peb_buf); 910 #endif 911 ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); 912 kfree(ubi); 913 return 0; 914 } 915 916 /** 917 * find_mtd_device - open an MTD device by its name or number. 918 * @mtd_dev: name or number of the device 919 * 920 * This function tries to open and MTD device described by @mtd_dev string, 921 * which is first treated as an ASCII number, and if it is not true, it is 922 * treated as MTD device name. Returns MTD device description object in case of 923 * success and a negative error code in case of failure. 924 */ 925 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 926 { 927 struct mtd_info *mtd; 928 int mtd_num; 929 char *endp; 930 931 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 932 if (*endp != '\0' || mtd_dev == endp) { 933 /* 934 * This does not look like an ASCII integer, probably this is 935 * MTD device name. 936 */ 937 mtd = get_mtd_device_nm(mtd_dev); 938 } else 939 mtd = get_mtd_device(NULL, mtd_num); 940 941 return mtd; 942 } 943 944 static int __init ubi_init(void) 945 { 946 int err, i, k; 947 948 /* Ensure that EC and VID headers have correct size */ 949 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 950 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 951 952 if (mtd_devs > UBI_MAX_DEVICES) { 953 ubi_err("too many MTD devices, maximum is %d", UBI_MAX_DEVICES); 954 return -EINVAL; 955 } 956 957 /* Create base sysfs directory and sysfs files */ 958 ubi_class = class_create(THIS_MODULE, UBI_NAME_STR); 959 if (IS_ERR(ubi_class)) { 960 err = PTR_ERR(ubi_class); 961 ubi_err("cannot create UBI class"); 962 goto out; 963 } 964 965 err = class_create_file(ubi_class, &ubi_version); 966 if (err) { 967 ubi_err("cannot create sysfs file"); 968 goto out_class; 969 } 970 971 err = misc_register(&ubi_ctrl_cdev); 972 if (err) { 973 ubi_err("cannot register device"); 974 goto out_version; 975 } 976 977 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 978 sizeof(struct ubi_wl_entry), 979 0, 0, NULL); 980 if (!ubi_wl_entry_slab) 981 goto out_dev_unreg; 982 983 /* Attach MTD devices */ 984 for (i = 0; i < mtd_devs; i++) { 985 struct mtd_dev_param *p = &mtd_dev_param[i]; 986 struct mtd_info *mtd; 987 988 cond_resched(); 989 990 mtd = open_mtd_device(p->name); 991 if (IS_ERR(mtd)) { 992 err = PTR_ERR(mtd); 993 goto out_detach; 994 } 995 996 mutex_lock(&ubi_devices_mutex); 997 err = ubi_attach_mtd_dev(mtd, UBI_DEV_NUM_AUTO, 998 p->vid_hdr_offs); 999 mutex_unlock(&ubi_devices_mutex); 1000 if (err < 0) { 1001 put_mtd_device(mtd); 1002 ubi_err("cannot attach mtd%d", mtd->index); 1003 goto out_detach; 1004 } 1005 } 1006 1007 return 0; 1008 1009 out_detach: 1010 for (k = 0; k < i; k++) 1011 if (ubi_devices[k]) { 1012 mutex_lock(&ubi_devices_mutex); 1013 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1014 mutex_unlock(&ubi_devices_mutex); 1015 } 1016 kmem_cache_destroy(ubi_wl_entry_slab); 1017 out_dev_unreg: 1018 misc_deregister(&ubi_ctrl_cdev); 1019 out_version: 1020 class_remove_file(ubi_class, &ubi_version); 1021 out_class: 1022 class_destroy(ubi_class); 1023 out: 1024 ubi_err("UBI error: cannot initialize UBI, error %d", err); 1025 return err; 1026 } 1027 module_init(ubi_init); 1028 1029 static void __exit ubi_exit(void) 1030 { 1031 int i; 1032 1033 for (i = 0; i < UBI_MAX_DEVICES; i++) 1034 if (ubi_devices[i]) { 1035 mutex_lock(&ubi_devices_mutex); 1036 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1037 mutex_unlock(&ubi_devices_mutex); 1038 } 1039 kmem_cache_destroy(ubi_wl_entry_slab); 1040 misc_deregister(&ubi_ctrl_cdev); 1041 class_remove_file(ubi_class, &ubi_version); 1042 class_destroy(ubi_class); 1043 } 1044 module_exit(ubi_exit); 1045 1046 /** 1047 * bytes_str_to_int - convert a string representing number of bytes to an 1048 * integer. 1049 * @str: the string to convert 1050 * 1051 * This function returns positive resulting integer in case of success and a 1052 * negative error code in case of failure. 1053 */ 1054 static int __init bytes_str_to_int(const char *str) 1055 { 1056 char *endp; 1057 unsigned long result; 1058 1059 result = simple_strtoul(str, &endp, 0); 1060 if (str == endp || result < 0) { 1061 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", 1062 str); 1063 return -EINVAL; 1064 } 1065 1066 switch (*endp) { 1067 case 'G': 1068 result *= 1024; 1069 case 'M': 1070 result *= 1024; 1071 case 'K': 1072 result *= 1024; 1073 if (endp[1] == 'i' && endp[2] == 'B') 1074 endp += 2; 1075 case '\0': 1076 break; 1077 default: 1078 printk(KERN_ERR "UBI error: incorrect bytes count: \"%s\"\n", 1079 str); 1080 return -EINVAL; 1081 } 1082 1083 return result; 1084 } 1085 1086 /** 1087 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1088 * @val: the parameter value to parse 1089 * @kp: not used 1090 * 1091 * This function returns zero in case of success and a negative error code in 1092 * case of error. 1093 */ 1094 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1095 { 1096 int i, len; 1097 struct mtd_dev_param *p; 1098 char buf[MTD_PARAM_LEN_MAX]; 1099 char *pbuf = &buf[0]; 1100 char *tokens[2] = {NULL, NULL}; 1101 1102 if (!val) 1103 return -EINVAL; 1104 1105 if (mtd_devs == UBI_MAX_DEVICES) { 1106 printk(KERN_ERR "UBI error: too many parameters, max. is %d\n", 1107 UBI_MAX_DEVICES); 1108 return -EINVAL; 1109 } 1110 1111 len = strnlen(val, MTD_PARAM_LEN_MAX); 1112 if (len == MTD_PARAM_LEN_MAX) { 1113 printk(KERN_ERR "UBI error: parameter \"%s\" is too long, " 1114 "max. is %d\n", val, MTD_PARAM_LEN_MAX); 1115 return -EINVAL; 1116 } 1117 1118 if (len == 0) { 1119 printk(KERN_WARNING "UBI warning: empty 'mtd=' parameter - " 1120 "ignored\n"); 1121 return 0; 1122 } 1123 1124 strcpy(buf, val); 1125 1126 /* Get rid of the final newline */ 1127 if (buf[len - 1] == '\n') 1128 buf[len - 1] = '\0'; 1129 1130 for (i = 0; i < 2; i++) 1131 tokens[i] = strsep(&pbuf, ","); 1132 1133 if (pbuf) { 1134 printk(KERN_ERR "UBI error: too many arguments at \"%s\"\n", 1135 val); 1136 return -EINVAL; 1137 } 1138 1139 p = &mtd_dev_param[mtd_devs]; 1140 strcpy(&p->name[0], tokens[0]); 1141 1142 if (tokens[1]) 1143 p->vid_hdr_offs = bytes_str_to_int(tokens[1]); 1144 1145 if (p->vid_hdr_offs < 0) 1146 return p->vid_hdr_offs; 1147 1148 mtd_devs += 1; 1149 return 0; 1150 } 1151 1152 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1153 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: " 1154 "mtd=<name|num>[,<vid_hdr_offs>].\n" 1155 "Multiple \"mtd\" parameters may be specified.\n" 1156 "MTD devices may be specified by their number or name.\n" 1157 "Optional \"vid_hdr_offs\" parameter specifies UBI VID " 1158 "header position and data starting position to be used " 1159 "by UBI.\n" 1160 "Example: mtd=content,1984 mtd=4 - attach MTD device" 1161 "with name \"content\" using VID header offset 1984, and " 1162 "MTD device number 4 with default VID header offset."); 1163 1164 MODULE_VERSION(__stringify(UBI_VERSION)); 1165 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1166 MODULE_AUTHOR("Artem Bityutskiy"); 1167 MODULE_LICENSE("GPL"); 1168