1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int __initdata mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 static ssize_t ubi_version_show(struct class *class, 108 struct class_attribute *attr, char *buf) 109 { 110 return sprintf(buf, "%d\n", UBI_VERSION); 111 } 112 113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 114 static struct class_attribute ubi_class_attrs[] = { 115 __ATTR(version, S_IRUGO, ubi_version_show, NULL), 116 __ATTR_NULL 117 }; 118 119 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 120 struct class ubi_class = { 121 .name = UBI_NAME_STR, 122 .owner = THIS_MODULE, 123 .class_attrs = ubi_class_attrs, 124 }; 125 126 static ssize_t dev_attribute_show(struct device *dev, 127 struct device_attribute *attr, char *buf); 128 129 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 130 static struct device_attribute dev_eraseblock_size = 131 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_avail_eraseblocks = 133 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_total_eraseblocks = 135 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_volumes_count = 137 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_max_ec = 139 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_reserved_for_bad = 141 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_bad_peb_count = 143 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_max_vol_count = 145 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_min_io_size = 147 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_bgt_enabled = 149 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_mtd_num = 151 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 152 153 /** 154 * ubi_volume_notify - send a volume change notification. 155 * @ubi: UBI device description object 156 * @vol: volume description object of the changed volume 157 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 158 * 159 * This is a helper function which notifies all subscribers about a volume 160 * change event (creation, removal, re-sizing, re-naming, updating). Returns 161 * zero in case of success and a negative error code in case of failure. 162 */ 163 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 164 { 165 int ret; 166 struct ubi_notification nt; 167 168 ubi_do_get_device_info(ubi, &nt.di); 169 ubi_do_get_volume_info(ubi, vol, &nt.vi); 170 171 switch (ntype) { 172 case UBI_VOLUME_ADDED: 173 case UBI_VOLUME_REMOVED: 174 case UBI_VOLUME_RESIZED: 175 case UBI_VOLUME_RENAMED: 176 ret = ubi_update_fastmap(ubi); 177 if (ret) 178 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 179 } 180 181 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 182 } 183 184 /** 185 * ubi_notify_all - send a notification to all volumes. 186 * @ubi: UBI device description object 187 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 188 * @nb: the notifier to call 189 * 190 * This function walks all volumes of UBI device @ubi and sends the @ntype 191 * notification for each volume. If @nb is %NULL, then all registered notifiers 192 * are called, otherwise only the @nb notifier is called. Returns the number of 193 * sent notifications. 194 */ 195 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 196 { 197 struct ubi_notification nt; 198 int i, count = 0; 199 200 ubi_do_get_device_info(ubi, &nt.di); 201 202 mutex_lock(&ubi->device_mutex); 203 for (i = 0; i < ubi->vtbl_slots; i++) { 204 /* 205 * Since the @ubi->device is locked, and we are not going to 206 * change @ubi->volumes, we do not have to lock 207 * @ubi->volumes_lock. 208 */ 209 if (!ubi->volumes[i]) 210 continue; 211 212 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 213 if (nb) 214 nb->notifier_call(nb, ntype, &nt); 215 else 216 blocking_notifier_call_chain(&ubi_notifiers, ntype, 217 &nt); 218 count += 1; 219 } 220 mutex_unlock(&ubi->device_mutex); 221 222 return count; 223 } 224 225 /** 226 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 227 * @nb: the notifier to call 228 * 229 * This function walks all UBI devices and volumes and sends the 230 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 231 * registered notifiers are called, otherwise only the @nb notifier is called. 232 * Returns the number of sent notifications. 233 */ 234 int ubi_enumerate_volumes(struct notifier_block *nb) 235 { 236 int i, count = 0; 237 238 /* 239 * Since the @ubi_devices_mutex is locked, and we are not going to 240 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 241 */ 242 for (i = 0; i < UBI_MAX_DEVICES; i++) { 243 struct ubi_device *ubi = ubi_devices[i]; 244 245 if (!ubi) 246 continue; 247 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 248 } 249 250 return count; 251 } 252 253 /** 254 * ubi_get_device - get UBI device. 255 * @ubi_num: UBI device number 256 * 257 * This function returns UBI device description object for UBI device number 258 * @ubi_num, or %NULL if the device does not exist. This function increases the 259 * device reference count to prevent removal of the device. In other words, the 260 * device cannot be removed if its reference count is not zero. 261 */ 262 struct ubi_device *ubi_get_device(int ubi_num) 263 { 264 struct ubi_device *ubi; 265 266 spin_lock(&ubi_devices_lock); 267 ubi = ubi_devices[ubi_num]; 268 if (ubi) { 269 ubi_assert(ubi->ref_count >= 0); 270 ubi->ref_count += 1; 271 get_device(&ubi->dev); 272 } 273 spin_unlock(&ubi_devices_lock); 274 275 return ubi; 276 } 277 278 /** 279 * ubi_put_device - drop an UBI device reference. 280 * @ubi: UBI device description object 281 */ 282 void ubi_put_device(struct ubi_device *ubi) 283 { 284 spin_lock(&ubi_devices_lock); 285 ubi->ref_count -= 1; 286 put_device(&ubi->dev); 287 spin_unlock(&ubi_devices_lock); 288 } 289 290 /** 291 * ubi_get_by_major - get UBI device by character device major number. 292 * @major: major number 293 * 294 * This function is similar to 'ubi_get_device()', but it searches the device 295 * by its major number. 296 */ 297 struct ubi_device *ubi_get_by_major(int major) 298 { 299 int i; 300 struct ubi_device *ubi; 301 302 spin_lock(&ubi_devices_lock); 303 for (i = 0; i < UBI_MAX_DEVICES; i++) { 304 ubi = ubi_devices[i]; 305 if (ubi && MAJOR(ubi->cdev.dev) == major) { 306 ubi_assert(ubi->ref_count >= 0); 307 ubi->ref_count += 1; 308 get_device(&ubi->dev); 309 spin_unlock(&ubi_devices_lock); 310 return ubi; 311 } 312 } 313 spin_unlock(&ubi_devices_lock); 314 315 return NULL; 316 } 317 318 /** 319 * ubi_major2num - get UBI device number by character device major number. 320 * @major: major number 321 * 322 * This function searches UBI device number object by its major number. If UBI 323 * device was not found, this function returns -ENODEV, otherwise the UBI device 324 * number is returned. 325 */ 326 int ubi_major2num(int major) 327 { 328 int i, ubi_num = -ENODEV; 329 330 spin_lock(&ubi_devices_lock); 331 for (i = 0; i < UBI_MAX_DEVICES; i++) { 332 struct ubi_device *ubi = ubi_devices[i]; 333 334 if (ubi && MAJOR(ubi->cdev.dev) == major) { 335 ubi_num = ubi->ubi_num; 336 break; 337 } 338 } 339 spin_unlock(&ubi_devices_lock); 340 341 return ubi_num; 342 } 343 344 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 345 static ssize_t dev_attribute_show(struct device *dev, 346 struct device_attribute *attr, char *buf) 347 { 348 ssize_t ret; 349 struct ubi_device *ubi; 350 351 /* 352 * The below code looks weird, but it actually makes sense. We get the 353 * UBI device reference from the contained 'struct ubi_device'. But it 354 * is unclear if the device was removed or not yet. Indeed, if the 355 * device was removed before we increased its reference count, 356 * 'ubi_get_device()' will return -ENODEV and we fail. 357 * 358 * Remember, 'struct ubi_device' is freed in the release function, so 359 * we still can use 'ubi->ubi_num'. 360 */ 361 ubi = container_of(dev, struct ubi_device, dev); 362 ubi = ubi_get_device(ubi->ubi_num); 363 if (!ubi) 364 return -ENODEV; 365 366 if (attr == &dev_eraseblock_size) 367 ret = sprintf(buf, "%d\n", ubi->leb_size); 368 else if (attr == &dev_avail_eraseblocks) 369 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 370 else if (attr == &dev_total_eraseblocks) 371 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 372 else if (attr == &dev_volumes_count) 373 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 374 else if (attr == &dev_max_ec) 375 ret = sprintf(buf, "%d\n", ubi->max_ec); 376 else if (attr == &dev_reserved_for_bad) 377 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 378 else if (attr == &dev_bad_peb_count) 379 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 380 else if (attr == &dev_max_vol_count) 381 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 382 else if (attr == &dev_min_io_size) 383 ret = sprintf(buf, "%d\n", ubi->min_io_size); 384 else if (attr == &dev_bgt_enabled) 385 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 386 else if (attr == &dev_mtd_num) 387 ret = sprintf(buf, "%d\n", ubi->mtd->index); 388 else 389 ret = -EINVAL; 390 391 ubi_put_device(ubi); 392 return ret; 393 } 394 395 static struct attribute *ubi_dev_attrs[] = { 396 &dev_eraseblock_size.attr, 397 &dev_avail_eraseblocks.attr, 398 &dev_total_eraseblocks.attr, 399 &dev_volumes_count.attr, 400 &dev_max_ec.attr, 401 &dev_reserved_for_bad.attr, 402 &dev_bad_peb_count.attr, 403 &dev_max_vol_count.attr, 404 &dev_min_io_size.attr, 405 &dev_bgt_enabled.attr, 406 &dev_mtd_num.attr, 407 NULL 408 }; 409 ATTRIBUTE_GROUPS(ubi_dev); 410 411 static void dev_release(struct device *dev) 412 { 413 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 414 415 kfree(ubi); 416 } 417 418 /** 419 * ubi_sysfs_init - initialize sysfs for an UBI device. 420 * @ubi: UBI device description object 421 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 422 * taken 423 * 424 * This function returns zero in case of success and a negative error code in 425 * case of failure. 426 */ 427 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 428 { 429 int err; 430 431 ubi->dev.release = dev_release; 432 ubi->dev.devt = ubi->cdev.dev; 433 ubi->dev.class = &ubi_class; 434 ubi->dev.groups = ubi_dev_groups; 435 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 436 err = device_register(&ubi->dev); 437 if (err) 438 return err; 439 440 *ref = 1; 441 return 0; 442 } 443 444 /** 445 * ubi_sysfs_close - close sysfs for an UBI device. 446 * @ubi: UBI device description object 447 */ 448 static void ubi_sysfs_close(struct ubi_device *ubi) 449 { 450 device_unregister(&ubi->dev); 451 } 452 453 /** 454 * kill_volumes - destroy all user volumes. 455 * @ubi: UBI device description object 456 */ 457 static void kill_volumes(struct ubi_device *ubi) 458 { 459 int i; 460 461 for (i = 0; i < ubi->vtbl_slots; i++) 462 if (ubi->volumes[i]) 463 ubi_free_volume(ubi, ubi->volumes[i]); 464 } 465 466 /** 467 * uif_init - initialize user interfaces for an UBI device. 468 * @ubi: UBI device description object 469 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 470 * taken, otherwise set to %0 471 * 472 * This function initializes various user interfaces for an UBI device. If the 473 * initialization fails at an early stage, this function frees all the 474 * resources it allocated, returns an error, and @ref is set to %0. However, 475 * if the initialization fails after the UBI device was registered in the 476 * driver core subsystem, this function takes a reference to @ubi->dev, because 477 * otherwise the release function ('dev_release()') would free whole @ubi 478 * object. The @ref argument is set to %1 in this case. The caller has to put 479 * this reference. 480 * 481 * This function returns zero in case of success and a negative error code in 482 * case of failure. 483 */ 484 static int uif_init(struct ubi_device *ubi, int *ref) 485 { 486 int i, err; 487 dev_t dev; 488 489 *ref = 0; 490 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 491 492 /* 493 * Major numbers for the UBI character devices are allocated 494 * dynamically. Major numbers of volume character devices are 495 * equivalent to ones of the corresponding UBI character device. Minor 496 * numbers of UBI character devices are 0, while minor numbers of 497 * volume character devices start from 1. Thus, we allocate one major 498 * number and ubi->vtbl_slots + 1 minor numbers. 499 */ 500 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 501 if (err) { 502 ubi_err(ubi, "cannot register UBI character devices"); 503 return err; 504 } 505 506 ubi_assert(MINOR(dev) == 0); 507 cdev_init(&ubi->cdev, &ubi_cdev_operations); 508 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 509 ubi->cdev.owner = THIS_MODULE; 510 511 err = cdev_add(&ubi->cdev, dev, 1); 512 if (err) { 513 ubi_err(ubi, "cannot add character device"); 514 goto out_unreg; 515 } 516 517 err = ubi_sysfs_init(ubi, ref); 518 if (err) 519 goto out_sysfs; 520 521 for (i = 0; i < ubi->vtbl_slots; i++) 522 if (ubi->volumes[i]) { 523 err = ubi_add_volume(ubi, ubi->volumes[i]); 524 if (err) { 525 ubi_err(ubi, "cannot add volume %d", i); 526 goto out_volumes; 527 } 528 } 529 530 return 0; 531 532 out_volumes: 533 kill_volumes(ubi); 534 out_sysfs: 535 if (*ref) 536 get_device(&ubi->dev); 537 ubi_sysfs_close(ubi); 538 cdev_del(&ubi->cdev); 539 out_unreg: 540 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 541 ubi_err(ubi, "cannot initialize UBI %s, error %d", 542 ubi->ubi_name, err); 543 return err; 544 } 545 546 /** 547 * uif_close - close user interfaces for an UBI device. 548 * @ubi: UBI device description object 549 * 550 * Note, since this function un-registers UBI volume device objects (@vol->dev), 551 * the memory allocated voe the volumes is freed as well (in the release 552 * function). 553 */ 554 static void uif_close(struct ubi_device *ubi) 555 { 556 kill_volumes(ubi); 557 ubi_sysfs_close(ubi); 558 cdev_del(&ubi->cdev); 559 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 560 } 561 562 /** 563 * ubi_free_internal_volumes - free internal volumes. 564 * @ubi: UBI device description object 565 */ 566 void ubi_free_internal_volumes(struct ubi_device *ubi) 567 { 568 int i; 569 570 for (i = ubi->vtbl_slots; 571 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 572 kfree(ubi->volumes[i]->eba_tbl); 573 kfree(ubi->volumes[i]); 574 } 575 } 576 577 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 578 { 579 int limit, device_pebs; 580 uint64_t device_size; 581 582 if (!max_beb_per1024) 583 return 0; 584 585 /* 586 * Here we are using size of the entire flash chip and 587 * not just the MTD partition size because the maximum 588 * number of bad eraseblocks is a percentage of the 589 * whole device and bad eraseblocks are not fairly 590 * distributed over the flash chip. So the worst case 591 * is that all the bad eraseblocks of the chip are in 592 * the MTD partition we are attaching (ubi->mtd). 593 */ 594 device_size = mtd_get_device_size(ubi->mtd); 595 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 596 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 597 598 /* Round it up */ 599 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 600 limit += 1; 601 602 return limit; 603 } 604 605 /** 606 * io_init - initialize I/O sub-system for a given UBI device. 607 * @ubi: UBI device description object 608 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 609 * 610 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 611 * assumed: 612 * o EC header is always at offset zero - this cannot be changed; 613 * o VID header starts just after the EC header at the closest address 614 * aligned to @io->hdrs_min_io_size; 615 * o data starts just after the VID header at the closest address aligned to 616 * @io->min_io_size 617 * 618 * This function returns zero in case of success and a negative error code in 619 * case of failure. 620 */ 621 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 622 { 623 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 624 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 625 626 if (ubi->mtd->numeraseregions != 0) { 627 /* 628 * Some flashes have several erase regions. Different regions 629 * may have different eraseblock size and other 630 * characteristics. It looks like mostly multi-region flashes 631 * have one "main" region and one or more small regions to 632 * store boot loader code or boot parameters or whatever. I 633 * guess we should just pick the largest region. But this is 634 * not implemented. 635 */ 636 ubi_err(ubi, "multiple regions, not implemented"); 637 return -EINVAL; 638 } 639 640 if (ubi->vid_hdr_offset < 0) 641 return -EINVAL; 642 643 /* 644 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 645 * physical eraseblocks maximum. 646 */ 647 648 ubi->peb_size = ubi->mtd->erasesize; 649 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 650 ubi->flash_size = ubi->mtd->size; 651 652 if (mtd_can_have_bb(ubi->mtd)) { 653 ubi->bad_allowed = 1; 654 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 655 } 656 657 if (ubi->mtd->type == MTD_NORFLASH) { 658 ubi_assert(ubi->mtd->writesize == 1); 659 ubi->nor_flash = 1; 660 } 661 662 ubi->min_io_size = ubi->mtd->writesize; 663 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 664 665 /* 666 * Make sure minimal I/O unit is power of 2. Note, there is no 667 * fundamental reason for this assumption. It is just an optimization 668 * which allows us to avoid costly division operations. 669 */ 670 if (!is_power_of_2(ubi->min_io_size)) { 671 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 672 ubi->min_io_size); 673 return -EINVAL; 674 } 675 676 ubi_assert(ubi->hdrs_min_io_size > 0); 677 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 678 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 679 680 ubi->max_write_size = ubi->mtd->writebufsize; 681 /* 682 * Maximum write size has to be greater or equivalent to min. I/O 683 * size, and be multiple of min. I/O size. 684 */ 685 if (ubi->max_write_size < ubi->min_io_size || 686 ubi->max_write_size % ubi->min_io_size || 687 !is_power_of_2(ubi->max_write_size)) { 688 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 689 ubi->max_write_size, ubi->min_io_size); 690 return -EINVAL; 691 } 692 693 /* Calculate default aligned sizes of EC and VID headers */ 694 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 695 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 696 697 dbg_gen("min_io_size %d", ubi->min_io_size); 698 dbg_gen("max_write_size %d", ubi->max_write_size); 699 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 700 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 701 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 702 703 if (ubi->vid_hdr_offset == 0) 704 /* Default offset */ 705 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 706 ubi->ec_hdr_alsize; 707 else { 708 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 709 ~(ubi->hdrs_min_io_size - 1); 710 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 711 ubi->vid_hdr_aloffset; 712 } 713 714 /* Similar for the data offset */ 715 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 716 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 717 718 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 719 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 720 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 721 dbg_gen("leb_start %d", ubi->leb_start); 722 723 /* The shift must be aligned to 32-bit boundary */ 724 if (ubi->vid_hdr_shift % 4) { 725 ubi_err(ubi, "unaligned VID header shift %d", 726 ubi->vid_hdr_shift); 727 return -EINVAL; 728 } 729 730 /* Check sanity */ 731 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 732 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 733 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 734 ubi->leb_start & (ubi->min_io_size - 1)) { 735 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 736 ubi->vid_hdr_offset, ubi->leb_start); 737 return -EINVAL; 738 } 739 740 /* 741 * Set maximum amount of physical erroneous eraseblocks to be 10%. 742 * Erroneous PEB are those which have read errors. 743 */ 744 ubi->max_erroneous = ubi->peb_count / 10; 745 if (ubi->max_erroneous < 16) 746 ubi->max_erroneous = 16; 747 dbg_gen("max_erroneous %d", ubi->max_erroneous); 748 749 /* 750 * It may happen that EC and VID headers are situated in one minimal 751 * I/O unit. In this case we can only accept this UBI image in 752 * read-only mode. 753 */ 754 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 755 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 756 ubi->ro_mode = 1; 757 } 758 759 ubi->leb_size = ubi->peb_size - ubi->leb_start; 760 761 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 762 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 763 ubi->mtd->index); 764 ubi->ro_mode = 1; 765 } 766 767 /* 768 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 769 * unfortunately, MTD does not provide this information. We should loop 770 * over all physical eraseblocks and invoke mtd->block_is_bad() for 771 * each physical eraseblock. So, we leave @ubi->bad_peb_count 772 * uninitialized so far. 773 */ 774 775 return 0; 776 } 777 778 /** 779 * autoresize - re-size the volume which has the "auto-resize" flag set. 780 * @ubi: UBI device description object 781 * @vol_id: ID of the volume to re-size 782 * 783 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 784 * the volume table to the largest possible size. See comments in ubi-header.h 785 * for more description of the flag. Returns zero in case of success and a 786 * negative error code in case of failure. 787 */ 788 static int autoresize(struct ubi_device *ubi, int vol_id) 789 { 790 struct ubi_volume_desc desc; 791 struct ubi_volume *vol = ubi->volumes[vol_id]; 792 int err, old_reserved_pebs = vol->reserved_pebs; 793 794 if (ubi->ro_mode) { 795 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 796 return 0; 797 } 798 799 /* 800 * Clear the auto-resize flag in the volume in-memory copy of the 801 * volume table, and 'ubi_resize_volume()' will propagate this change 802 * to the flash. 803 */ 804 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 805 806 if (ubi->avail_pebs == 0) { 807 struct ubi_vtbl_record vtbl_rec; 808 809 /* 810 * No available PEBs to re-size the volume, clear the flag on 811 * flash and exit. 812 */ 813 vtbl_rec = ubi->vtbl[vol_id]; 814 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 815 if (err) 816 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 817 vol_id); 818 } else { 819 desc.vol = vol; 820 err = ubi_resize_volume(&desc, 821 old_reserved_pebs + ubi->avail_pebs); 822 if (err) 823 ubi_err(ubi, "cannot auto-resize volume %d", 824 vol_id); 825 } 826 827 if (err) 828 return err; 829 830 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 831 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 832 return 0; 833 } 834 835 /** 836 * ubi_attach_mtd_dev - attach an MTD device. 837 * @mtd: MTD device description object 838 * @ubi_num: number to assign to the new UBI device 839 * @vid_hdr_offset: VID header offset 840 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 841 * 842 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 843 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 844 * which case this function finds a vacant device number and assigns it 845 * automatically. Returns the new UBI device number in case of success and a 846 * negative error code in case of failure. 847 * 848 * Note, the invocations of this function has to be serialized by the 849 * @ubi_devices_mutex. 850 */ 851 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 852 int vid_hdr_offset, int max_beb_per1024) 853 { 854 struct ubi_device *ubi; 855 int i, err, ref = 0; 856 857 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 858 return -EINVAL; 859 860 if (!max_beb_per1024) 861 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 862 863 /* 864 * Check if we already have the same MTD device attached. 865 * 866 * Note, this function assumes that UBI devices creations and deletions 867 * are serialized, so it does not take the &ubi_devices_lock. 868 */ 869 for (i = 0; i < UBI_MAX_DEVICES; i++) { 870 ubi = ubi_devices[i]; 871 if (ubi && mtd->index == ubi->mtd->index) { 872 ubi_err(ubi, "mtd%d is already attached to ubi%d", 873 mtd->index, i); 874 return -EEXIST; 875 } 876 } 877 878 /* 879 * Make sure this MTD device is not emulated on top of an UBI volume 880 * already. Well, generally this recursion works fine, but there are 881 * different problems like the UBI module takes a reference to itself 882 * by attaching (and thus, opening) the emulated MTD device. This 883 * results in inability to unload the module. And in general it makes 884 * no sense to attach emulated MTD devices, so we prohibit this. 885 */ 886 if (mtd->type == MTD_UBIVOLUME) { 887 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI", 888 mtd->index); 889 return -EINVAL; 890 } 891 892 if (ubi_num == UBI_DEV_NUM_AUTO) { 893 /* Search for an empty slot in the @ubi_devices array */ 894 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 895 if (!ubi_devices[ubi_num]) 896 break; 897 if (ubi_num == UBI_MAX_DEVICES) { 898 ubi_err(ubi, "only %d UBI devices may be created", 899 UBI_MAX_DEVICES); 900 return -ENFILE; 901 } 902 } else { 903 if (ubi_num >= UBI_MAX_DEVICES) 904 return -EINVAL; 905 906 /* Make sure ubi_num is not busy */ 907 if (ubi_devices[ubi_num]) { 908 ubi_err(ubi, "already exists"); 909 return -EEXIST; 910 } 911 } 912 913 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 914 if (!ubi) 915 return -ENOMEM; 916 917 ubi->mtd = mtd; 918 ubi->ubi_num = ubi_num; 919 ubi->vid_hdr_offset = vid_hdr_offset; 920 ubi->autoresize_vol_id = -1; 921 922 #ifdef CONFIG_MTD_UBI_FASTMAP 923 ubi->fm_pool.used = ubi->fm_pool.size = 0; 924 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 925 926 /* 927 * fm_pool.max_size is 5% of the total number of PEBs but it's also 928 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 929 */ 930 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 931 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 932 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 933 UBI_FM_MIN_POOL_SIZE); 934 935 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 936 ubi->fm_disabled = !fm_autoconvert; 937 if (fm_debug) 938 ubi_enable_dbg_chk_fastmap(ubi); 939 940 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 941 <= UBI_FM_MAX_START) { 942 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 943 UBI_FM_MAX_START); 944 ubi->fm_disabled = 1; 945 } 946 947 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 948 ubi_msg(ubi, "default fastmap WL pool size: %d", 949 ubi->fm_wl_pool.max_size); 950 #else 951 ubi->fm_disabled = 1; 952 #endif 953 mutex_init(&ubi->buf_mutex); 954 mutex_init(&ubi->ckvol_mutex); 955 mutex_init(&ubi->device_mutex); 956 spin_lock_init(&ubi->volumes_lock); 957 init_rwsem(&ubi->fm_protect); 958 init_rwsem(&ubi->fm_eba_sem); 959 960 ubi_msg(ubi, "attaching mtd%d", mtd->index); 961 962 err = io_init(ubi, max_beb_per1024); 963 if (err) 964 goto out_free; 965 966 err = -ENOMEM; 967 ubi->peb_buf = vmalloc(ubi->peb_size); 968 if (!ubi->peb_buf) 969 goto out_free; 970 971 #ifdef CONFIG_MTD_UBI_FASTMAP 972 ubi->fm_size = ubi_calc_fm_size(ubi); 973 ubi->fm_buf = vzalloc(ubi->fm_size); 974 if (!ubi->fm_buf) 975 goto out_free; 976 #endif 977 err = ubi_attach(ubi, 0); 978 if (err) { 979 ubi_err(ubi, "failed to attach mtd%d, error %d", 980 mtd->index, err); 981 goto out_free; 982 } 983 984 if (ubi->autoresize_vol_id != -1) { 985 err = autoresize(ubi, ubi->autoresize_vol_id); 986 if (err) 987 goto out_detach; 988 } 989 990 err = uif_init(ubi, &ref); 991 if (err) 992 goto out_detach; 993 994 err = ubi_debugfs_init_dev(ubi); 995 if (err) 996 goto out_uif; 997 998 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 999 if (IS_ERR(ubi->bgt_thread)) { 1000 err = PTR_ERR(ubi->bgt_thread); 1001 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1002 ubi->bgt_name, err); 1003 goto out_debugfs; 1004 } 1005 1006 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1007 mtd->index, mtd->name, ubi->flash_size >> 20); 1008 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1009 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1010 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1011 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1012 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1013 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1014 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1015 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1016 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1017 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1018 ubi->vtbl_slots); 1019 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1020 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1021 ubi->image_seq); 1022 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1023 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1024 1025 /* 1026 * The below lock makes sure we do not race with 'ubi_thread()' which 1027 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1028 */ 1029 spin_lock(&ubi->wl_lock); 1030 ubi->thread_enabled = 1; 1031 wake_up_process(ubi->bgt_thread); 1032 spin_unlock(&ubi->wl_lock); 1033 1034 ubi_devices[ubi_num] = ubi; 1035 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1036 return ubi_num; 1037 1038 out_debugfs: 1039 ubi_debugfs_exit_dev(ubi); 1040 out_uif: 1041 get_device(&ubi->dev); 1042 ubi_assert(ref); 1043 uif_close(ubi); 1044 out_detach: 1045 ubi_wl_close(ubi); 1046 ubi_free_internal_volumes(ubi); 1047 vfree(ubi->vtbl); 1048 out_free: 1049 vfree(ubi->peb_buf); 1050 vfree(ubi->fm_buf); 1051 if (ref) 1052 put_device(&ubi->dev); 1053 else 1054 kfree(ubi); 1055 return err; 1056 } 1057 1058 /** 1059 * ubi_detach_mtd_dev - detach an MTD device. 1060 * @ubi_num: UBI device number to detach from 1061 * @anyway: detach MTD even if device reference count is not zero 1062 * 1063 * This function destroys an UBI device number @ubi_num and detaches the 1064 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1065 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1066 * exist. 1067 * 1068 * Note, the invocations of this function has to be serialized by the 1069 * @ubi_devices_mutex. 1070 */ 1071 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1072 { 1073 struct ubi_device *ubi; 1074 1075 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1076 return -EINVAL; 1077 1078 ubi = ubi_get_device(ubi_num); 1079 if (!ubi) 1080 return -EINVAL; 1081 1082 spin_lock(&ubi_devices_lock); 1083 put_device(&ubi->dev); 1084 ubi->ref_count -= 1; 1085 if (ubi->ref_count) { 1086 if (!anyway) { 1087 spin_unlock(&ubi_devices_lock); 1088 return -EBUSY; 1089 } 1090 /* This may only happen if there is a bug */ 1091 ubi_err(ubi, "%s reference count %d, destroy anyway", 1092 ubi->ubi_name, ubi->ref_count); 1093 } 1094 ubi_devices[ubi_num] = NULL; 1095 spin_unlock(&ubi_devices_lock); 1096 1097 ubi_assert(ubi_num == ubi->ubi_num); 1098 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1099 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1100 #ifdef CONFIG_MTD_UBI_FASTMAP 1101 /* If we don't write a new fastmap at detach time we lose all 1102 * EC updates that have been made since the last written fastmap. 1103 * In case of fastmap debugging we omit the update to simulate an 1104 * unclean shutdown. */ 1105 if (!ubi_dbg_chk_fastmap(ubi)) 1106 ubi_update_fastmap(ubi); 1107 #endif 1108 /* 1109 * Before freeing anything, we have to stop the background thread to 1110 * prevent it from doing anything on this device while we are freeing. 1111 */ 1112 if (ubi->bgt_thread) 1113 kthread_stop(ubi->bgt_thread); 1114 1115 /* 1116 * Get a reference to the device in order to prevent 'dev_release()' 1117 * from freeing the @ubi object. 1118 */ 1119 get_device(&ubi->dev); 1120 1121 ubi_debugfs_exit_dev(ubi); 1122 uif_close(ubi); 1123 1124 ubi_wl_close(ubi); 1125 ubi_free_internal_volumes(ubi); 1126 vfree(ubi->vtbl); 1127 put_mtd_device(ubi->mtd); 1128 vfree(ubi->peb_buf); 1129 vfree(ubi->fm_buf); 1130 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1131 put_device(&ubi->dev); 1132 return 0; 1133 } 1134 1135 /** 1136 * open_mtd_by_chdev - open an MTD device by its character device node path. 1137 * @mtd_dev: MTD character device node path 1138 * 1139 * This helper function opens an MTD device by its character node device path. 1140 * Returns MTD device description object in case of success and a negative 1141 * error code in case of failure. 1142 */ 1143 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1144 { 1145 int err, major, minor, mode; 1146 struct path path; 1147 1148 /* Probably this is an MTD character device node path */ 1149 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1150 if (err) 1151 return ERR_PTR(err); 1152 1153 /* MTD device number is defined by the major / minor numbers */ 1154 major = imajor(d_backing_inode(path.dentry)); 1155 minor = iminor(d_backing_inode(path.dentry)); 1156 mode = d_backing_inode(path.dentry)->i_mode; 1157 path_put(&path); 1158 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode)) 1159 return ERR_PTR(-EINVAL); 1160 1161 if (minor & 1) 1162 /* 1163 * Just do not think the "/dev/mtdrX" devices support is need, 1164 * so do not support them to avoid doing extra work. 1165 */ 1166 return ERR_PTR(-EINVAL); 1167 1168 return get_mtd_device(NULL, minor / 2); 1169 } 1170 1171 /** 1172 * open_mtd_device - open MTD device by name, character device path, or number. 1173 * @mtd_dev: name, character device node path, or MTD device device number 1174 * 1175 * This function tries to open and MTD device described by @mtd_dev string, 1176 * which is first treated as ASCII MTD device number, and if it is not true, it 1177 * is treated as MTD device name, and if that is also not true, it is treated 1178 * as MTD character device node path. Returns MTD device description object in 1179 * case of success and a negative error code in case of failure. 1180 */ 1181 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1182 { 1183 struct mtd_info *mtd; 1184 int mtd_num; 1185 char *endp; 1186 1187 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1188 if (*endp != '\0' || mtd_dev == endp) { 1189 /* 1190 * This does not look like an ASCII integer, probably this is 1191 * MTD device name. 1192 */ 1193 mtd = get_mtd_device_nm(mtd_dev); 1194 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1195 /* Probably this is an MTD character device node path */ 1196 mtd = open_mtd_by_chdev(mtd_dev); 1197 } else 1198 mtd = get_mtd_device(NULL, mtd_num); 1199 1200 return mtd; 1201 } 1202 1203 static int __init ubi_init(void) 1204 { 1205 int err, i, k; 1206 1207 /* Ensure that EC and VID headers have correct size */ 1208 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1209 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1210 1211 if (mtd_devs > UBI_MAX_DEVICES) { 1212 pr_err("UBI error: too many MTD devices, maximum is %d", 1213 UBI_MAX_DEVICES); 1214 return -EINVAL; 1215 } 1216 1217 /* Create base sysfs directory and sysfs files */ 1218 err = class_register(&ubi_class); 1219 if (err < 0) 1220 return err; 1221 1222 err = misc_register(&ubi_ctrl_cdev); 1223 if (err) { 1224 pr_err("UBI error: cannot register device"); 1225 goto out; 1226 } 1227 1228 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1229 sizeof(struct ubi_wl_entry), 1230 0, 0, NULL); 1231 if (!ubi_wl_entry_slab) { 1232 err = -ENOMEM; 1233 goto out_dev_unreg; 1234 } 1235 1236 err = ubi_debugfs_init(); 1237 if (err) 1238 goto out_slab; 1239 1240 1241 /* Attach MTD devices */ 1242 for (i = 0; i < mtd_devs; i++) { 1243 struct mtd_dev_param *p = &mtd_dev_param[i]; 1244 struct mtd_info *mtd; 1245 1246 cond_resched(); 1247 1248 mtd = open_mtd_device(p->name); 1249 if (IS_ERR(mtd)) { 1250 err = PTR_ERR(mtd); 1251 pr_err("UBI error: cannot open mtd %s, error %d", 1252 p->name, err); 1253 /* See comment below re-ubi_is_module(). */ 1254 if (ubi_is_module()) 1255 goto out_detach; 1256 continue; 1257 } 1258 1259 mutex_lock(&ubi_devices_mutex); 1260 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1261 p->vid_hdr_offs, p->max_beb_per1024); 1262 mutex_unlock(&ubi_devices_mutex); 1263 if (err < 0) { 1264 pr_err("UBI error: cannot attach mtd%d", 1265 mtd->index); 1266 put_mtd_device(mtd); 1267 1268 /* 1269 * Originally UBI stopped initializing on any error. 1270 * However, later on it was found out that this 1271 * behavior is not very good when UBI is compiled into 1272 * the kernel and the MTD devices to attach are passed 1273 * through the command line. Indeed, UBI failure 1274 * stopped whole boot sequence. 1275 * 1276 * To fix this, we changed the behavior for the 1277 * non-module case, but preserved the old behavior for 1278 * the module case, just for compatibility. This is a 1279 * little inconsistent, though. 1280 */ 1281 if (ubi_is_module()) 1282 goto out_detach; 1283 } 1284 } 1285 1286 err = ubiblock_init(); 1287 if (err) { 1288 pr_err("UBI error: block: cannot initialize, error %d", err); 1289 1290 /* See comment above re-ubi_is_module(). */ 1291 if (ubi_is_module()) 1292 goto out_detach; 1293 } 1294 1295 return 0; 1296 1297 out_detach: 1298 for (k = 0; k < i; k++) 1299 if (ubi_devices[k]) { 1300 mutex_lock(&ubi_devices_mutex); 1301 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1302 mutex_unlock(&ubi_devices_mutex); 1303 } 1304 ubi_debugfs_exit(); 1305 out_slab: 1306 kmem_cache_destroy(ubi_wl_entry_slab); 1307 out_dev_unreg: 1308 misc_deregister(&ubi_ctrl_cdev); 1309 out: 1310 class_unregister(&ubi_class); 1311 pr_err("UBI error: cannot initialize UBI, error %d", err); 1312 return err; 1313 } 1314 late_initcall(ubi_init); 1315 1316 static void __exit ubi_exit(void) 1317 { 1318 int i; 1319 1320 ubiblock_exit(); 1321 1322 for (i = 0; i < UBI_MAX_DEVICES; i++) 1323 if (ubi_devices[i]) { 1324 mutex_lock(&ubi_devices_mutex); 1325 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1326 mutex_unlock(&ubi_devices_mutex); 1327 } 1328 ubi_debugfs_exit(); 1329 kmem_cache_destroy(ubi_wl_entry_slab); 1330 misc_deregister(&ubi_ctrl_cdev); 1331 class_unregister(&ubi_class); 1332 } 1333 module_exit(ubi_exit); 1334 1335 /** 1336 * bytes_str_to_int - convert a number of bytes string into an integer. 1337 * @str: the string to convert 1338 * 1339 * This function returns positive resulting integer in case of success and a 1340 * negative error code in case of failure. 1341 */ 1342 static int __init bytes_str_to_int(const char *str) 1343 { 1344 char *endp; 1345 unsigned long result; 1346 1347 result = simple_strtoul(str, &endp, 0); 1348 if (str == endp || result >= INT_MAX) { 1349 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1350 return -EINVAL; 1351 } 1352 1353 switch (*endp) { 1354 case 'G': 1355 result *= 1024; 1356 case 'M': 1357 result *= 1024; 1358 case 'K': 1359 result *= 1024; 1360 if (endp[1] == 'i' && endp[2] == 'B') 1361 endp += 2; 1362 case '\0': 1363 break; 1364 default: 1365 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1366 return -EINVAL; 1367 } 1368 1369 return result; 1370 } 1371 1372 /** 1373 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1374 * @val: the parameter value to parse 1375 * @kp: not used 1376 * 1377 * This function returns zero in case of success and a negative error code in 1378 * case of error. 1379 */ 1380 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1381 { 1382 int i, len; 1383 struct mtd_dev_param *p; 1384 char buf[MTD_PARAM_LEN_MAX]; 1385 char *pbuf = &buf[0]; 1386 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1387 1388 if (!val) 1389 return -EINVAL; 1390 1391 if (mtd_devs == UBI_MAX_DEVICES) { 1392 pr_err("UBI error: too many parameters, max. is %d\n", 1393 UBI_MAX_DEVICES); 1394 return -EINVAL; 1395 } 1396 1397 len = strnlen(val, MTD_PARAM_LEN_MAX); 1398 if (len == MTD_PARAM_LEN_MAX) { 1399 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1400 val, MTD_PARAM_LEN_MAX); 1401 return -EINVAL; 1402 } 1403 1404 if (len == 0) { 1405 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1406 return 0; 1407 } 1408 1409 strcpy(buf, val); 1410 1411 /* Get rid of the final newline */ 1412 if (buf[len - 1] == '\n') 1413 buf[len - 1] = '\0'; 1414 1415 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1416 tokens[i] = strsep(&pbuf, ","); 1417 1418 if (pbuf) { 1419 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1420 return -EINVAL; 1421 } 1422 1423 p = &mtd_dev_param[mtd_devs]; 1424 strcpy(&p->name[0], tokens[0]); 1425 1426 token = tokens[1]; 1427 if (token) { 1428 p->vid_hdr_offs = bytes_str_to_int(token); 1429 1430 if (p->vid_hdr_offs < 0) 1431 return p->vid_hdr_offs; 1432 } 1433 1434 token = tokens[2]; 1435 if (token) { 1436 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1437 1438 if (err) { 1439 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1440 token); 1441 return -EINVAL; 1442 } 1443 } 1444 1445 token = tokens[3]; 1446 if (token) { 1447 int err = kstrtoint(token, 10, &p->ubi_num); 1448 1449 if (err) { 1450 pr_err("UBI error: bad value for ubi_num parameter: %s", 1451 token); 1452 return -EINVAL; 1453 } 1454 } else 1455 p->ubi_num = UBI_DEV_NUM_AUTO; 1456 1457 mtd_devs += 1; 1458 return 0; 1459 } 1460 1461 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1462 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1463 "Multiple \"mtd\" parameters may be specified.\n" 1464 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1465 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1466 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1467 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1468 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1469 "\n" 1470 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1471 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1472 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1473 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1474 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1475 #ifdef CONFIG_MTD_UBI_FASTMAP 1476 module_param(fm_autoconvert, bool, 0644); 1477 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1478 module_param(fm_debug, bool, 0); 1479 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1480 #endif 1481 MODULE_VERSION(__stringify(UBI_VERSION)); 1482 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1483 MODULE_AUTHOR("Artem Bityutskiy"); 1484 MODULE_LICENSE("GPL"); 1485