1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 108 static ssize_t version_show(struct class *class, struct class_attribute *attr, 109 char *buf) 110 { 111 return sprintf(buf, "%d\n", UBI_VERSION); 112 } 113 static CLASS_ATTR_RO(version); 114 115 static struct attribute *ubi_class_attrs[] = { 116 &class_attr_version.attr, 117 NULL, 118 }; 119 ATTRIBUTE_GROUPS(ubi_class); 120 121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 122 struct class ubi_class = { 123 .name = UBI_NAME_STR, 124 .owner = THIS_MODULE, 125 .class_groups = ubi_class_groups, 126 }; 127 128 static ssize_t dev_attribute_show(struct device *dev, 129 struct device_attribute *attr, char *buf); 130 131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 132 static struct device_attribute dev_eraseblock_size = 133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_avail_eraseblocks = 135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_total_eraseblocks = 137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_volumes_count = 139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_max_ec = 141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_reserved_for_bad = 143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_bad_peb_count = 145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_max_vol_count = 147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_min_io_size = 149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_bgt_enabled = 151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_mtd_num = 153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 154 static struct device_attribute dev_ro_mode = 155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 156 157 /** 158 * ubi_volume_notify - send a volume change notification. 159 * @ubi: UBI device description object 160 * @vol: volume description object of the changed volume 161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 162 * 163 * This is a helper function which notifies all subscribers about a volume 164 * change event (creation, removal, re-sizing, re-naming, updating). Returns 165 * zero in case of success and a negative error code in case of failure. 166 */ 167 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 168 { 169 int ret; 170 struct ubi_notification nt; 171 172 ubi_do_get_device_info(ubi, &nt.di); 173 ubi_do_get_volume_info(ubi, vol, &nt.vi); 174 175 switch (ntype) { 176 case UBI_VOLUME_ADDED: 177 case UBI_VOLUME_REMOVED: 178 case UBI_VOLUME_RESIZED: 179 case UBI_VOLUME_RENAMED: 180 ret = ubi_update_fastmap(ubi); 181 if (ret) 182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 183 } 184 185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 186 } 187 188 /** 189 * ubi_notify_all - send a notification to all volumes. 190 * @ubi: UBI device description object 191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 192 * @nb: the notifier to call 193 * 194 * This function walks all volumes of UBI device @ubi and sends the @ntype 195 * notification for each volume. If @nb is %NULL, then all registered notifiers 196 * are called, otherwise only the @nb notifier is called. Returns the number of 197 * sent notifications. 198 */ 199 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 200 { 201 struct ubi_notification nt; 202 int i, count = 0; 203 204 ubi_do_get_device_info(ubi, &nt.di); 205 206 mutex_lock(&ubi->device_mutex); 207 for (i = 0; i < ubi->vtbl_slots; i++) { 208 /* 209 * Since the @ubi->device is locked, and we are not going to 210 * change @ubi->volumes, we do not have to lock 211 * @ubi->volumes_lock. 212 */ 213 if (!ubi->volumes[i]) 214 continue; 215 216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 217 if (nb) 218 nb->notifier_call(nb, ntype, &nt); 219 else 220 blocking_notifier_call_chain(&ubi_notifiers, ntype, 221 &nt); 222 count += 1; 223 } 224 mutex_unlock(&ubi->device_mutex); 225 226 return count; 227 } 228 229 /** 230 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 231 * @nb: the notifier to call 232 * 233 * This function walks all UBI devices and volumes and sends the 234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 235 * registered notifiers are called, otherwise only the @nb notifier is called. 236 * Returns the number of sent notifications. 237 */ 238 int ubi_enumerate_volumes(struct notifier_block *nb) 239 { 240 int i, count = 0; 241 242 /* 243 * Since the @ubi_devices_mutex is locked, and we are not going to 244 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 245 */ 246 for (i = 0; i < UBI_MAX_DEVICES; i++) { 247 struct ubi_device *ubi = ubi_devices[i]; 248 249 if (!ubi) 250 continue; 251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 252 } 253 254 return count; 255 } 256 257 /** 258 * ubi_get_device - get UBI device. 259 * @ubi_num: UBI device number 260 * 261 * This function returns UBI device description object for UBI device number 262 * @ubi_num, or %NULL if the device does not exist. This function increases the 263 * device reference count to prevent removal of the device. In other words, the 264 * device cannot be removed if its reference count is not zero. 265 */ 266 struct ubi_device *ubi_get_device(int ubi_num) 267 { 268 struct ubi_device *ubi; 269 270 spin_lock(&ubi_devices_lock); 271 ubi = ubi_devices[ubi_num]; 272 if (ubi) { 273 ubi_assert(ubi->ref_count >= 0); 274 ubi->ref_count += 1; 275 get_device(&ubi->dev); 276 } 277 spin_unlock(&ubi_devices_lock); 278 279 return ubi; 280 } 281 282 /** 283 * ubi_put_device - drop an UBI device reference. 284 * @ubi: UBI device description object 285 */ 286 void ubi_put_device(struct ubi_device *ubi) 287 { 288 spin_lock(&ubi_devices_lock); 289 ubi->ref_count -= 1; 290 put_device(&ubi->dev); 291 spin_unlock(&ubi_devices_lock); 292 } 293 294 /** 295 * ubi_get_by_major - get UBI device by character device major number. 296 * @major: major number 297 * 298 * This function is similar to 'ubi_get_device()', but it searches the device 299 * by its major number. 300 */ 301 struct ubi_device *ubi_get_by_major(int major) 302 { 303 int i; 304 struct ubi_device *ubi; 305 306 spin_lock(&ubi_devices_lock); 307 for (i = 0; i < UBI_MAX_DEVICES; i++) { 308 ubi = ubi_devices[i]; 309 if (ubi && MAJOR(ubi->cdev.dev) == major) { 310 ubi_assert(ubi->ref_count >= 0); 311 ubi->ref_count += 1; 312 get_device(&ubi->dev); 313 spin_unlock(&ubi_devices_lock); 314 return ubi; 315 } 316 } 317 spin_unlock(&ubi_devices_lock); 318 319 return NULL; 320 } 321 322 /** 323 * ubi_major2num - get UBI device number by character device major number. 324 * @major: major number 325 * 326 * This function searches UBI device number object by its major number. If UBI 327 * device was not found, this function returns -ENODEV, otherwise the UBI device 328 * number is returned. 329 */ 330 int ubi_major2num(int major) 331 { 332 int i, ubi_num = -ENODEV; 333 334 spin_lock(&ubi_devices_lock); 335 for (i = 0; i < UBI_MAX_DEVICES; i++) { 336 struct ubi_device *ubi = ubi_devices[i]; 337 338 if (ubi && MAJOR(ubi->cdev.dev) == major) { 339 ubi_num = ubi->ubi_num; 340 break; 341 } 342 } 343 spin_unlock(&ubi_devices_lock); 344 345 return ubi_num; 346 } 347 348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 349 static ssize_t dev_attribute_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 ssize_t ret; 353 struct ubi_device *ubi; 354 355 /* 356 * The below code looks weird, but it actually makes sense. We get the 357 * UBI device reference from the contained 'struct ubi_device'. But it 358 * is unclear if the device was removed or not yet. Indeed, if the 359 * device was removed before we increased its reference count, 360 * 'ubi_get_device()' will return -ENODEV and we fail. 361 * 362 * Remember, 'struct ubi_device' is freed in the release function, so 363 * we still can use 'ubi->ubi_num'. 364 */ 365 ubi = container_of(dev, struct ubi_device, dev); 366 ubi = ubi_get_device(ubi->ubi_num); 367 if (!ubi) 368 return -ENODEV; 369 370 if (attr == &dev_eraseblock_size) 371 ret = sprintf(buf, "%d\n", ubi->leb_size); 372 else if (attr == &dev_avail_eraseblocks) 373 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 374 else if (attr == &dev_total_eraseblocks) 375 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 376 else if (attr == &dev_volumes_count) 377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 378 else if (attr == &dev_max_ec) 379 ret = sprintf(buf, "%d\n", ubi->max_ec); 380 else if (attr == &dev_reserved_for_bad) 381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 382 else if (attr == &dev_bad_peb_count) 383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 384 else if (attr == &dev_max_vol_count) 385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 386 else if (attr == &dev_min_io_size) 387 ret = sprintf(buf, "%d\n", ubi->min_io_size); 388 else if (attr == &dev_bgt_enabled) 389 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 390 else if (attr == &dev_mtd_num) 391 ret = sprintf(buf, "%d\n", ubi->mtd->index); 392 else if (attr == &dev_ro_mode) 393 ret = sprintf(buf, "%d\n", ubi->ro_mode); 394 else 395 ret = -EINVAL; 396 397 ubi_put_device(ubi); 398 return ret; 399 } 400 401 static struct attribute *ubi_dev_attrs[] = { 402 &dev_eraseblock_size.attr, 403 &dev_avail_eraseblocks.attr, 404 &dev_total_eraseblocks.attr, 405 &dev_volumes_count.attr, 406 &dev_max_ec.attr, 407 &dev_reserved_for_bad.attr, 408 &dev_bad_peb_count.attr, 409 &dev_max_vol_count.attr, 410 &dev_min_io_size.attr, 411 &dev_bgt_enabled.attr, 412 &dev_mtd_num.attr, 413 &dev_ro_mode.attr, 414 NULL 415 }; 416 ATTRIBUTE_GROUPS(ubi_dev); 417 418 static void dev_release(struct device *dev) 419 { 420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 421 422 kfree(ubi); 423 } 424 425 /** 426 * kill_volumes - destroy all user volumes. 427 * @ubi: UBI device description object 428 */ 429 static void kill_volumes(struct ubi_device *ubi) 430 { 431 int i; 432 433 for (i = 0; i < ubi->vtbl_slots; i++) 434 if (ubi->volumes[i]) 435 ubi_free_volume(ubi, ubi->volumes[i]); 436 } 437 438 /** 439 * uif_init - initialize user interfaces for an UBI device. 440 * @ubi: UBI device description object 441 * 442 * This function initializes various user interfaces for an UBI device. If the 443 * initialization fails at an early stage, this function frees all the 444 * resources it allocated, returns an error. 445 * 446 * This function returns zero in case of success and a negative error code in 447 * case of failure. 448 */ 449 static int uif_init(struct ubi_device *ubi) 450 { 451 int i, err; 452 dev_t dev; 453 454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 455 456 /* 457 * Major numbers for the UBI character devices are allocated 458 * dynamically. Major numbers of volume character devices are 459 * equivalent to ones of the corresponding UBI character device. Minor 460 * numbers of UBI character devices are 0, while minor numbers of 461 * volume character devices start from 1. Thus, we allocate one major 462 * number and ubi->vtbl_slots + 1 minor numbers. 463 */ 464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 465 if (err) { 466 ubi_err(ubi, "cannot register UBI character devices"); 467 return err; 468 } 469 470 ubi->dev.devt = dev; 471 472 ubi_assert(MINOR(dev) == 0); 473 cdev_init(&ubi->cdev, &ubi_cdev_operations); 474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 475 ubi->cdev.owner = THIS_MODULE; 476 477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 478 err = cdev_device_add(&ubi->cdev, &ubi->dev); 479 if (err) 480 goto out_unreg; 481 482 for (i = 0; i < ubi->vtbl_slots; i++) 483 if (ubi->volumes[i]) { 484 err = ubi_add_volume(ubi, ubi->volumes[i]); 485 if (err) { 486 ubi_err(ubi, "cannot add volume %d", i); 487 goto out_volumes; 488 } 489 } 490 491 return 0; 492 493 out_volumes: 494 kill_volumes(ubi); 495 cdev_device_del(&ubi->cdev, &ubi->dev); 496 out_unreg: 497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 498 ubi_err(ubi, "cannot initialize UBI %s, error %d", 499 ubi->ubi_name, err); 500 return err; 501 } 502 503 /** 504 * uif_close - close user interfaces for an UBI device. 505 * @ubi: UBI device description object 506 * 507 * Note, since this function un-registers UBI volume device objects (@vol->dev), 508 * the memory allocated voe the volumes is freed as well (in the release 509 * function). 510 */ 511 static void uif_close(struct ubi_device *ubi) 512 { 513 kill_volumes(ubi); 514 cdev_device_del(&ubi->cdev, &ubi->dev); 515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 516 } 517 518 /** 519 * ubi_free_internal_volumes - free internal volumes. 520 * @ubi: UBI device description object 521 */ 522 void ubi_free_internal_volumes(struct ubi_device *ubi) 523 { 524 int i; 525 526 for (i = ubi->vtbl_slots; 527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 528 ubi_eba_replace_table(ubi->volumes[i], NULL); 529 kfree(ubi->volumes[i]); 530 } 531 } 532 533 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 534 { 535 int limit, device_pebs; 536 uint64_t device_size; 537 538 if (!max_beb_per1024) 539 return 0; 540 541 /* 542 * Here we are using size of the entire flash chip and 543 * not just the MTD partition size because the maximum 544 * number of bad eraseblocks is a percentage of the 545 * whole device and bad eraseblocks are not fairly 546 * distributed over the flash chip. So the worst case 547 * is that all the bad eraseblocks of the chip are in 548 * the MTD partition we are attaching (ubi->mtd). 549 */ 550 device_size = mtd_get_device_size(ubi->mtd); 551 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 552 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 553 554 /* Round it up */ 555 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 556 limit += 1; 557 558 return limit; 559 } 560 561 /** 562 * io_init - initialize I/O sub-system for a given UBI device. 563 * @ubi: UBI device description object 564 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 565 * 566 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 567 * assumed: 568 * o EC header is always at offset zero - this cannot be changed; 569 * o VID header starts just after the EC header at the closest address 570 * aligned to @io->hdrs_min_io_size; 571 * o data starts just after the VID header at the closest address aligned to 572 * @io->min_io_size 573 * 574 * This function returns zero in case of success and a negative error code in 575 * case of failure. 576 */ 577 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 578 { 579 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 580 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 581 582 if (ubi->mtd->numeraseregions != 0) { 583 /* 584 * Some flashes have several erase regions. Different regions 585 * may have different eraseblock size and other 586 * characteristics. It looks like mostly multi-region flashes 587 * have one "main" region and one or more small regions to 588 * store boot loader code or boot parameters or whatever. I 589 * guess we should just pick the largest region. But this is 590 * not implemented. 591 */ 592 ubi_err(ubi, "multiple regions, not implemented"); 593 return -EINVAL; 594 } 595 596 if (ubi->vid_hdr_offset < 0) 597 return -EINVAL; 598 599 /* 600 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 601 * physical eraseblocks maximum. 602 */ 603 604 ubi->peb_size = ubi->mtd->erasesize; 605 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 606 ubi->flash_size = ubi->mtd->size; 607 608 if (mtd_can_have_bb(ubi->mtd)) { 609 ubi->bad_allowed = 1; 610 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 611 } 612 613 if (ubi->mtd->type == MTD_NORFLASH) { 614 ubi_assert(ubi->mtd->writesize == 1); 615 ubi->nor_flash = 1; 616 } 617 618 ubi->min_io_size = ubi->mtd->writesize; 619 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 620 621 /* 622 * Make sure minimal I/O unit is power of 2. Note, there is no 623 * fundamental reason for this assumption. It is just an optimization 624 * which allows us to avoid costly division operations. 625 */ 626 if (!is_power_of_2(ubi->min_io_size)) { 627 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 628 ubi->min_io_size); 629 return -EINVAL; 630 } 631 632 ubi_assert(ubi->hdrs_min_io_size > 0); 633 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 634 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 635 636 ubi->max_write_size = ubi->mtd->writebufsize; 637 /* 638 * Maximum write size has to be greater or equivalent to min. I/O 639 * size, and be multiple of min. I/O size. 640 */ 641 if (ubi->max_write_size < ubi->min_io_size || 642 ubi->max_write_size % ubi->min_io_size || 643 !is_power_of_2(ubi->max_write_size)) { 644 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 645 ubi->max_write_size, ubi->min_io_size); 646 return -EINVAL; 647 } 648 649 /* Calculate default aligned sizes of EC and VID headers */ 650 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 651 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 652 653 dbg_gen("min_io_size %d", ubi->min_io_size); 654 dbg_gen("max_write_size %d", ubi->max_write_size); 655 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 656 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 657 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 658 659 if (ubi->vid_hdr_offset == 0) 660 /* Default offset */ 661 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 662 ubi->ec_hdr_alsize; 663 else { 664 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 665 ~(ubi->hdrs_min_io_size - 1); 666 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 667 ubi->vid_hdr_aloffset; 668 } 669 670 /* Similar for the data offset */ 671 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 672 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 673 674 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 675 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 676 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 677 dbg_gen("leb_start %d", ubi->leb_start); 678 679 /* The shift must be aligned to 32-bit boundary */ 680 if (ubi->vid_hdr_shift % 4) { 681 ubi_err(ubi, "unaligned VID header shift %d", 682 ubi->vid_hdr_shift); 683 return -EINVAL; 684 } 685 686 /* Check sanity */ 687 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 688 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 689 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 690 ubi->leb_start & (ubi->min_io_size - 1)) { 691 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 692 ubi->vid_hdr_offset, ubi->leb_start); 693 return -EINVAL; 694 } 695 696 /* 697 * Set maximum amount of physical erroneous eraseblocks to be 10%. 698 * Erroneous PEB are those which have read errors. 699 */ 700 ubi->max_erroneous = ubi->peb_count / 10; 701 if (ubi->max_erroneous < 16) 702 ubi->max_erroneous = 16; 703 dbg_gen("max_erroneous %d", ubi->max_erroneous); 704 705 /* 706 * It may happen that EC and VID headers are situated in one minimal 707 * I/O unit. In this case we can only accept this UBI image in 708 * read-only mode. 709 */ 710 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 711 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 712 ubi->ro_mode = 1; 713 } 714 715 ubi->leb_size = ubi->peb_size - ubi->leb_start; 716 717 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 718 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 719 ubi->mtd->index); 720 ubi->ro_mode = 1; 721 } 722 723 /* 724 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 725 * unfortunately, MTD does not provide this information. We should loop 726 * over all physical eraseblocks and invoke mtd->block_is_bad() for 727 * each physical eraseblock. So, we leave @ubi->bad_peb_count 728 * uninitialized so far. 729 */ 730 731 return 0; 732 } 733 734 /** 735 * autoresize - re-size the volume which has the "auto-resize" flag set. 736 * @ubi: UBI device description object 737 * @vol_id: ID of the volume to re-size 738 * 739 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 740 * the volume table to the largest possible size. See comments in ubi-header.h 741 * for more description of the flag. Returns zero in case of success and a 742 * negative error code in case of failure. 743 */ 744 static int autoresize(struct ubi_device *ubi, int vol_id) 745 { 746 struct ubi_volume_desc desc; 747 struct ubi_volume *vol = ubi->volumes[vol_id]; 748 int err, old_reserved_pebs = vol->reserved_pebs; 749 750 if (ubi->ro_mode) { 751 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 752 return 0; 753 } 754 755 /* 756 * Clear the auto-resize flag in the volume in-memory copy of the 757 * volume table, and 'ubi_resize_volume()' will propagate this change 758 * to the flash. 759 */ 760 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 761 762 if (ubi->avail_pebs == 0) { 763 struct ubi_vtbl_record vtbl_rec; 764 765 /* 766 * No available PEBs to re-size the volume, clear the flag on 767 * flash and exit. 768 */ 769 vtbl_rec = ubi->vtbl[vol_id]; 770 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 771 if (err) 772 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 773 vol_id); 774 } else { 775 desc.vol = vol; 776 err = ubi_resize_volume(&desc, 777 old_reserved_pebs + ubi->avail_pebs); 778 if (err) 779 ubi_err(ubi, "cannot auto-resize volume %d", 780 vol_id); 781 } 782 783 if (err) 784 return err; 785 786 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 787 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 788 return 0; 789 } 790 791 /** 792 * ubi_attach_mtd_dev - attach an MTD device. 793 * @mtd: MTD device description object 794 * @ubi_num: number to assign to the new UBI device 795 * @vid_hdr_offset: VID header offset 796 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 797 * 798 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 799 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 800 * which case this function finds a vacant device number and assigns it 801 * automatically. Returns the new UBI device number in case of success and a 802 * negative error code in case of failure. 803 * 804 * Note, the invocations of this function has to be serialized by the 805 * @ubi_devices_mutex. 806 */ 807 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 808 int vid_hdr_offset, int max_beb_per1024) 809 { 810 struct ubi_device *ubi; 811 int i, err; 812 813 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 814 return -EINVAL; 815 816 if (!max_beb_per1024) 817 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 818 819 /* 820 * Check if we already have the same MTD device attached. 821 * 822 * Note, this function assumes that UBI devices creations and deletions 823 * are serialized, so it does not take the &ubi_devices_lock. 824 */ 825 for (i = 0; i < UBI_MAX_DEVICES; i++) { 826 ubi = ubi_devices[i]; 827 if (ubi && mtd->index == ubi->mtd->index) { 828 pr_err("ubi: mtd%d is already attached to ubi%d", 829 mtd->index, i); 830 return -EEXIST; 831 } 832 } 833 834 /* 835 * Make sure this MTD device is not emulated on top of an UBI volume 836 * already. Well, generally this recursion works fine, but there are 837 * different problems like the UBI module takes a reference to itself 838 * by attaching (and thus, opening) the emulated MTD device. This 839 * results in inability to unload the module. And in general it makes 840 * no sense to attach emulated MTD devices, so we prohibit this. 841 */ 842 if (mtd->type == MTD_UBIVOLUME) { 843 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI", 844 mtd->index); 845 return -EINVAL; 846 } 847 848 if (ubi_num == UBI_DEV_NUM_AUTO) { 849 /* Search for an empty slot in the @ubi_devices array */ 850 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 851 if (!ubi_devices[ubi_num]) 852 break; 853 if (ubi_num == UBI_MAX_DEVICES) { 854 pr_err("ubi: only %d UBI devices may be created", 855 UBI_MAX_DEVICES); 856 return -ENFILE; 857 } 858 } else { 859 if (ubi_num >= UBI_MAX_DEVICES) 860 return -EINVAL; 861 862 /* Make sure ubi_num is not busy */ 863 if (ubi_devices[ubi_num]) { 864 pr_err("ubi: ubi%i already exists", ubi_num); 865 return -EEXIST; 866 } 867 } 868 869 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 870 if (!ubi) 871 return -ENOMEM; 872 873 device_initialize(&ubi->dev); 874 ubi->dev.release = dev_release; 875 ubi->dev.class = &ubi_class; 876 ubi->dev.groups = ubi_dev_groups; 877 878 ubi->mtd = mtd; 879 ubi->ubi_num = ubi_num; 880 ubi->vid_hdr_offset = vid_hdr_offset; 881 ubi->autoresize_vol_id = -1; 882 883 #ifdef CONFIG_MTD_UBI_FASTMAP 884 ubi->fm_pool.used = ubi->fm_pool.size = 0; 885 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 886 887 /* 888 * fm_pool.max_size is 5% of the total number of PEBs but it's also 889 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 890 */ 891 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 892 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 893 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 894 UBI_FM_MIN_POOL_SIZE); 895 896 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 897 ubi->fm_disabled = !fm_autoconvert; 898 if (fm_debug) 899 ubi_enable_dbg_chk_fastmap(ubi); 900 901 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 902 <= UBI_FM_MAX_START) { 903 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 904 UBI_FM_MAX_START); 905 ubi->fm_disabled = 1; 906 } 907 908 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 909 ubi_msg(ubi, "default fastmap WL pool size: %d", 910 ubi->fm_wl_pool.max_size); 911 #else 912 ubi->fm_disabled = 1; 913 #endif 914 mutex_init(&ubi->buf_mutex); 915 mutex_init(&ubi->ckvol_mutex); 916 mutex_init(&ubi->device_mutex); 917 spin_lock_init(&ubi->volumes_lock); 918 init_rwsem(&ubi->fm_protect); 919 init_rwsem(&ubi->fm_eba_sem); 920 921 ubi_msg(ubi, "attaching mtd%d", mtd->index); 922 923 err = io_init(ubi, max_beb_per1024); 924 if (err) 925 goto out_free; 926 927 err = -ENOMEM; 928 ubi->peb_buf = vmalloc(ubi->peb_size); 929 if (!ubi->peb_buf) 930 goto out_free; 931 932 #ifdef CONFIG_MTD_UBI_FASTMAP 933 ubi->fm_size = ubi_calc_fm_size(ubi); 934 ubi->fm_buf = vzalloc(ubi->fm_size); 935 if (!ubi->fm_buf) 936 goto out_free; 937 #endif 938 err = ubi_attach(ubi, 0); 939 if (err) { 940 ubi_err(ubi, "failed to attach mtd%d, error %d", 941 mtd->index, err); 942 goto out_free; 943 } 944 945 if (ubi->autoresize_vol_id != -1) { 946 err = autoresize(ubi, ubi->autoresize_vol_id); 947 if (err) 948 goto out_detach; 949 } 950 951 /* Make device "available" before it becomes accessible via sysfs */ 952 ubi_devices[ubi_num] = ubi; 953 954 err = uif_init(ubi); 955 if (err) 956 goto out_detach; 957 958 err = ubi_debugfs_init_dev(ubi); 959 if (err) 960 goto out_uif; 961 962 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 963 if (IS_ERR(ubi->bgt_thread)) { 964 err = PTR_ERR(ubi->bgt_thread); 965 ubi_err(ubi, "cannot spawn \"%s\", error %d", 966 ubi->bgt_name, err); 967 goto out_debugfs; 968 } 969 970 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 971 mtd->index, mtd->name, ubi->flash_size >> 20); 972 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 973 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 974 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 975 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 976 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 977 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 978 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 979 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 980 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 981 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 982 ubi->vtbl_slots); 983 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 984 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 985 ubi->image_seq); 986 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 987 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 988 989 /* 990 * The below lock makes sure we do not race with 'ubi_thread()' which 991 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 992 */ 993 spin_lock(&ubi->wl_lock); 994 ubi->thread_enabled = 1; 995 wake_up_process(ubi->bgt_thread); 996 spin_unlock(&ubi->wl_lock); 997 998 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 999 return ubi_num; 1000 1001 out_debugfs: 1002 ubi_debugfs_exit_dev(ubi); 1003 out_uif: 1004 uif_close(ubi); 1005 out_detach: 1006 ubi_devices[ubi_num] = NULL; 1007 ubi_wl_close(ubi); 1008 ubi_free_internal_volumes(ubi); 1009 vfree(ubi->vtbl); 1010 out_free: 1011 vfree(ubi->peb_buf); 1012 vfree(ubi->fm_buf); 1013 put_device(&ubi->dev); 1014 return err; 1015 } 1016 1017 /** 1018 * ubi_detach_mtd_dev - detach an MTD device. 1019 * @ubi_num: UBI device number to detach from 1020 * @anyway: detach MTD even if device reference count is not zero 1021 * 1022 * This function destroys an UBI device number @ubi_num and detaches the 1023 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1024 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1025 * exist. 1026 * 1027 * Note, the invocations of this function has to be serialized by the 1028 * @ubi_devices_mutex. 1029 */ 1030 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1031 { 1032 struct ubi_device *ubi; 1033 1034 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1035 return -EINVAL; 1036 1037 ubi = ubi_get_device(ubi_num); 1038 if (!ubi) 1039 return -EINVAL; 1040 1041 spin_lock(&ubi_devices_lock); 1042 put_device(&ubi->dev); 1043 ubi->ref_count -= 1; 1044 if (ubi->ref_count) { 1045 if (!anyway) { 1046 spin_unlock(&ubi_devices_lock); 1047 return -EBUSY; 1048 } 1049 /* This may only happen if there is a bug */ 1050 ubi_err(ubi, "%s reference count %d, destroy anyway", 1051 ubi->ubi_name, ubi->ref_count); 1052 } 1053 ubi_devices[ubi_num] = NULL; 1054 spin_unlock(&ubi_devices_lock); 1055 1056 ubi_assert(ubi_num == ubi->ubi_num); 1057 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1058 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1059 #ifdef CONFIG_MTD_UBI_FASTMAP 1060 /* If we don't write a new fastmap at detach time we lose all 1061 * EC updates that have been made since the last written fastmap. 1062 * In case of fastmap debugging we omit the update to simulate an 1063 * unclean shutdown. */ 1064 if (!ubi_dbg_chk_fastmap(ubi)) 1065 ubi_update_fastmap(ubi); 1066 #endif 1067 /* 1068 * Before freeing anything, we have to stop the background thread to 1069 * prevent it from doing anything on this device while we are freeing. 1070 */ 1071 if (ubi->bgt_thread) 1072 kthread_stop(ubi->bgt_thread); 1073 1074 ubi_debugfs_exit_dev(ubi); 1075 uif_close(ubi); 1076 1077 ubi_wl_close(ubi); 1078 ubi_free_internal_volumes(ubi); 1079 vfree(ubi->vtbl); 1080 put_mtd_device(ubi->mtd); 1081 vfree(ubi->peb_buf); 1082 vfree(ubi->fm_buf); 1083 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1084 put_device(&ubi->dev); 1085 return 0; 1086 } 1087 1088 /** 1089 * open_mtd_by_chdev - open an MTD device by its character device node path. 1090 * @mtd_dev: MTD character device node path 1091 * 1092 * This helper function opens an MTD device by its character node device path. 1093 * Returns MTD device description object in case of success and a negative 1094 * error code in case of failure. 1095 */ 1096 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1097 { 1098 int err, minor; 1099 struct path path; 1100 struct kstat stat; 1101 1102 /* Probably this is an MTD character device node path */ 1103 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1104 if (err) 1105 return ERR_PTR(err); 1106 1107 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1108 path_put(&path); 1109 if (err) 1110 return ERR_PTR(err); 1111 1112 /* MTD device number is defined by the major / minor numbers */ 1113 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1114 return ERR_PTR(-EINVAL); 1115 1116 minor = MINOR(stat.rdev); 1117 1118 if (minor & 1) 1119 /* 1120 * Just do not think the "/dev/mtdrX" devices support is need, 1121 * so do not support them to avoid doing extra work. 1122 */ 1123 return ERR_PTR(-EINVAL); 1124 1125 return get_mtd_device(NULL, minor / 2); 1126 } 1127 1128 /** 1129 * open_mtd_device - open MTD device by name, character device path, or number. 1130 * @mtd_dev: name, character device node path, or MTD device device number 1131 * 1132 * This function tries to open and MTD device described by @mtd_dev string, 1133 * which is first treated as ASCII MTD device number, and if it is not true, it 1134 * is treated as MTD device name, and if that is also not true, it is treated 1135 * as MTD character device node path. Returns MTD device description object in 1136 * case of success and a negative error code in case of failure. 1137 */ 1138 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1139 { 1140 struct mtd_info *mtd; 1141 int mtd_num; 1142 char *endp; 1143 1144 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1145 if (*endp != '\0' || mtd_dev == endp) { 1146 /* 1147 * This does not look like an ASCII integer, probably this is 1148 * MTD device name. 1149 */ 1150 mtd = get_mtd_device_nm(mtd_dev); 1151 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1152 /* Probably this is an MTD character device node path */ 1153 mtd = open_mtd_by_chdev(mtd_dev); 1154 } else 1155 mtd = get_mtd_device(NULL, mtd_num); 1156 1157 return mtd; 1158 } 1159 1160 static int __init ubi_init(void) 1161 { 1162 int err, i, k; 1163 1164 /* Ensure that EC and VID headers have correct size */ 1165 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1166 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1167 1168 if (mtd_devs > UBI_MAX_DEVICES) { 1169 pr_err("UBI error: too many MTD devices, maximum is %d", 1170 UBI_MAX_DEVICES); 1171 return -EINVAL; 1172 } 1173 1174 /* Create base sysfs directory and sysfs files */ 1175 err = class_register(&ubi_class); 1176 if (err < 0) 1177 return err; 1178 1179 err = misc_register(&ubi_ctrl_cdev); 1180 if (err) { 1181 pr_err("UBI error: cannot register device"); 1182 goto out; 1183 } 1184 1185 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1186 sizeof(struct ubi_wl_entry), 1187 0, 0, NULL); 1188 if (!ubi_wl_entry_slab) { 1189 err = -ENOMEM; 1190 goto out_dev_unreg; 1191 } 1192 1193 err = ubi_debugfs_init(); 1194 if (err) 1195 goto out_slab; 1196 1197 1198 /* Attach MTD devices */ 1199 for (i = 0; i < mtd_devs; i++) { 1200 struct mtd_dev_param *p = &mtd_dev_param[i]; 1201 struct mtd_info *mtd; 1202 1203 cond_resched(); 1204 1205 mtd = open_mtd_device(p->name); 1206 if (IS_ERR(mtd)) { 1207 err = PTR_ERR(mtd); 1208 pr_err("UBI error: cannot open mtd %s, error %d", 1209 p->name, err); 1210 /* See comment below re-ubi_is_module(). */ 1211 if (ubi_is_module()) 1212 goto out_detach; 1213 continue; 1214 } 1215 1216 mutex_lock(&ubi_devices_mutex); 1217 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1218 p->vid_hdr_offs, p->max_beb_per1024); 1219 mutex_unlock(&ubi_devices_mutex); 1220 if (err < 0) { 1221 pr_err("UBI error: cannot attach mtd%d", 1222 mtd->index); 1223 put_mtd_device(mtd); 1224 1225 /* 1226 * Originally UBI stopped initializing on any error. 1227 * However, later on it was found out that this 1228 * behavior is not very good when UBI is compiled into 1229 * the kernel and the MTD devices to attach are passed 1230 * through the command line. Indeed, UBI failure 1231 * stopped whole boot sequence. 1232 * 1233 * To fix this, we changed the behavior for the 1234 * non-module case, but preserved the old behavior for 1235 * the module case, just for compatibility. This is a 1236 * little inconsistent, though. 1237 */ 1238 if (ubi_is_module()) 1239 goto out_detach; 1240 } 1241 } 1242 1243 err = ubiblock_init(); 1244 if (err) { 1245 pr_err("UBI error: block: cannot initialize, error %d", err); 1246 1247 /* See comment above re-ubi_is_module(). */ 1248 if (ubi_is_module()) 1249 goto out_detach; 1250 } 1251 1252 return 0; 1253 1254 out_detach: 1255 for (k = 0; k < i; k++) 1256 if (ubi_devices[k]) { 1257 mutex_lock(&ubi_devices_mutex); 1258 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1259 mutex_unlock(&ubi_devices_mutex); 1260 } 1261 ubi_debugfs_exit(); 1262 out_slab: 1263 kmem_cache_destroy(ubi_wl_entry_slab); 1264 out_dev_unreg: 1265 misc_deregister(&ubi_ctrl_cdev); 1266 out: 1267 class_unregister(&ubi_class); 1268 pr_err("UBI error: cannot initialize UBI, error %d", err); 1269 return err; 1270 } 1271 late_initcall(ubi_init); 1272 1273 static void __exit ubi_exit(void) 1274 { 1275 int i; 1276 1277 ubiblock_exit(); 1278 1279 for (i = 0; i < UBI_MAX_DEVICES; i++) 1280 if (ubi_devices[i]) { 1281 mutex_lock(&ubi_devices_mutex); 1282 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1283 mutex_unlock(&ubi_devices_mutex); 1284 } 1285 ubi_debugfs_exit(); 1286 kmem_cache_destroy(ubi_wl_entry_slab); 1287 misc_deregister(&ubi_ctrl_cdev); 1288 class_unregister(&ubi_class); 1289 } 1290 module_exit(ubi_exit); 1291 1292 /** 1293 * bytes_str_to_int - convert a number of bytes string into an integer. 1294 * @str: the string to convert 1295 * 1296 * This function returns positive resulting integer in case of success and a 1297 * negative error code in case of failure. 1298 */ 1299 static int bytes_str_to_int(const char *str) 1300 { 1301 char *endp; 1302 unsigned long result; 1303 1304 result = simple_strtoul(str, &endp, 0); 1305 if (str == endp || result >= INT_MAX) { 1306 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1307 return -EINVAL; 1308 } 1309 1310 switch (*endp) { 1311 case 'G': 1312 result *= 1024; 1313 case 'M': 1314 result *= 1024; 1315 case 'K': 1316 result *= 1024; 1317 if (endp[1] == 'i' && endp[2] == 'B') 1318 endp += 2; 1319 case '\0': 1320 break; 1321 default: 1322 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1323 return -EINVAL; 1324 } 1325 1326 return result; 1327 } 1328 1329 /** 1330 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1331 * @val: the parameter value to parse 1332 * @kp: not used 1333 * 1334 * This function returns zero in case of success and a negative error code in 1335 * case of error. 1336 */ 1337 static int ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1338 { 1339 int i, len; 1340 struct mtd_dev_param *p; 1341 char buf[MTD_PARAM_LEN_MAX]; 1342 char *pbuf = &buf[0]; 1343 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1344 1345 if (!val) 1346 return -EINVAL; 1347 1348 if (mtd_devs == UBI_MAX_DEVICES) { 1349 pr_err("UBI error: too many parameters, max. is %d\n", 1350 UBI_MAX_DEVICES); 1351 return -EINVAL; 1352 } 1353 1354 len = strnlen(val, MTD_PARAM_LEN_MAX); 1355 if (len == MTD_PARAM_LEN_MAX) { 1356 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1357 val, MTD_PARAM_LEN_MAX); 1358 return -EINVAL; 1359 } 1360 1361 if (len == 0) { 1362 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1363 return 0; 1364 } 1365 1366 strcpy(buf, val); 1367 1368 /* Get rid of the final newline */ 1369 if (buf[len - 1] == '\n') 1370 buf[len - 1] = '\0'; 1371 1372 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1373 tokens[i] = strsep(&pbuf, ","); 1374 1375 if (pbuf) { 1376 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1377 return -EINVAL; 1378 } 1379 1380 p = &mtd_dev_param[mtd_devs]; 1381 strcpy(&p->name[0], tokens[0]); 1382 1383 token = tokens[1]; 1384 if (token) { 1385 p->vid_hdr_offs = bytes_str_to_int(token); 1386 1387 if (p->vid_hdr_offs < 0) 1388 return p->vid_hdr_offs; 1389 } 1390 1391 token = tokens[2]; 1392 if (token) { 1393 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1394 1395 if (err) { 1396 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1397 token); 1398 return -EINVAL; 1399 } 1400 } 1401 1402 token = tokens[3]; 1403 if (token) { 1404 int err = kstrtoint(token, 10, &p->ubi_num); 1405 1406 if (err) { 1407 pr_err("UBI error: bad value for ubi_num parameter: %s", 1408 token); 1409 return -EINVAL; 1410 } 1411 } else 1412 p->ubi_num = UBI_DEV_NUM_AUTO; 1413 1414 mtd_devs += 1; 1415 return 0; 1416 } 1417 1418 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1419 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1420 "Multiple \"mtd\" parameters may be specified.\n" 1421 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1422 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1423 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1424 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1425 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1426 "\n" 1427 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1428 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1429 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1430 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1431 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1432 #ifdef CONFIG_MTD_UBI_FASTMAP 1433 module_param(fm_autoconvert, bool, 0644); 1434 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1435 module_param(fm_debug, bool, 0); 1436 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1437 #endif 1438 MODULE_VERSION(__stringify(UBI_VERSION)); 1439 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1440 MODULE_AUTHOR("Artem Bityutskiy"); 1441 MODULE_LICENSE("GPL"); 1442