1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 108 static ssize_t version_show(struct class *class, struct class_attribute *attr, 109 char *buf) 110 { 111 return sprintf(buf, "%d\n", UBI_VERSION); 112 } 113 static CLASS_ATTR_RO(version); 114 115 static struct attribute *ubi_class_attrs[] = { 116 &class_attr_version.attr, 117 NULL, 118 }; 119 ATTRIBUTE_GROUPS(ubi_class); 120 121 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 122 struct class ubi_class = { 123 .name = UBI_NAME_STR, 124 .owner = THIS_MODULE, 125 .class_groups = ubi_class_groups, 126 }; 127 128 static ssize_t dev_attribute_show(struct device *dev, 129 struct device_attribute *attr, char *buf); 130 131 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 132 static struct device_attribute dev_eraseblock_size = 133 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_avail_eraseblocks = 135 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_total_eraseblocks = 137 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_volumes_count = 139 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_max_ec = 141 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_reserved_for_bad = 143 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_bad_peb_count = 145 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_max_vol_count = 147 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_min_io_size = 149 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_bgt_enabled = 151 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_mtd_num = 153 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 154 static struct device_attribute dev_ro_mode = 155 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 156 157 /** 158 * ubi_volume_notify - send a volume change notification. 159 * @ubi: UBI device description object 160 * @vol: volume description object of the changed volume 161 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 162 * 163 * This is a helper function which notifies all subscribers about a volume 164 * change event (creation, removal, re-sizing, re-naming, updating). Returns 165 * zero in case of success and a negative error code in case of failure. 166 */ 167 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 168 { 169 int ret; 170 struct ubi_notification nt; 171 172 ubi_do_get_device_info(ubi, &nt.di); 173 ubi_do_get_volume_info(ubi, vol, &nt.vi); 174 175 switch (ntype) { 176 case UBI_VOLUME_ADDED: 177 case UBI_VOLUME_REMOVED: 178 case UBI_VOLUME_RESIZED: 179 case UBI_VOLUME_RENAMED: 180 ret = ubi_update_fastmap(ubi); 181 if (ret) 182 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 183 } 184 185 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 186 } 187 188 /** 189 * ubi_notify_all - send a notification to all volumes. 190 * @ubi: UBI device description object 191 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 192 * @nb: the notifier to call 193 * 194 * This function walks all volumes of UBI device @ubi and sends the @ntype 195 * notification for each volume. If @nb is %NULL, then all registered notifiers 196 * are called, otherwise only the @nb notifier is called. Returns the number of 197 * sent notifications. 198 */ 199 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 200 { 201 struct ubi_notification nt; 202 int i, count = 0; 203 204 ubi_do_get_device_info(ubi, &nt.di); 205 206 mutex_lock(&ubi->device_mutex); 207 for (i = 0; i < ubi->vtbl_slots; i++) { 208 /* 209 * Since the @ubi->device is locked, and we are not going to 210 * change @ubi->volumes, we do not have to lock 211 * @ubi->volumes_lock. 212 */ 213 if (!ubi->volumes[i]) 214 continue; 215 216 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 217 if (nb) 218 nb->notifier_call(nb, ntype, &nt); 219 else 220 blocking_notifier_call_chain(&ubi_notifiers, ntype, 221 &nt); 222 count += 1; 223 } 224 mutex_unlock(&ubi->device_mutex); 225 226 return count; 227 } 228 229 /** 230 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 231 * @nb: the notifier to call 232 * 233 * This function walks all UBI devices and volumes and sends the 234 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 235 * registered notifiers are called, otherwise only the @nb notifier is called. 236 * Returns the number of sent notifications. 237 */ 238 int ubi_enumerate_volumes(struct notifier_block *nb) 239 { 240 int i, count = 0; 241 242 /* 243 * Since the @ubi_devices_mutex is locked, and we are not going to 244 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 245 */ 246 for (i = 0; i < UBI_MAX_DEVICES; i++) { 247 struct ubi_device *ubi = ubi_devices[i]; 248 249 if (!ubi) 250 continue; 251 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 252 } 253 254 return count; 255 } 256 257 /** 258 * ubi_get_device - get UBI device. 259 * @ubi_num: UBI device number 260 * 261 * This function returns UBI device description object for UBI device number 262 * @ubi_num, or %NULL if the device does not exist. This function increases the 263 * device reference count to prevent removal of the device. In other words, the 264 * device cannot be removed if its reference count is not zero. 265 */ 266 struct ubi_device *ubi_get_device(int ubi_num) 267 { 268 struct ubi_device *ubi; 269 270 spin_lock(&ubi_devices_lock); 271 ubi = ubi_devices[ubi_num]; 272 if (ubi) { 273 ubi_assert(ubi->ref_count >= 0); 274 ubi->ref_count += 1; 275 get_device(&ubi->dev); 276 } 277 spin_unlock(&ubi_devices_lock); 278 279 return ubi; 280 } 281 282 /** 283 * ubi_put_device - drop an UBI device reference. 284 * @ubi: UBI device description object 285 */ 286 void ubi_put_device(struct ubi_device *ubi) 287 { 288 spin_lock(&ubi_devices_lock); 289 ubi->ref_count -= 1; 290 put_device(&ubi->dev); 291 spin_unlock(&ubi_devices_lock); 292 } 293 294 /** 295 * ubi_get_by_major - get UBI device by character device major number. 296 * @major: major number 297 * 298 * This function is similar to 'ubi_get_device()', but it searches the device 299 * by its major number. 300 */ 301 struct ubi_device *ubi_get_by_major(int major) 302 { 303 int i; 304 struct ubi_device *ubi; 305 306 spin_lock(&ubi_devices_lock); 307 for (i = 0; i < UBI_MAX_DEVICES; i++) { 308 ubi = ubi_devices[i]; 309 if (ubi && MAJOR(ubi->cdev.dev) == major) { 310 ubi_assert(ubi->ref_count >= 0); 311 ubi->ref_count += 1; 312 get_device(&ubi->dev); 313 spin_unlock(&ubi_devices_lock); 314 return ubi; 315 } 316 } 317 spin_unlock(&ubi_devices_lock); 318 319 return NULL; 320 } 321 322 /** 323 * ubi_major2num - get UBI device number by character device major number. 324 * @major: major number 325 * 326 * This function searches UBI device number object by its major number. If UBI 327 * device was not found, this function returns -ENODEV, otherwise the UBI device 328 * number is returned. 329 */ 330 int ubi_major2num(int major) 331 { 332 int i, ubi_num = -ENODEV; 333 334 spin_lock(&ubi_devices_lock); 335 for (i = 0; i < UBI_MAX_DEVICES; i++) { 336 struct ubi_device *ubi = ubi_devices[i]; 337 338 if (ubi && MAJOR(ubi->cdev.dev) == major) { 339 ubi_num = ubi->ubi_num; 340 break; 341 } 342 } 343 spin_unlock(&ubi_devices_lock); 344 345 return ubi_num; 346 } 347 348 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 349 static ssize_t dev_attribute_show(struct device *dev, 350 struct device_attribute *attr, char *buf) 351 { 352 ssize_t ret; 353 struct ubi_device *ubi; 354 355 /* 356 * The below code looks weird, but it actually makes sense. We get the 357 * UBI device reference from the contained 'struct ubi_device'. But it 358 * is unclear if the device was removed or not yet. Indeed, if the 359 * device was removed before we increased its reference count, 360 * 'ubi_get_device()' will return -ENODEV and we fail. 361 * 362 * Remember, 'struct ubi_device' is freed in the release function, so 363 * we still can use 'ubi->ubi_num'. 364 */ 365 ubi = container_of(dev, struct ubi_device, dev); 366 ubi = ubi_get_device(ubi->ubi_num); 367 if (!ubi) 368 return -ENODEV; 369 370 if (attr == &dev_eraseblock_size) 371 ret = sprintf(buf, "%d\n", ubi->leb_size); 372 else if (attr == &dev_avail_eraseblocks) 373 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 374 else if (attr == &dev_total_eraseblocks) 375 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 376 else if (attr == &dev_volumes_count) 377 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 378 else if (attr == &dev_max_ec) 379 ret = sprintf(buf, "%d\n", ubi->max_ec); 380 else if (attr == &dev_reserved_for_bad) 381 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 382 else if (attr == &dev_bad_peb_count) 383 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 384 else if (attr == &dev_max_vol_count) 385 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 386 else if (attr == &dev_min_io_size) 387 ret = sprintf(buf, "%d\n", ubi->min_io_size); 388 else if (attr == &dev_bgt_enabled) 389 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 390 else if (attr == &dev_mtd_num) 391 ret = sprintf(buf, "%d\n", ubi->mtd->index); 392 else if (attr == &dev_ro_mode) 393 ret = sprintf(buf, "%d\n", ubi->ro_mode); 394 else 395 ret = -EINVAL; 396 397 ubi_put_device(ubi); 398 return ret; 399 } 400 401 static struct attribute *ubi_dev_attrs[] = { 402 &dev_eraseblock_size.attr, 403 &dev_avail_eraseblocks.attr, 404 &dev_total_eraseblocks.attr, 405 &dev_volumes_count.attr, 406 &dev_max_ec.attr, 407 &dev_reserved_for_bad.attr, 408 &dev_bad_peb_count.attr, 409 &dev_max_vol_count.attr, 410 &dev_min_io_size.attr, 411 &dev_bgt_enabled.attr, 412 &dev_mtd_num.attr, 413 &dev_ro_mode.attr, 414 NULL 415 }; 416 ATTRIBUTE_GROUPS(ubi_dev); 417 418 static void dev_release(struct device *dev) 419 { 420 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 421 422 kfree(ubi); 423 } 424 425 /** 426 * kill_volumes - destroy all user volumes. 427 * @ubi: UBI device description object 428 */ 429 static void kill_volumes(struct ubi_device *ubi) 430 { 431 int i; 432 433 for (i = 0; i < ubi->vtbl_slots; i++) 434 if (ubi->volumes[i]) 435 ubi_free_volume(ubi, ubi->volumes[i]); 436 } 437 438 /** 439 * uif_init - initialize user interfaces for an UBI device. 440 * @ubi: UBI device description object 441 * 442 * This function initializes various user interfaces for an UBI device. If the 443 * initialization fails at an early stage, this function frees all the 444 * resources it allocated, returns an error. 445 * 446 * This function returns zero in case of success and a negative error code in 447 * case of failure. 448 */ 449 static int uif_init(struct ubi_device *ubi) 450 { 451 int i, err; 452 dev_t dev; 453 454 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 455 456 /* 457 * Major numbers for the UBI character devices are allocated 458 * dynamically. Major numbers of volume character devices are 459 * equivalent to ones of the corresponding UBI character device. Minor 460 * numbers of UBI character devices are 0, while minor numbers of 461 * volume character devices start from 1. Thus, we allocate one major 462 * number and ubi->vtbl_slots + 1 minor numbers. 463 */ 464 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 465 if (err) { 466 ubi_err(ubi, "cannot register UBI character devices"); 467 return err; 468 } 469 470 ubi->dev.devt = dev; 471 472 ubi_assert(MINOR(dev) == 0); 473 cdev_init(&ubi->cdev, &ubi_cdev_operations); 474 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 475 ubi->cdev.owner = THIS_MODULE; 476 477 dev_set_name(&ubi->dev, UBI_NAME_STR "%d", ubi->ubi_num); 478 err = cdev_device_add(&ubi->cdev, &ubi->dev); 479 if (err) 480 goto out_unreg; 481 482 for (i = 0; i < ubi->vtbl_slots; i++) 483 if (ubi->volumes[i]) { 484 err = ubi_add_volume(ubi, ubi->volumes[i]); 485 if (err) { 486 ubi_err(ubi, "cannot add volume %d", i); 487 goto out_volumes; 488 } 489 } 490 491 return 0; 492 493 out_volumes: 494 kill_volumes(ubi); 495 cdev_device_del(&ubi->cdev, &ubi->dev); 496 out_unreg: 497 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 498 ubi_err(ubi, "cannot initialize UBI %s, error %d", 499 ubi->ubi_name, err); 500 return err; 501 } 502 503 /** 504 * uif_close - close user interfaces for an UBI device. 505 * @ubi: UBI device description object 506 * 507 * Note, since this function un-registers UBI volume device objects (@vol->dev), 508 * the memory allocated voe the volumes is freed as well (in the release 509 * function). 510 */ 511 static void uif_close(struct ubi_device *ubi) 512 { 513 kill_volumes(ubi); 514 cdev_device_del(&ubi->cdev, &ubi->dev); 515 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 516 } 517 518 /** 519 * ubi_free_internal_volumes - free internal volumes. 520 * @ubi: UBI device description object 521 */ 522 void ubi_free_internal_volumes(struct ubi_device *ubi) 523 { 524 int i; 525 526 for (i = ubi->vtbl_slots; 527 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 528 ubi_eba_replace_table(ubi->volumes[i], NULL); 529 ubi_fastmap_destroy_checkmap(ubi->volumes[i]); 530 kfree(ubi->volumes[i]); 531 } 532 } 533 534 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 535 { 536 int limit, device_pebs; 537 uint64_t device_size; 538 539 if (!max_beb_per1024) { 540 /* 541 * Since max_beb_per1024 has not been set by the user in either 542 * the cmdline or Kconfig, use mtd_max_bad_blocks to set the 543 * limit if it is supported by the device. 544 */ 545 limit = mtd_max_bad_blocks(ubi->mtd, 0, ubi->mtd->size); 546 if (limit < 0) 547 return 0; 548 return limit; 549 } 550 551 /* 552 * Here we are using size of the entire flash chip and 553 * not just the MTD partition size because the maximum 554 * number of bad eraseblocks is a percentage of the 555 * whole device and bad eraseblocks are not fairly 556 * distributed over the flash chip. So the worst case 557 * is that all the bad eraseblocks of the chip are in 558 * the MTD partition we are attaching (ubi->mtd). 559 */ 560 device_size = mtd_get_device_size(ubi->mtd); 561 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 562 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 563 564 /* Round it up */ 565 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 566 limit += 1; 567 568 return limit; 569 } 570 571 /** 572 * io_init - initialize I/O sub-system for a given UBI device. 573 * @ubi: UBI device description object 574 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 575 * 576 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 577 * assumed: 578 * o EC header is always at offset zero - this cannot be changed; 579 * o VID header starts just after the EC header at the closest address 580 * aligned to @io->hdrs_min_io_size; 581 * o data starts just after the VID header at the closest address aligned to 582 * @io->min_io_size 583 * 584 * This function returns zero in case of success and a negative error code in 585 * case of failure. 586 */ 587 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 588 { 589 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 590 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 591 592 if (ubi->mtd->numeraseregions != 0) { 593 /* 594 * Some flashes have several erase regions. Different regions 595 * may have different eraseblock size and other 596 * characteristics. It looks like mostly multi-region flashes 597 * have one "main" region and one or more small regions to 598 * store boot loader code or boot parameters or whatever. I 599 * guess we should just pick the largest region. But this is 600 * not implemented. 601 */ 602 ubi_err(ubi, "multiple regions, not implemented"); 603 return -EINVAL; 604 } 605 606 if (ubi->vid_hdr_offset < 0) 607 return -EINVAL; 608 609 /* 610 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 611 * physical eraseblocks maximum. 612 */ 613 614 ubi->peb_size = ubi->mtd->erasesize; 615 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 616 ubi->flash_size = ubi->mtd->size; 617 618 if (mtd_can_have_bb(ubi->mtd)) { 619 ubi->bad_allowed = 1; 620 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 621 } 622 623 if (ubi->mtd->type == MTD_NORFLASH) { 624 ubi_assert(ubi->mtd->writesize == 1); 625 ubi->nor_flash = 1; 626 } 627 628 ubi->min_io_size = ubi->mtd->writesize; 629 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 630 631 /* 632 * Make sure minimal I/O unit is power of 2. Note, there is no 633 * fundamental reason for this assumption. It is just an optimization 634 * which allows us to avoid costly division operations. 635 */ 636 if (!is_power_of_2(ubi->min_io_size)) { 637 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 638 ubi->min_io_size); 639 return -EINVAL; 640 } 641 642 ubi_assert(ubi->hdrs_min_io_size > 0); 643 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 644 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 645 646 ubi->max_write_size = ubi->mtd->writebufsize; 647 /* 648 * Maximum write size has to be greater or equivalent to min. I/O 649 * size, and be multiple of min. I/O size. 650 */ 651 if (ubi->max_write_size < ubi->min_io_size || 652 ubi->max_write_size % ubi->min_io_size || 653 !is_power_of_2(ubi->max_write_size)) { 654 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 655 ubi->max_write_size, ubi->min_io_size); 656 return -EINVAL; 657 } 658 659 /* Calculate default aligned sizes of EC and VID headers */ 660 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 661 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 662 663 dbg_gen("min_io_size %d", ubi->min_io_size); 664 dbg_gen("max_write_size %d", ubi->max_write_size); 665 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 666 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 667 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 668 669 if (ubi->vid_hdr_offset == 0) 670 /* Default offset */ 671 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 672 ubi->ec_hdr_alsize; 673 else { 674 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 675 ~(ubi->hdrs_min_io_size - 1); 676 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 677 ubi->vid_hdr_aloffset; 678 } 679 680 /* Similar for the data offset */ 681 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 682 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 683 684 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 685 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 686 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 687 dbg_gen("leb_start %d", ubi->leb_start); 688 689 /* The shift must be aligned to 32-bit boundary */ 690 if (ubi->vid_hdr_shift % 4) { 691 ubi_err(ubi, "unaligned VID header shift %d", 692 ubi->vid_hdr_shift); 693 return -EINVAL; 694 } 695 696 /* Check sanity */ 697 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 698 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 699 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 700 ubi->leb_start & (ubi->min_io_size - 1)) { 701 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 702 ubi->vid_hdr_offset, ubi->leb_start); 703 return -EINVAL; 704 } 705 706 /* 707 * Set maximum amount of physical erroneous eraseblocks to be 10%. 708 * Erroneous PEB are those which have read errors. 709 */ 710 ubi->max_erroneous = ubi->peb_count / 10; 711 if (ubi->max_erroneous < 16) 712 ubi->max_erroneous = 16; 713 dbg_gen("max_erroneous %d", ubi->max_erroneous); 714 715 /* 716 * It may happen that EC and VID headers are situated in one minimal 717 * I/O unit. In this case we can only accept this UBI image in 718 * read-only mode. 719 */ 720 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 721 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 722 ubi->ro_mode = 1; 723 } 724 725 ubi->leb_size = ubi->peb_size - ubi->leb_start; 726 727 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 728 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 729 ubi->mtd->index); 730 ubi->ro_mode = 1; 731 } 732 733 /* 734 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 735 * unfortunately, MTD does not provide this information. We should loop 736 * over all physical eraseblocks and invoke mtd->block_is_bad() for 737 * each physical eraseblock. So, we leave @ubi->bad_peb_count 738 * uninitialized so far. 739 */ 740 741 return 0; 742 } 743 744 /** 745 * autoresize - re-size the volume which has the "auto-resize" flag set. 746 * @ubi: UBI device description object 747 * @vol_id: ID of the volume to re-size 748 * 749 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 750 * the volume table to the largest possible size. See comments in ubi-header.h 751 * for more description of the flag. Returns zero in case of success and a 752 * negative error code in case of failure. 753 */ 754 static int autoresize(struct ubi_device *ubi, int vol_id) 755 { 756 struct ubi_volume_desc desc; 757 struct ubi_volume *vol = ubi->volumes[vol_id]; 758 int err, old_reserved_pebs = vol->reserved_pebs; 759 760 if (ubi->ro_mode) { 761 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 762 return 0; 763 } 764 765 /* 766 * Clear the auto-resize flag in the volume in-memory copy of the 767 * volume table, and 'ubi_resize_volume()' will propagate this change 768 * to the flash. 769 */ 770 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 771 772 if (ubi->avail_pebs == 0) { 773 struct ubi_vtbl_record vtbl_rec; 774 775 /* 776 * No available PEBs to re-size the volume, clear the flag on 777 * flash and exit. 778 */ 779 vtbl_rec = ubi->vtbl[vol_id]; 780 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 781 if (err) 782 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 783 vol_id); 784 } else { 785 desc.vol = vol; 786 err = ubi_resize_volume(&desc, 787 old_reserved_pebs + ubi->avail_pebs); 788 if (err) 789 ubi_err(ubi, "cannot auto-resize volume %d", 790 vol_id); 791 } 792 793 if (err) 794 return err; 795 796 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 797 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 798 return 0; 799 } 800 801 /** 802 * ubi_attach_mtd_dev - attach an MTD device. 803 * @mtd: MTD device description object 804 * @ubi_num: number to assign to the new UBI device 805 * @vid_hdr_offset: VID header offset 806 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 807 * 808 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 809 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 810 * which case this function finds a vacant device number and assigns it 811 * automatically. Returns the new UBI device number in case of success and a 812 * negative error code in case of failure. 813 * 814 * Note, the invocations of this function has to be serialized by the 815 * @ubi_devices_mutex. 816 */ 817 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 818 int vid_hdr_offset, int max_beb_per1024) 819 { 820 struct ubi_device *ubi; 821 int i, err; 822 823 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 824 return -EINVAL; 825 826 if (!max_beb_per1024) 827 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 828 829 /* 830 * Check if we already have the same MTD device attached. 831 * 832 * Note, this function assumes that UBI devices creations and deletions 833 * are serialized, so it does not take the &ubi_devices_lock. 834 */ 835 for (i = 0; i < UBI_MAX_DEVICES; i++) { 836 ubi = ubi_devices[i]; 837 if (ubi && mtd->index == ubi->mtd->index) { 838 pr_err("ubi: mtd%d is already attached to ubi%d\n", 839 mtd->index, i); 840 return -EEXIST; 841 } 842 } 843 844 /* 845 * Make sure this MTD device is not emulated on top of an UBI volume 846 * already. Well, generally this recursion works fine, but there are 847 * different problems like the UBI module takes a reference to itself 848 * by attaching (and thus, opening) the emulated MTD device. This 849 * results in inability to unload the module. And in general it makes 850 * no sense to attach emulated MTD devices, so we prohibit this. 851 */ 852 if (mtd->type == MTD_UBIVOLUME) { 853 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI\n", 854 mtd->index); 855 return -EINVAL; 856 } 857 858 /* 859 * Both UBI and UBIFS have been designed for SLC NAND and NOR flashes. 860 * MLC NAND is different and needs special care, otherwise UBI or UBIFS 861 * will die soon and you will lose all your data. 862 */ 863 if (mtd->type == MTD_MLCNANDFLASH) { 864 pr_err("ubi: refuse attaching mtd%d - MLC NAND is not supported\n", 865 mtd->index); 866 return -EINVAL; 867 } 868 869 if (ubi_num == UBI_DEV_NUM_AUTO) { 870 /* Search for an empty slot in the @ubi_devices array */ 871 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 872 if (!ubi_devices[ubi_num]) 873 break; 874 if (ubi_num == UBI_MAX_DEVICES) { 875 pr_err("ubi: only %d UBI devices may be created\n", 876 UBI_MAX_DEVICES); 877 return -ENFILE; 878 } 879 } else { 880 if (ubi_num >= UBI_MAX_DEVICES) 881 return -EINVAL; 882 883 /* Make sure ubi_num is not busy */ 884 if (ubi_devices[ubi_num]) { 885 pr_err("ubi: ubi%i already exists\n", ubi_num); 886 return -EEXIST; 887 } 888 } 889 890 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 891 if (!ubi) 892 return -ENOMEM; 893 894 device_initialize(&ubi->dev); 895 ubi->dev.release = dev_release; 896 ubi->dev.class = &ubi_class; 897 ubi->dev.groups = ubi_dev_groups; 898 899 ubi->mtd = mtd; 900 ubi->ubi_num = ubi_num; 901 ubi->vid_hdr_offset = vid_hdr_offset; 902 ubi->autoresize_vol_id = -1; 903 904 #ifdef CONFIG_MTD_UBI_FASTMAP 905 ubi->fm_pool.used = ubi->fm_pool.size = 0; 906 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 907 908 /* 909 * fm_pool.max_size is 5% of the total number of PEBs but it's also 910 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 911 */ 912 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 913 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 914 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 915 UBI_FM_MIN_POOL_SIZE); 916 917 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 918 ubi->fm_disabled = !fm_autoconvert; 919 if (fm_debug) 920 ubi_enable_dbg_chk_fastmap(ubi); 921 922 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 923 <= UBI_FM_MAX_START) { 924 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 925 UBI_FM_MAX_START); 926 ubi->fm_disabled = 1; 927 } 928 929 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 930 ubi_msg(ubi, "default fastmap WL pool size: %d", 931 ubi->fm_wl_pool.max_size); 932 #else 933 ubi->fm_disabled = 1; 934 #endif 935 mutex_init(&ubi->buf_mutex); 936 mutex_init(&ubi->ckvol_mutex); 937 mutex_init(&ubi->device_mutex); 938 spin_lock_init(&ubi->volumes_lock); 939 init_rwsem(&ubi->fm_protect); 940 init_rwsem(&ubi->fm_eba_sem); 941 942 ubi_msg(ubi, "attaching mtd%d", mtd->index); 943 944 err = io_init(ubi, max_beb_per1024); 945 if (err) 946 goto out_free; 947 948 err = -ENOMEM; 949 ubi->peb_buf = vmalloc(ubi->peb_size); 950 if (!ubi->peb_buf) 951 goto out_free; 952 953 #ifdef CONFIG_MTD_UBI_FASTMAP 954 ubi->fm_size = ubi_calc_fm_size(ubi); 955 ubi->fm_buf = vzalloc(ubi->fm_size); 956 if (!ubi->fm_buf) 957 goto out_free; 958 #endif 959 err = ubi_attach(ubi, 0); 960 if (err) { 961 ubi_err(ubi, "failed to attach mtd%d, error %d", 962 mtd->index, err); 963 goto out_free; 964 } 965 966 if (ubi->autoresize_vol_id != -1) { 967 err = autoresize(ubi, ubi->autoresize_vol_id); 968 if (err) 969 goto out_detach; 970 } 971 972 /* Make device "available" before it becomes accessible via sysfs */ 973 ubi_devices[ubi_num] = ubi; 974 975 err = uif_init(ubi); 976 if (err) 977 goto out_detach; 978 979 err = ubi_debugfs_init_dev(ubi); 980 if (err) 981 goto out_uif; 982 983 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 984 if (IS_ERR(ubi->bgt_thread)) { 985 err = PTR_ERR(ubi->bgt_thread); 986 ubi_err(ubi, "cannot spawn \"%s\", error %d", 987 ubi->bgt_name, err); 988 goto out_debugfs; 989 } 990 991 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 992 mtd->index, mtd->name, ubi->flash_size >> 20); 993 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 994 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 995 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 996 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 997 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 998 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 999 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1000 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1001 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1002 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1003 ubi->vtbl_slots); 1004 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1005 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1006 ubi->image_seq); 1007 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1008 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1009 1010 /* 1011 * The below lock makes sure we do not race with 'ubi_thread()' which 1012 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1013 */ 1014 spin_lock(&ubi->wl_lock); 1015 ubi->thread_enabled = 1; 1016 wake_up_process(ubi->bgt_thread); 1017 spin_unlock(&ubi->wl_lock); 1018 1019 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1020 return ubi_num; 1021 1022 out_debugfs: 1023 ubi_debugfs_exit_dev(ubi); 1024 out_uif: 1025 uif_close(ubi); 1026 out_detach: 1027 ubi_devices[ubi_num] = NULL; 1028 ubi_wl_close(ubi); 1029 ubi_free_internal_volumes(ubi); 1030 vfree(ubi->vtbl); 1031 out_free: 1032 vfree(ubi->peb_buf); 1033 vfree(ubi->fm_buf); 1034 put_device(&ubi->dev); 1035 return err; 1036 } 1037 1038 /** 1039 * ubi_detach_mtd_dev - detach an MTD device. 1040 * @ubi_num: UBI device number to detach from 1041 * @anyway: detach MTD even if device reference count is not zero 1042 * 1043 * This function destroys an UBI device number @ubi_num and detaches the 1044 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1045 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1046 * exist. 1047 * 1048 * Note, the invocations of this function has to be serialized by the 1049 * @ubi_devices_mutex. 1050 */ 1051 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1052 { 1053 struct ubi_device *ubi; 1054 1055 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1056 return -EINVAL; 1057 1058 ubi = ubi_get_device(ubi_num); 1059 if (!ubi) 1060 return -EINVAL; 1061 1062 spin_lock(&ubi_devices_lock); 1063 put_device(&ubi->dev); 1064 ubi->ref_count -= 1; 1065 if (ubi->ref_count) { 1066 if (!anyway) { 1067 spin_unlock(&ubi_devices_lock); 1068 return -EBUSY; 1069 } 1070 /* This may only happen if there is a bug */ 1071 ubi_err(ubi, "%s reference count %d, destroy anyway", 1072 ubi->ubi_name, ubi->ref_count); 1073 } 1074 ubi_devices[ubi_num] = NULL; 1075 spin_unlock(&ubi_devices_lock); 1076 1077 ubi_assert(ubi_num == ubi->ubi_num); 1078 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1079 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1080 #ifdef CONFIG_MTD_UBI_FASTMAP 1081 /* If we don't write a new fastmap at detach time we lose all 1082 * EC updates that have been made since the last written fastmap. 1083 * In case of fastmap debugging we omit the update to simulate an 1084 * unclean shutdown. */ 1085 if (!ubi_dbg_chk_fastmap(ubi)) 1086 ubi_update_fastmap(ubi); 1087 #endif 1088 /* 1089 * Before freeing anything, we have to stop the background thread to 1090 * prevent it from doing anything on this device while we are freeing. 1091 */ 1092 if (ubi->bgt_thread) 1093 kthread_stop(ubi->bgt_thread); 1094 1095 #ifdef CONFIG_MTD_UBI_FASTMAP 1096 cancel_work_sync(&ubi->fm_work); 1097 #endif 1098 ubi_debugfs_exit_dev(ubi); 1099 uif_close(ubi); 1100 1101 ubi_wl_close(ubi); 1102 ubi_free_internal_volumes(ubi); 1103 vfree(ubi->vtbl); 1104 vfree(ubi->peb_buf); 1105 vfree(ubi->fm_buf); 1106 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1107 put_mtd_device(ubi->mtd); 1108 put_device(&ubi->dev); 1109 return 0; 1110 } 1111 1112 /** 1113 * open_mtd_by_chdev - open an MTD device by its character device node path. 1114 * @mtd_dev: MTD character device node path 1115 * 1116 * This helper function opens an MTD device by its character node device path. 1117 * Returns MTD device description object in case of success and a negative 1118 * error code in case of failure. 1119 */ 1120 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1121 { 1122 int err, minor; 1123 struct path path; 1124 struct kstat stat; 1125 1126 /* Probably this is an MTD character device node path */ 1127 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1128 if (err) 1129 return ERR_PTR(err); 1130 1131 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1132 path_put(&path); 1133 if (err) 1134 return ERR_PTR(err); 1135 1136 /* MTD device number is defined by the major / minor numbers */ 1137 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1138 return ERR_PTR(-EINVAL); 1139 1140 minor = MINOR(stat.rdev); 1141 1142 if (minor & 1) 1143 /* 1144 * Just do not think the "/dev/mtdrX" devices support is need, 1145 * so do not support them to avoid doing extra work. 1146 */ 1147 return ERR_PTR(-EINVAL); 1148 1149 return get_mtd_device(NULL, minor / 2); 1150 } 1151 1152 /** 1153 * open_mtd_device - open MTD device by name, character device path, or number. 1154 * @mtd_dev: name, character device node path, or MTD device device number 1155 * 1156 * This function tries to open and MTD device described by @mtd_dev string, 1157 * which is first treated as ASCII MTD device number, and if it is not true, it 1158 * is treated as MTD device name, and if that is also not true, it is treated 1159 * as MTD character device node path. Returns MTD device description object in 1160 * case of success and a negative error code in case of failure. 1161 */ 1162 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1163 { 1164 struct mtd_info *mtd; 1165 int mtd_num; 1166 char *endp; 1167 1168 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1169 if (*endp != '\0' || mtd_dev == endp) { 1170 /* 1171 * This does not look like an ASCII integer, probably this is 1172 * MTD device name. 1173 */ 1174 mtd = get_mtd_device_nm(mtd_dev); 1175 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1176 /* Probably this is an MTD character device node path */ 1177 mtd = open_mtd_by_chdev(mtd_dev); 1178 } else 1179 mtd = get_mtd_device(NULL, mtd_num); 1180 1181 return mtd; 1182 } 1183 1184 static int __init ubi_init(void) 1185 { 1186 int err, i, k; 1187 1188 /* Ensure that EC and VID headers have correct size */ 1189 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1190 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1191 1192 if (mtd_devs > UBI_MAX_DEVICES) { 1193 pr_err("UBI error: too many MTD devices, maximum is %d\n", 1194 UBI_MAX_DEVICES); 1195 return -EINVAL; 1196 } 1197 1198 /* Create base sysfs directory and sysfs files */ 1199 err = class_register(&ubi_class); 1200 if (err < 0) 1201 return err; 1202 1203 err = misc_register(&ubi_ctrl_cdev); 1204 if (err) { 1205 pr_err("UBI error: cannot register device\n"); 1206 goto out; 1207 } 1208 1209 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1210 sizeof(struct ubi_wl_entry), 1211 0, 0, NULL); 1212 if (!ubi_wl_entry_slab) { 1213 err = -ENOMEM; 1214 goto out_dev_unreg; 1215 } 1216 1217 err = ubi_debugfs_init(); 1218 if (err) 1219 goto out_slab; 1220 1221 1222 /* Attach MTD devices */ 1223 for (i = 0; i < mtd_devs; i++) { 1224 struct mtd_dev_param *p = &mtd_dev_param[i]; 1225 struct mtd_info *mtd; 1226 1227 cond_resched(); 1228 1229 mtd = open_mtd_device(p->name); 1230 if (IS_ERR(mtd)) { 1231 err = PTR_ERR(mtd); 1232 pr_err("UBI error: cannot open mtd %s, error %d\n", 1233 p->name, err); 1234 /* See comment below re-ubi_is_module(). */ 1235 if (ubi_is_module()) 1236 goto out_detach; 1237 continue; 1238 } 1239 1240 mutex_lock(&ubi_devices_mutex); 1241 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1242 p->vid_hdr_offs, p->max_beb_per1024); 1243 mutex_unlock(&ubi_devices_mutex); 1244 if (err < 0) { 1245 pr_err("UBI error: cannot attach mtd%d\n", 1246 mtd->index); 1247 put_mtd_device(mtd); 1248 1249 /* 1250 * Originally UBI stopped initializing on any error. 1251 * However, later on it was found out that this 1252 * behavior is not very good when UBI is compiled into 1253 * the kernel and the MTD devices to attach are passed 1254 * through the command line. Indeed, UBI failure 1255 * stopped whole boot sequence. 1256 * 1257 * To fix this, we changed the behavior for the 1258 * non-module case, but preserved the old behavior for 1259 * the module case, just for compatibility. This is a 1260 * little inconsistent, though. 1261 */ 1262 if (ubi_is_module()) 1263 goto out_detach; 1264 } 1265 } 1266 1267 err = ubiblock_init(); 1268 if (err) { 1269 pr_err("UBI error: block: cannot initialize, error %d\n", err); 1270 1271 /* See comment above re-ubi_is_module(). */ 1272 if (ubi_is_module()) 1273 goto out_detach; 1274 } 1275 1276 return 0; 1277 1278 out_detach: 1279 for (k = 0; k < i; k++) 1280 if (ubi_devices[k]) { 1281 mutex_lock(&ubi_devices_mutex); 1282 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1283 mutex_unlock(&ubi_devices_mutex); 1284 } 1285 ubi_debugfs_exit(); 1286 out_slab: 1287 kmem_cache_destroy(ubi_wl_entry_slab); 1288 out_dev_unreg: 1289 misc_deregister(&ubi_ctrl_cdev); 1290 out: 1291 class_unregister(&ubi_class); 1292 pr_err("UBI error: cannot initialize UBI, error %d\n", err); 1293 return err; 1294 } 1295 late_initcall(ubi_init); 1296 1297 static void __exit ubi_exit(void) 1298 { 1299 int i; 1300 1301 ubiblock_exit(); 1302 1303 for (i = 0; i < UBI_MAX_DEVICES; i++) 1304 if (ubi_devices[i]) { 1305 mutex_lock(&ubi_devices_mutex); 1306 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1307 mutex_unlock(&ubi_devices_mutex); 1308 } 1309 ubi_debugfs_exit(); 1310 kmem_cache_destroy(ubi_wl_entry_slab); 1311 misc_deregister(&ubi_ctrl_cdev); 1312 class_unregister(&ubi_class); 1313 } 1314 module_exit(ubi_exit); 1315 1316 /** 1317 * bytes_str_to_int - convert a number of bytes string into an integer. 1318 * @str: the string to convert 1319 * 1320 * This function returns positive resulting integer in case of success and a 1321 * negative error code in case of failure. 1322 */ 1323 static int bytes_str_to_int(const char *str) 1324 { 1325 char *endp; 1326 unsigned long result; 1327 1328 result = simple_strtoul(str, &endp, 0); 1329 if (str == endp || result >= INT_MAX) { 1330 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1331 return -EINVAL; 1332 } 1333 1334 switch (*endp) { 1335 case 'G': 1336 result *= 1024; 1337 /* fall through */ 1338 case 'M': 1339 result *= 1024; 1340 /* fall through */ 1341 case 'K': 1342 result *= 1024; 1343 if (endp[1] == 'i' && endp[2] == 'B') 1344 endp += 2; 1345 case '\0': 1346 break; 1347 default: 1348 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1349 return -EINVAL; 1350 } 1351 1352 return result; 1353 } 1354 1355 /** 1356 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1357 * @val: the parameter value to parse 1358 * @kp: not used 1359 * 1360 * This function returns zero in case of success and a negative error code in 1361 * case of error. 1362 */ 1363 static int ubi_mtd_param_parse(const char *val, const struct kernel_param *kp) 1364 { 1365 int i, len; 1366 struct mtd_dev_param *p; 1367 char buf[MTD_PARAM_LEN_MAX]; 1368 char *pbuf = &buf[0]; 1369 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1370 1371 if (!val) 1372 return -EINVAL; 1373 1374 if (mtd_devs == UBI_MAX_DEVICES) { 1375 pr_err("UBI error: too many parameters, max. is %d\n", 1376 UBI_MAX_DEVICES); 1377 return -EINVAL; 1378 } 1379 1380 len = strnlen(val, MTD_PARAM_LEN_MAX); 1381 if (len == MTD_PARAM_LEN_MAX) { 1382 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1383 val, MTD_PARAM_LEN_MAX); 1384 return -EINVAL; 1385 } 1386 1387 if (len == 0) { 1388 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1389 return 0; 1390 } 1391 1392 strcpy(buf, val); 1393 1394 /* Get rid of the final newline */ 1395 if (buf[len - 1] == '\n') 1396 buf[len - 1] = '\0'; 1397 1398 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1399 tokens[i] = strsep(&pbuf, ","); 1400 1401 if (pbuf) { 1402 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1403 return -EINVAL; 1404 } 1405 1406 p = &mtd_dev_param[mtd_devs]; 1407 strcpy(&p->name[0], tokens[0]); 1408 1409 token = tokens[1]; 1410 if (token) { 1411 p->vid_hdr_offs = bytes_str_to_int(token); 1412 1413 if (p->vid_hdr_offs < 0) 1414 return p->vid_hdr_offs; 1415 } 1416 1417 token = tokens[2]; 1418 if (token) { 1419 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1420 1421 if (err) { 1422 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1423 token); 1424 return -EINVAL; 1425 } 1426 } 1427 1428 token = tokens[3]; 1429 if (token) { 1430 int err = kstrtoint(token, 10, &p->ubi_num); 1431 1432 if (err) { 1433 pr_err("UBI error: bad value for ubi_num parameter: %s", 1434 token); 1435 return -EINVAL; 1436 } 1437 } else 1438 p->ubi_num = UBI_DEV_NUM_AUTO; 1439 1440 mtd_devs += 1; 1441 return 0; 1442 } 1443 1444 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 0400); 1445 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1446 "Multiple \"mtd\" parameters may be specified.\n" 1447 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1448 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1449 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1450 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1451 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1452 "\n" 1453 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1454 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1455 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1456 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1457 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1458 #ifdef CONFIG_MTD_UBI_FASTMAP 1459 module_param(fm_autoconvert, bool, 0644); 1460 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1461 module_param(fm_debug, bool, 0); 1462 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1463 #endif 1464 MODULE_VERSION(__stringify(UBI_VERSION)); 1465 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1466 MODULE_AUTHOR("Artem Bityutskiy"); 1467 MODULE_LICENSE("GPL"); 1468