1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * Copyright (c) Nokia Corporation, 2007 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * Author: Artem Bityutskiy (Битюцкий Артём), 20 * Frank Haverkamp 21 */ 22 23 /* 24 * This file includes UBI initialization and building of UBI devices. 25 * 26 * When UBI is initialized, it attaches all the MTD devices specified as the 27 * module load parameters or the kernel boot parameters. If MTD devices were 28 * specified, UBI does not attach any MTD device, but it is possible to do 29 * later using the "UBI control device". 30 */ 31 32 #include <linux/err.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/stringify.h> 36 #include <linux/namei.h> 37 #include <linux/stat.h> 38 #include <linux/miscdevice.h> 39 #include <linux/mtd/partitions.h> 40 #include <linux/log2.h> 41 #include <linux/kthread.h> 42 #include <linux/kernel.h> 43 #include <linux/slab.h> 44 #include <linux/major.h> 45 #include "ubi.h" 46 47 /* Maximum length of the 'mtd=' parameter */ 48 #define MTD_PARAM_LEN_MAX 64 49 50 /* Maximum number of comma-separated items in the 'mtd=' parameter */ 51 #define MTD_PARAM_MAX_COUNT 4 52 53 /* Maximum value for the number of bad PEBs per 1024 PEBs */ 54 #define MAX_MTD_UBI_BEB_LIMIT 768 55 56 #ifdef CONFIG_MTD_UBI_MODULE 57 #define ubi_is_module() 1 58 #else 59 #define ubi_is_module() 0 60 #endif 61 62 /** 63 * struct mtd_dev_param - MTD device parameter description data structure. 64 * @name: MTD character device node path, MTD device name, or MTD device number 65 * string 66 * @vid_hdr_offs: VID header offset 67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs 68 */ 69 struct mtd_dev_param { 70 char name[MTD_PARAM_LEN_MAX]; 71 int ubi_num; 72 int vid_hdr_offs; 73 int max_beb_per1024; 74 }; 75 76 /* Numbers of elements set in the @mtd_dev_param array */ 77 static int __initdata mtd_devs; 78 79 /* MTD devices specification parameters */ 80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES]; 81 #ifdef CONFIG_MTD_UBI_FASTMAP 82 /* UBI module parameter to enable fastmap automatically on non-fastmap images */ 83 static bool fm_autoconvert; 84 static bool fm_debug; 85 #endif 86 87 /* Slab cache for wear-leveling entries */ 88 struct kmem_cache *ubi_wl_entry_slab; 89 90 /* UBI control character device */ 91 static struct miscdevice ubi_ctrl_cdev = { 92 .minor = MISC_DYNAMIC_MINOR, 93 .name = "ubi_ctrl", 94 .fops = &ubi_ctrl_cdev_operations, 95 }; 96 97 /* All UBI devices in system */ 98 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES]; 99 100 /* Serializes UBI devices creations and removals */ 101 DEFINE_MUTEX(ubi_devices_mutex); 102 103 /* Protects @ubi_devices and @ubi->ref_count */ 104 static DEFINE_SPINLOCK(ubi_devices_lock); 105 106 /* "Show" method for files in '/<sysfs>/class/ubi/' */ 107 static ssize_t ubi_version_show(struct class *class, 108 struct class_attribute *attr, char *buf) 109 { 110 return sprintf(buf, "%d\n", UBI_VERSION); 111 } 112 113 /* UBI version attribute ('/<sysfs>/class/ubi/version') */ 114 static struct class_attribute ubi_class_attrs[] = { 115 __ATTR(version, S_IRUGO, ubi_version_show, NULL), 116 __ATTR_NULL 117 }; 118 119 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */ 120 struct class ubi_class = { 121 .name = UBI_NAME_STR, 122 .owner = THIS_MODULE, 123 .class_attrs = ubi_class_attrs, 124 }; 125 126 static ssize_t dev_attribute_show(struct device *dev, 127 struct device_attribute *attr, char *buf); 128 129 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */ 130 static struct device_attribute dev_eraseblock_size = 131 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL); 132 static struct device_attribute dev_avail_eraseblocks = 133 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 134 static struct device_attribute dev_total_eraseblocks = 135 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL); 136 static struct device_attribute dev_volumes_count = 137 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL); 138 static struct device_attribute dev_max_ec = 139 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL); 140 static struct device_attribute dev_reserved_for_bad = 141 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL); 142 static struct device_attribute dev_bad_peb_count = 143 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL); 144 static struct device_attribute dev_max_vol_count = 145 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL); 146 static struct device_attribute dev_min_io_size = 147 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL); 148 static struct device_attribute dev_bgt_enabled = 149 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL); 150 static struct device_attribute dev_mtd_num = 151 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL); 152 static struct device_attribute dev_ro_mode = 153 __ATTR(ro_mode, S_IRUGO, dev_attribute_show, NULL); 154 155 /** 156 * ubi_volume_notify - send a volume change notification. 157 * @ubi: UBI device description object 158 * @vol: volume description object of the changed volume 159 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 160 * 161 * This is a helper function which notifies all subscribers about a volume 162 * change event (creation, removal, re-sizing, re-naming, updating). Returns 163 * zero in case of success and a negative error code in case of failure. 164 */ 165 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype) 166 { 167 int ret; 168 struct ubi_notification nt; 169 170 ubi_do_get_device_info(ubi, &nt.di); 171 ubi_do_get_volume_info(ubi, vol, &nt.vi); 172 173 switch (ntype) { 174 case UBI_VOLUME_ADDED: 175 case UBI_VOLUME_REMOVED: 176 case UBI_VOLUME_RESIZED: 177 case UBI_VOLUME_RENAMED: 178 ret = ubi_update_fastmap(ubi); 179 if (ret) 180 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret); 181 } 182 183 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt); 184 } 185 186 /** 187 * ubi_notify_all - send a notification to all volumes. 188 * @ubi: UBI device description object 189 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc) 190 * @nb: the notifier to call 191 * 192 * This function walks all volumes of UBI device @ubi and sends the @ntype 193 * notification for each volume. If @nb is %NULL, then all registered notifiers 194 * are called, otherwise only the @nb notifier is called. Returns the number of 195 * sent notifications. 196 */ 197 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb) 198 { 199 struct ubi_notification nt; 200 int i, count = 0; 201 202 ubi_do_get_device_info(ubi, &nt.di); 203 204 mutex_lock(&ubi->device_mutex); 205 for (i = 0; i < ubi->vtbl_slots; i++) { 206 /* 207 * Since the @ubi->device is locked, and we are not going to 208 * change @ubi->volumes, we do not have to lock 209 * @ubi->volumes_lock. 210 */ 211 if (!ubi->volumes[i]) 212 continue; 213 214 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi); 215 if (nb) 216 nb->notifier_call(nb, ntype, &nt); 217 else 218 blocking_notifier_call_chain(&ubi_notifiers, ntype, 219 &nt); 220 count += 1; 221 } 222 mutex_unlock(&ubi->device_mutex); 223 224 return count; 225 } 226 227 /** 228 * ubi_enumerate_volumes - send "add" notification for all existing volumes. 229 * @nb: the notifier to call 230 * 231 * This function walks all UBI devices and volumes and sends the 232 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all 233 * registered notifiers are called, otherwise only the @nb notifier is called. 234 * Returns the number of sent notifications. 235 */ 236 int ubi_enumerate_volumes(struct notifier_block *nb) 237 { 238 int i, count = 0; 239 240 /* 241 * Since the @ubi_devices_mutex is locked, and we are not going to 242 * change @ubi_devices, we do not have to lock @ubi_devices_lock. 243 */ 244 for (i = 0; i < UBI_MAX_DEVICES; i++) { 245 struct ubi_device *ubi = ubi_devices[i]; 246 247 if (!ubi) 248 continue; 249 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb); 250 } 251 252 return count; 253 } 254 255 /** 256 * ubi_get_device - get UBI device. 257 * @ubi_num: UBI device number 258 * 259 * This function returns UBI device description object for UBI device number 260 * @ubi_num, or %NULL if the device does not exist. This function increases the 261 * device reference count to prevent removal of the device. In other words, the 262 * device cannot be removed if its reference count is not zero. 263 */ 264 struct ubi_device *ubi_get_device(int ubi_num) 265 { 266 struct ubi_device *ubi; 267 268 spin_lock(&ubi_devices_lock); 269 ubi = ubi_devices[ubi_num]; 270 if (ubi) { 271 ubi_assert(ubi->ref_count >= 0); 272 ubi->ref_count += 1; 273 get_device(&ubi->dev); 274 } 275 spin_unlock(&ubi_devices_lock); 276 277 return ubi; 278 } 279 280 /** 281 * ubi_put_device - drop an UBI device reference. 282 * @ubi: UBI device description object 283 */ 284 void ubi_put_device(struct ubi_device *ubi) 285 { 286 spin_lock(&ubi_devices_lock); 287 ubi->ref_count -= 1; 288 put_device(&ubi->dev); 289 spin_unlock(&ubi_devices_lock); 290 } 291 292 /** 293 * ubi_get_by_major - get UBI device by character device major number. 294 * @major: major number 295 * 296 * This function is similar to 'ubi_get_device()', but it searches the device 297 * by its major number. 298 */ 299 struct ubi_device *ubi_get_by_major(int major) 300 { 301 int i; 302 struct ubi_device *ubi; 303 304 spin_lock(&ubi_devices_lock); 305 for (i = 0; i < UBI_MAX_DEVICES; i++) { 306 ubi = ubi_devices[i]; 307 if (ubi && MAJOR(ubi->cdev.dev) == major) { 308 ubi_assert(ubi->ref_count >= 0); 309 ubi->ref_count += 1; 310 get_device(&ubi->dev); 311 spin_unlock(&ubi_devices_lock); 312 return ubi; 313 } 314 } 315 spin_unlock(&ubi_devices_lock); 316 317 return NULL; 318 } 319 320 /** 321 * ubi_major2num - get UBI device number by character device major number. 322 * @major: major number 323 * 324 * This function searches UBI device number object by its major number. If UBI 325 * device was not found, this function returns -ENODEV, otherwise the UBI device 326 * number is returned. 327 */ 328 int ubi_major2num(int major) 329 { 330 int i, ubi_num = -ENODEV; 331 332 spin_lock(&ubi_devices_lock); 333 for (i = 0; i < UBI_MAX_DEVICES; i++) { 334 struct ubi_device *ubi = ubi_devices[i]; 335 336 if (ubi && MAJOR(ubi->cdev.dev) == major) { 337 ubi_num = ubi->ubi_num; 338 break; 339 } 340 } 341 spin_unlock(&ubi_devices_lock); 342 343 return ubi_num; 344 } 345 346 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */ 347 static ssize_t dev_attribute_show(struct device *dev, 348 struct device_attribute *attr, char *buf) 349 { 350 ssize_t ret; 351 struct ubi_device *ubi; 352 353 /* 354 * The below code looks weird, but it actually makes sense. We get the 355 * UBI device reference from the contained 'struct ubi_device'. But it 356 * is unclear if the device was removed or not yet. Indeed, if the 357 * device was removed before we increased its reference count, 358 * 'ubi_get_device()' will return -ENODEV and we fail. 359 * 360 * Remember, 'struct ubi_device' is freed in the release function, so 361 * we still can use 'ubi->ubi_num'. 362 */ 363 ubi = container_of(dev, struct ubi_device, dev); 364 ubi = ubi_get_device(ubi->ubi_num); 365 if (!ubi) 366 return -ENODEV; 367 368 if (attr == &dev_eraseblock_size) 369 ret = sprintf(buf, "%d\n", ubi->leb_size); 370 else if (attr == &dev_avail_eraseblocks) 371 ret = sprintf(buf, "%d\n", ubi->avail_pebs); 372 else if (attr == &dev_total_eraseblocks) 373 ret = sprintf(buf, "%d\n", ubi->good_peb_count); 374 else if (attr == &dev_volumes_count) 375 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT); 376 else if (attr == &dev_max_ec) 377 ret = sprintf(buf, "%d\n", ubi->max_ec); 378 else if (attr == &dev_reserved_for_bad) 379 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs); 380 else if (attr == &dev_bad_peb_count) 381 ret = sprintf(buf, "%d\n", ubi->bad_peb_count); 382 else if (attr == &dev_max_vol_count) 383 ret = sprintf(buf, "%d\n", ubi->vtbl_slots); 384 else if (attr == &dev_min_io_size) 385 ret = sprintf(buf, "%d\n", ubi->min_io_size); 386 else if (attr == &dev_bgt_enabled) 387 ret = sprintf(buf, "%d\n", ubi->thread_enabled); 388 else if (attr == &dev_mtd_num) 389 ret = sprintf(buf, "%d\n", ubi->mtd->index); 390 else if (attr == &dev_ro_mode) 391 ret = sprintf(buf, "%d\n", ubi->ro_mode); 392 else 393 ret = -EINVAL; 394 395 ubi_put_device(ubi); 396 return ret; 397 } 398 399 static struct attribute *ubi_dev_attrs[] = { 400 &dev_eraseblock_size.attr, 401 &dev_avail_eraseblocks.attr, 402 &dev_total_eraseblocks.attr, 403 &dev_volumes_count.attr, 404 &dev_max_ec.attr, 405 &dev_reserved_for_bad.attr, 406 &dev_bad_peb_count.attr, 407 &dev_max_vol_count.attr, 408 &dev_min_io_size.attr, 409 &dev_bgt_enabled.attr, 410 &dev_mtd_num.attr, 411 &dev_ro_mode.attr, 412 NULL 413 }; 414 ATTRIBUTE_GROUPS(ubi_dev); 415 416 static void dev_release(struct device *dev) 417 { 418 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev); 419 420 kfree(ubi); 421 } 422 423 /** 424 * ubi_sysfs_init - initialize sysfs for an UBI device. 425 * @ubi: UBI device description object 426 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 427 * taken 428 * 429 * This function returns zero in case of success and a negative error code in 430 * case of failure. 431 */ 432 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref) 433 { 434 int err; 435 436 ubi->dev.release = dev_release; 437 ubi->dev.devt = ubi->cdev.dev; 438 ubi->dev.class = &ubi_class; 439 ubi->dev.groups = ubi_dev_groups; 440 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num); 441 err = device_register(&ubi->dev); 442 if (err) 443 return err; 444 445 *ref = 1; 446 return 0; 447 } 448 449 /** 450 * ubi_sysfs_close - close sysfs for an UBI device. 451 * @ubi: UBI device description object 452 */ 453 static void ubi_sysfs_close(struct ubi_device *ubi) 454 { 455 device_unregister(&ubi->dev); 456 } 457 458 /** 459 * kill_volumes - destroy all user volumes. 460 * @ubi: UBI device description object 461 */ 462 static void kill_volumes(struct ubi_device *ubi) 463 { 464 int i; 465 466 for (i = 0; i < ubi->vtbl_slots; i++) 467 if (ubi->volumes[i]) 468 ubi_free_volume(ubi, ubi->volumes[i]); 469 } 470 471 /** 472 * uif_init - initialize user interfaces for an UBI device. 473 * @ubi: UBI device description object 474 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was 475 * taken, otherwise set to %0 476 * 477 * This function initializes various user interfaces for an UBI device. If the 478 * initialization fails at an early stage, this function frees all the 479 * resources it allocated, returns an error, and @ref is set to %0. However, 480 * if the initialization fails after the UBI device was registered in the 481 * driver core subsystem, this function takes a reference to @ubi->dev, because 482 * otherwise the release function ('dev_release()') would free whole @ubi 483 * object. The @ref argument is set to %1 in this case. The caller has to put 484 * this reference. 485 * 486 * This function returns zero in case of success and a negative error code in 487 * case of failure. 488 */ 489 static int uif_init(struct ubi_device *ubi, int *ref) 490 { 491 int i, err; 492 dev_t dev; 493 494 *ref = 0; 495 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num); 496 497 /* 498 * Major numbers for the UBI character devices are allocated 499 * dynamically. Major numbers of volume character devices are 500 * equivalent to ones of the corresponding UBI character device. Minor 501 * numbers of UBI character devices are 0, while minor numbers of 502 * volume character devices start from 1. Thus, we allocate one major 503 * number and ubi->vtbl_slots + 1 minor numbers. 504 */ 505 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name); 506 if (err) { 507 ubi_err(ubi, "cannot register UBI character devices"); 508 return err; 509 } 510 511 ubi_assert(MINOR(dev) == 0); 512 cdev_init(&ubi->cdev, &ubi_cdev_operations); 513 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev)); 514 ubi->cdev.owner = THIS_MODULE; 515 516 err = cdev_add(&ubi->cdev, dev, 1); 517 if (err) { 518 ubi_err(ubi, "cannot add character device"); 519 goto out_unreg; 520 } 521 522 err = ubi_sysfs_init(ubi, ref); 523 if (err) 524 goto out_sysfs; 525 526 for (i = 0; i < ubi->vtbl_slots; i++) 527 if (ubi->volumes[i]) { 528 err = ubi_add_volume(ubi, ubi->volumes[i]); 529 if (err) { 530 ubi_err(ubi, "cannot add volume %d", i); 531 goto out_volumes; 532 } 533 } 534 535 return 0; 536 537 out_volumes: 538 kill_volumes(ubi); 539 out_sysfs: 540 if (*ref) 541 get_device(&ubi->dev); 542 ubi_sysfs_close(ubi); 543 cdev_del(&ubi->cdev); 544 out_unreg: 545 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 546 ubi_err(ubi, "cannot initialize UBI %s, error %d", 547 ubi->ubi_name, err); 548 return err; 549 } 550 551 /** 552 * uif_close - close user interfaces for an UBI device. 553 * @ubi: UBI device description object 554 * 555 * Note, since this function un-registers UBI volume device objects (@vol->dev), 556 * the memory allocated voe the volumes is freed as well (in the release 557 * function). 558 */ 559 static void uif_close(struct ubi_device *ubi) 560 { 561 kill_volumes(ubi); 562 ubi_sysfs_close(ubi); 563 cdev_del(&ubi->cdev); 564 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1); 565 } 566 567 /** 568 * ubi_free_internal_volumes - free internal volumes. 569 * @ubi: UBI device description object 570 */ 571 void ubi_free_internal_volumes(struct ubi_device *ubi) 572 { 573 int i; 574 575 for (i = ubi->vtbl_slots; 576 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) { 577 ubi_eba_replace_table(ubi->volumes[i], NULL); 578 kfree(ubi->volumes[i]); 579 } 580 } 581 582 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024) 583 { 584 int limit, device_pebs; 585 uint64_t device_size; 586 587 if (!max_beb_per1024) 588 return 0; 589 590 /* 591 * Here we are using size of the entire flash chip and 592 * not just the MTD partition size because the maximum 593 * number of bad eraseblocks is a percentage of the 594 * whole device and bad eraseblocks are not fairly 595 * distributed over the flash chip. So the worst case 596 * is that all the bad eraseblocks of the chip are in 597 * the MTD partition we are attaching (ubi->mtd). 598 */ 599 device_size = mtd_get_device_size(ubi->mtd); 600 device_pebs = mtd_div_by_eb(device_size, ubi->mtd); 601 limit = mult_frac(device_pebs, max_beb_per1024, 1024); 602 603 /* Round it up */ 604 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs) 605 limit += 1; 606 607 return limit; 608 } 609 610 /** 611 * io_init - initialize I/O sub-system for a given UBI device. 612 * @ubi: UBI device description object 613 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 614 * 615 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are 616 * assumed: 617 * o EC header is always at offset zero - this cannot be changed; 618 * o VID header starts just after the EC header at the closest address 619 * aligned to @io->hdrs_min_io_size; 620 * o data starts just after the VID header at the closest address aligned to 621 * @io->min_io_size 622 * 623 * This function returns zero in case of success and a negative error code in 624 * case of failure. 625 */ 626 static int io_init(struct ubi_device *ubi, int max_beb_per1024) 627 { 628 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb)); 629 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry)); 630 631 if (ubi->mtd->numeraseregions != 0) { 632 /* 633 * Some flashes have several erase regions. Different regions 634 * may have different eraseblock size and other 635 * characteristics. It looks like mostly multi-region flashes 636 * have one "main" region and one or more small regions to 637 * store boot loader code or boot parameters or whatever. I 638 * guess we should just pick the largest region. But this is 639 * not implemented. 640 */ 641 ubi_err(ubi, "multiple regions, not implemented"); 642 return -EINVAL; 643 } 644 645 if (ubi->vid_hdr_offset < 0) 646 return -EINVAL; 647 648 /* 649 * Note, in this implementation we support MTD devices with 0x7FFFFFFF 650 * physical eraseblocks maximum. 651 */ 652 653 ubi->peb_size = ubi->mtd->erasesize; 654 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd); 655 ubi->flash_size = ubi->mtd->size; 656 657 if (mtd_can_have_bb(ubi->mtd)) { 658 ubi->bad_allowed = 1; 659 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024); 660 } 661 662 if (ubi->mtd->type == MTD_NORFLASH) { 663 ubi_assert(ubi->mtd->writesize == 1); 664 ubi->nor_flash = 1; 665 } 666 667 ubi->min_io_size = ubi->mtd->writesize; 668 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft; 669 670 /* 671 * Make sure minimal I/O unit is power of 2. Note, there is no 672 * fundamental reason for this assumption. It is just an optimization 673 * which allows us to avoid costly division operations. 674 */ 675 if (!is_power_of_2(ubi->min_io_size)) { 676 ubi_err(ubi, "min. I/O unit (%d) is not power of 2", 677 ubi->min_io_size); 678 return -EINVAL; 679 } 680 681 ubi_assert(ubi->hdrs_min_io_size > 0); 682 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size); 683 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0); 684 685 ubi->max_write_size = ubi->mtd->writebufsize; 686 /* 687 * Maximum write size has to be greater or equivalent to min. I/O 688 * size, and be multiple of min. I/O size. 689 */ 690 if (ubi->max_write_size < ubi->min_io_size || 691 ubi->max_write_size % ubi->min_io_size || 692 !is_power_of_2(ubi->max_write_size)) { 693 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit", 694 ubi->max_write_size, ubi->min_io_size); 695 return -EINVAL; 696 } 697 698 /* Calculate default aligned sizes of EC and VID headers */ 699 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size); 700 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size); 701 702 dbg_gen("min_io_size %d", ubi->min_io_size); 703 dbg_gen("max_write_size %d", ubi->max_write_size); 704 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size); 705 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize); 706 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize); 707 708 if (ubi->vid_hdr_offset == 0) 709 /* Default offset */ 710 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset = 711 ubi->ec_hdr_alsize; 712 else { 713 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset & 714 ~(ubi->hdrs_min_io_size - 1); 715 ubi->vid_hdr_shift = ubi->vid_hdr_offset - 716 ubi->vid_hdr_aloffset; 717 } 718 719 /* Similar for the data offset */ 720 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE; 721 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size); 722 723 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset); 724 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset); 725 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift); 726 dbg_gen("leb_start %d", ubi->leb_start); 727 728 /* The shift must be aligned to 32-bit boundary */ 729 if (ubi->vid_hdr_shift % 4) { 730 ubi_err(ubi, "unaligned VID header shift %d", 731 ubi->vid_hdr_shift); 732 return -EINVAL; 733 } 734 735 /* Check sanity */ 736 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE || 737 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE || 738 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE || 739 ubi->leb_start & (ubi->min_io_size - 1)) { 740 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)", 741 ubi->vid_hdr_offset, ubi->leb_start); 742 return -EINVAL; 743 } 744 745 /* 746 * Set maximum amount of physical erroneous eraseblocks to be 10%. 747 * Erroneous PEB are those which have read errors. 748 */ 749 ubi->max_erroneous = ubi->peb_count / 10; 750 if (ubi->max_erroneous < 16) 751 ubi->max_erroneous = 16; 752 dbg_gen("max_erroneous %d", ubi->max_erroneous); 753 754 /* 755 * It may happen that EC and VID headers are situated in one minimal 756 * I/O unit. In this case we can only accept this UBI image in 757 * read-only mode. 758 */ 759 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) { 760 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode"); 761 ubi->ro_mode = 1; 762 } 763 764 ubi->leb_size = ubi->peb_size - ubi->leb_start; 765 766 if (!(ubi->mtd->flags & MTD_WRITEABLE)) { 767 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode", 768 ubi->mtd->index); 769 ubi->ro_mode = 1; 770 } 771 772 /* 773 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But 774 * unfortunately, MTD does not provide this information. We should loop 775 * over all physical eraseblocks and invoke mtd->block_is_bad() for 776 * each physical eraseblock. So, we leave @ubi->bad_peb_count 777 * uninitialized so far. 778 */ 779 780 return 0; 781 } 782 783 /** 784 * autoresize - re-size the volume which has the "auto-resize" flag set. 785 * @ubi: UBI device description object 786 * @vol_id: ID of the volume to re-size 787 * 788 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in 789 * the volume table to the largest possible size. See comments in ubi-header.h 790 * for more description of the flag. Returns zero in case of success and a 791 * negative error code in case of failure. 792 */ 793 static int autoresize(struct ubi_device *ubi, int vol_id) 794 { 795 struct ubi_volume_desc desc; 796 struct ubi_volume *vol = ubi->volumes[vol_id]; 797 int err, old_reserved_pebs = vol->reserved_pebs; 798 799 if (ubi->ro_mode) { 800 ubi_warn(ubi, "skip auto-resize because of R/O mode"); 801 return 0; 802 } 803 804 /* 805 * Clear the auto-resize flag in the volume in-memory copy of the 806 * volume table, and 'ubi_resize_volume()' will propagate this change 807 * to the flash. 808 */ 809 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG; 810 811 if (ubi->avail_pebs == 0) { 812 struct ubi_vtbl_record vtbl_rec; 813 814 /* 815 * No available PEBs to re-size the volume, clear the flag on 816 * flash and exit. 817 */ 818 vtbl_rec = ubi->vtbl[vol_id]; 819 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec); 820 if (err) 821 ubi_err(ubi, "cannot clean auto-resize flag for volume %d", 822 vol_id); 823 } else { 824 desc.vol = vol; 825 err = ubi_resize_volume(&desc, 826 old_reserved_pebs + ubi->avail_pebs); 827 if (err) 828 ubi_err(ubi, "cannot auto-resize volume %d", 829 vol_id); 830 } 831 832 if (err) 833 return err; 834 835 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs", 836 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs); 837 return 0; 838 } 839 840 /** 841 * ubi_attach_mtd_dev - attach an MTD device. 842 * @mtd: MTD device description object 843 * @ubi_num: number to assign to the new UBI device 844 * @vid_hdr_offset: VID header offset 845 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs 846 * 847 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number 848 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in 849 * which case this function finds a vacant device number and assigns it 850 * automatically. Returns the new UBI device number in case of success and a 851 * negative error code in case of failure. 852 * 853 * Note, the invocations of this function has to be serialized by the 854 * @ubi_devices_mutex. 855 */ 856 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, 857 int vid_hdr_offset, int max_beb_per1024) 858 { 859 struct ubi_device *ubi; 860 int i, err, ref = 0; 861 862 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT) 863 return -EINVAL; 864 865 if (!max_beb_per1024) 866 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT; 867 868 /* 869 * Check if we already have the same MTD device attached. 870 * 871 * Note, this function assumes that UBI devices creations and deletions 872 * are serialized, so it does not take the &ubi_devices_lock. 873 */ 874 for (i = 0; i < UBI_MAX_DEVICES; i++) { 875 ubi = ubi_devices[i]; 876 if (ubi && mtd->index == ubi->mtd->index) { 877 pr_err("ubi: mtd%d is already attached to ubi%d", 878 mtd->index, i); 879 return -EEXIST; 880 } 881 } 882 883 /* 884 * Make sure this MTD device is not emulated on top of an UBI volume 885 * already. Well, generally this recursion works fine, but there are 886 * different problems like the UBI module takes a reference to itself 887 * by attaching (and thus, opening) the emulated MTD device. This 888 * results in inability to unload the module. And in general it makes 889 * no sense to attach emulated MTD devices, so we prohibit this. 890 */ 891 if (mtd->type == MTD_UBIVOLUME) { 892 pr_err("ubi: refuse attaching mtd%d - it is already emulated on top of UBI", 893 mtd->index); 894 return -EINVAL; 895 } 896 897 if (ubi_num == UBI_DEV_NUM_AUTO) { 898 /* Search for an empty slot in the @ubi_devices array */ 899 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++) 900 if (!ubi_devices[ubi_num]) 901 break; 902 if (ubi_num == UBI_MAX_DEVICES) { 903 pr_err("ubi: only %d UBI devices may be created", 904 UBI_MAX_DEVICES); 905 return -ENFILE; 906 } 907 } else { 908 if (ubi_num >= UBI_MAX_DEVICES) 909 return -EINVAL; 910 911 /* Make sure ubi_num is not busy */ 912 if (ubi_devices[ubi_num]) { 913 pr_err("ubi: ubi%i already exists", ubi_num); 914 return -EEXIST; 915 } 916 } 917 918 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL); 919 if (!ubi) 920 return -ENOMEM; 921 922 ubi->mtd = mtd; 923 ubi->ubi_num = ubi_num; 924 ubi->vid_hdr_offset = vid_hdr_offset; 925 ubi->autoresize_vol_id = -1; 926 927 #ifdef CONFIG_MTD_UBI_FASTMAP 928 ubi->fm_pool.used = ubi->fm_pool.size = 0; 929 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0; 930 931 /* 932 * fm_pool.max_size is 5% of the total number of PEBs but it's also 933 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE. 934 */ 935 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size, 936 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE); 937 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size, 938 UBI_FM_MIN_POOL_SIZE); 939 940 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2; 941 ubi->fm_disabled = !fm_autoconvert; 942 if (fm_debug) 943 ubi_enable_dbg_chk_fastmap(ubi); 944 945 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) 946 <= UBI_FM_MAX_START) { 947 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.", 948 UBI_FM_MAX_START); 949 ubi->fm_disabled = 1; 950 } 951 952 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size); 953 ubi_msg(ubi, "default fastmap WL pool size: %d", 954 ubi->fm_wl_pool.max_size); 955 #else 956 ubi->fm_disabled = 1; 957 #endif 958 mutex_init(&ubi->buf_mutex); 959 mutex_init(&ubi->ckvol_mutex); 960 mutex_init(&ubi->device_mutex); 961 spin_lock_init(&ubi->volumes_lock); 962 init_rwsem(&ubi->fm_protect); 963 init_rwsem(&ubi->fm_eba_sem); 964 965 ubi_msg(ubi, "attaching mtd%d", mtd->index); 966 967 err = io_init(ubi, max_beb_per1024); 968 if (err) 969 goto out_free; 970 971 err = -ENOMEM; 972 ubi->peb_buf = vmalloc(ubi->peb_size); 973 if (!ubi->peb_buf) 974 goto out_free; 975 976 #ifdef CONFIG_MTD_UBI_FASTMAP 977 ubi->fm_size = ubi_calc_fm_size(ubi); 978 ubi->fm_buf = vzalloc(ubi->fm_size); 979 if (!ubi->fm_buf) 980 goto out_free; 981 #endif 982 err = ubi_attach(ubi, 0); 983 if (err) { 984 ubi_err(ubi, "failed to attach mtd%d, error %d", 985 mtd->index, err); 986 goto out_free; 987 } 988 989 if (ubi->autoresize_vol_id != -1) { 990 err = autoresize(ubi, ubi->autoresize_vol_id); 991 if (err) 992 goto out_detach; 993 } 994 995 /* Make device "available" before it becomes accessible via sysfs */ 996 ubi_devices[ubi_num] = ubi; 997 998 err = uif_init(ubi, &ref); 999 if (err) 1000 goto out_detach; 1001 1002 err = ubi_debugfs_init_dev(ubi); 1003 if (err) 1004 goto out_uif; 1005 1006 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name); 1007 if (IS_ERR(ubi->bgt_thread)) { 1008 err = PTR_ERR(ubi->bgt_thread); 1009 ubi_err(ubi, "cannot spawn \"%s\", error %d", 1010 ubi->bgt_name, err); 1011 goto out_debugfs; 1012 } 1013 1014 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)", 1015 mtd->index, mtd->name, ubi->flash_size >> 20); 1016 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes", 1017 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size); 1018 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d", 1019 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size); 1020 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d", 1021 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start); 1022 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d", 1023 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count); 1024 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d", 1025 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT, 1026 ubi->vtbl_slots); 1027 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u", 1028 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD, 1029 ubi->image_seq); 1030 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d", 1031 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs); 1032 1033 /* 1034 * The below lock makes sure we do not race with 'ubi_thread()' which 1035 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up. 1036 */ 1037 spin_lock(&ubi->wl_lock); 1038 ubi->thread_enabled = 1; 1039 wake_up_process(ubi->bgt_thread); 1040 spin_unlock(&ubi->wl_lock); 1041 1042 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL); 1043 return ubi_num; 1044 1045 out_debugfs: 1046 ubi_debugfs_exit_dev(ubi); 1047 out_uif: 1048 get_device(&ubi->dev); 1049 ubi_assert(ref); 1050 uif_close(ubi); 1051 out_detach: 1052 ubi_devices[ubi_num] = NULL; 1053 ubi_wl_close(ubi); 1054 ubi_free_internal_volumes(ubi); 1055 vfree(ubi->vtbl); 1056 out_free: 1057 vfree(ubi->peb_buf); 1058 vfree(ubi->fm_buf); 1059 if (ref) 1060 put_device(&ubi->dev); 1061 else 1062 kfree(ubi); 1063 return err; 1064 } 1065 1066 /** 1067 * ubi_detach_mtd_dev - detach an MTD device. 1068 * @ubi_num: UBI device number to detach from 1069 * @anyway: detach MTD even if device reference count is not zero 1070 * 1071 * This function destroys an UBI device number @ubi_num and detaches the 1072 * underlying MTD device. Returns zero in case of success and %-EBUSY if the 1073 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not 1074 * exist. 1075 * 1076 * Note, the invocations of this function has to be serialized by the 1077 * @ubi_devices_mutex. 1078 */ 1079 int ubi_detach_mtd_dev(int ubi_num, int anyway) 1080 { 1081 struct ubi_device *ubi; 1082 1083 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES) 1084 return -EINVAL; 1085 1086 ubi = ubi_get_device(ubi_num); 1087 if (!ubi) 1088 return -EINVAL; 1089 1090 spin_lock(&ubi_devices_lock); 1091 put_device(&ubi->dev); 1092 ubi->ref_count -= 1; 1093 if (ubi->ref_count) { 1094 if (!anyway) { 1095 spin_unlock(&ubi_devices_lock); 1096 return -EBUSY; 1097 } 1098 /* This may only happen if there is a bug */ 1099 ubi_err(ubi, "%s reference count %d, destroy anyway", 1100 ubi->ubi_name, ubi->ref_count); 1101 } 1102 ubi_devices[ubi_num] = NULL; 1103 spin_unlock(&ubi_devices_lock); 1104 1105 ubi_assert(ubi_num == ubi->ubi_num); 1106 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL); 1107 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index); 1108 #ifdef CONFIG_MTD_UBI_FASTMAP 1109 /* If we don't write a new fastmap at detach time we lose all 1110 * EC updates that have been made since the last written fastmap. 1111 * In case of fastmap debugging we omit the update to simulate an 1112 * unclean shutdown. */ 1113 if (!ubi_dbg_chk_fastmap(ubi)) 1114 ubi_update_fastmap(ubi); 1115 #endif 1116 /* 1117 * Before freeing anything, we have to stop the background thread to 1118 * prevent it from doing anything on this device while we are freeing. 1119 */ 1120 if (ubi->bgt_thread) 1121 kthread_stop(ubi->bgt_thread); 1122 1123 /* 1124 * Get a reference to the device in order to prevent 'dev_release()' 1125 * from freeing the @ubi object. 1126 */ 1127 get_device(&ubi->dev); 1128 1129 ubi_debugfs_exit_dev(ubi); 1130 uif_close(ubi); 1131 1132 ubi_wl_close(ubi); 1133 ubi_free_internal_volumes(ubi); 1134 vfree(ubi->vtbl); 1135 put_mtd_device(ubi->mtd); 1136 vfree(ubi->peb_buf); 1137 vfree(ubi->fm_buf); 1138 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index); 1139 put_device(&ubi->dev); 1140 return 0; 1141 } 1142 1143 /** 1144 * open_mtd_by_chdev - open an MTD device by its character device node path. 1145 * @mtd_dev: MTD character device node path 1146 * 1147 * This helper function opens an MTD device by its character node device path. 1148 * Returns MTD device description object in case of success and a negative 1149 * error code in case of failure. 1150 */ 1151 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev) 1152 { 1153 int err, minor; 1154 struct path path; 1155 struct kstat stat; 1156 1157 /* Probably this is an MTD character device node path */ 1158 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path); 1159 if (err) 1160 return ERR_PTR(err); 1161 1162 err = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT); 1163 path_put(&path); 1164 if (err) 1165 return ERR_PTR(err); 1166 1167 /* MTD device number is defined by the major / minor numbers */ 1168 if (MAJOR(stat.rdev) != MTD_CHAR_MAJOR || !S_ISCHR(stat.mode)) 1169 return ERR_PTR(-EINVAL); 1170 1171 minor = MINOR(stat.rdev); 1172 1173 if (minor & 1) 1174 /* 1175 * Just do not think the "/dev/mtdrX" devices support is need, 1176 * so do not support them to avoid doing extra work. 1177 */ 1178 return ERR_PTR(-EINVAL); 1179 1180 return get_mtd_device(NULL, minor / 2); 1181 } 1182 1183 /** 1184 * open_mtd_device - open MTD device by name, character device path, or number. 1185 * @mtd_dev: name, character device node path, or MTD device device number 1186 * 1187 * This function tries to open and MTD device described by @mtd_dev string, 1188 * which is first treated as ASCII MTD device number, and if it is not true, it 1189 * is treated as MTD device name, and if that is also not true, it is treated 1190 * as MTD character device node path. Returns MTD device description object in 1191 * case of success and a negative error code in case of failure. 1192 */ 1193 static struct mtd_info * __init open_mtd_device(const char *mtd_dev) 1194 { 1195 struct mtd_info *mtd; 1196 int mtd_num; 1197 char *endp; 1198 1199 mtd_num = simple_strtoul(mtd_dev, &endp, 0); 1200 if (*endp != '\0' || mtd_dev == endp) { 1201 /* 1202 * This does not look like an ASCII integer, probably this is 1203 * MTD device name. 1204 */ 1205 mtd = get_mtd_device_nm(mtd_dev); 1206 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV) 1207 /* Probably this is an MTD character device node path */ 1208 mtd = open_mtd_by_chdev(mtd_dev); 1209 } else 1210 mtd = get_mtd_device(NULL, mtd_num); 1211 1212 return mtd; 1213 } 1214 1215 static int __init ubi_init(void) 1216 { 1217 int err, i, k; 1218 1219 /* Ensure that EC and VID headers have correct size */ 1220 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64); 1221 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64); 1222 1223 if (mtd_devs > UBI_MAX_DEVICES) { 1224 pr_err("UBI error: too many MTD devices, maximum is %d", 1225 UBI_MAX_DEVICES); 1226 return -EINVAL; 1227 } 1228 1229 /* Create base sysfs directory and sysfs files */ 1230 err = class_register(&ubi_class); 1231 if (err < 0) 1232 return err; 1233 1234 err = misc_register(&ubi_ctrl_cdev); 1235 if (err) { 1236 pr_err("UBI error: cannot register device"); 1237 goto out; 1238 } 1239 1240 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab", 1241 sizeof(struct ubi_wl_entry), 1242 0, 0, NULL); 1243 if (!ubi_wl_entry_slab) { 1244 err = -ENOMEM; 1245 goto out_dev_unreg; 1246 } 1247 1248 err = ubi_debugfs_init(); 1249 if (err) 1250 goto out_slab; 1251 1252 1253 /* Attach MTD devices */ 1254 for (i = 0; i < mtd_devs; i++) { 1255 struct mtd_dev_param *p = &mtd_dev_param[i]; 1256 struct mtd_info *mtd; 1257 1258 cond_resched(); 1259 1260 mtd = open_mtd_device(p->name); 1261 if (IS_ERR(mtd)) { 1262 err = PTR_ERR(mtd); 1263 pr_err("UBI error: cannot open mtd %s, error %d", 1264 p->name, err); 1265 /* See comment below re-ubi_is_module(). */ 1266 if (ubi_is_module()) 1267 goto out_detach; 1268 continue; 1269 } 1270 1271 mutex_lock(&ubi_devices_mutex); 1272 err = ubi_attach_mtd_dev(mtd, p->ubi_num, 1273 p->vid_hdr_offs, p->max_beb_per1024); 1274 mutex_unlock(&ubi_devices_mutex); 1275 if (err < 0) { 1276 pr_err("UBI error: cannot attach mtd%d", 1277 mtd->index); 1278 put_mtd_device(mtd); 1279 1280 /* 1281 * Originally UBI stopped initializing on any error. 1282 * However, later on it was found out that this 1283 * behavior is not very good when UBI is compiled into 1284 * the kernel and the MTD devices to attach are passed 1285 * through the command line. Indeed, UBI failure 1286 * stopped whole boot sequence. 1287 * 1288 * To fix this, we changed the behavior for the 1289 * non-module case, but preserved the old behavior for 1290 * the module case, just for compatibility. This is a 1291 * little inconsistent, though. 1292 */ 1293 if (ubi_is_module()) 1294 goto out_detach; 1295 } 1296 } 1297 1298 err = ubiblock_init(); 1299 if (err) { 1300 pr_err("UBI error: block: cannot initialize, error %d", err); 1301 1302 /* See comment above re-ubi_is_module(). */ 1303 if (ubi_is_module()) 1304 goto out_detach; 1305 } 1306 1307 return 0; 1308 1309 out_detach: 1310 for (k = 0; k < i; k++) 1311 if (ubi_devices[k]) { 1312 mutex_lock(&ubi_devices_mutex); 1313 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1); 1314 mutex_unlock(&ubi_devices_mutex); 1315 } 1316 ubi_debugfs_exit(); 1317 out_slab: 1318 kmem_cache_destroy(ubi_wl_entry_slab); 1319 out_dev_unreg: 1320 misc_deregister(&ubi_ctrl_cdev); 1321 out: 1322 class_unregister(&ubi_class); 1323 pr_err("UBI error: cannot initialize UBI, error %d", err); 1324 return err; 1325 } 1326 late_initcall(ubi_init); 1327 1328 static void __exit ubi_exit(void) 1329 { 1330 int i; 1331 1332 ubiblock_exit(); 1333 1334 for (i = 0; i < UBI_MAX_DEVICES; i++) 1335 if (ubi_devices[i]) { 1336 mutex_lock(&ubi_devices_mutex); 1337 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1); 1338 mutex_unlock(&ubi_devices_mutex); 1339 } 1340 ubi_debugfs_exit(); 1341 kmem_cache_destroy(ubi_wl_entry_slab); 1342 misc_deregister(&ubi_ctrl_cdev); 1343 class_unregister(&ubi_class); 1344 } 1345 module_exit(ubi_exit); 1346 1347 /** 1348 * bytes_str_to_int - convert a number of bytes string into an integer. 1349 * @str: the string to convert 1350 * 1351 * This function returns positive resulting integer in case of success and a 1352 * negative error code in case of failure. 1353 */ 1354 static int __init bytes_str_to_int(const char *str) 1355 { 1356 char *endp; 1357 unsigned long result; 1358 1359 result = simple_strtoul(str, &endp, 0); 1360 if (str == endp || result >= INT_MAX) { 1361 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1362 return -EINVAL; 1363 } 1364 1365 switch (*endp) { 1366 case 'G': 1367 result *= 1024; 1368 case 'M': 1369 result *= 1024; 1370 case 'K': 1371 result *= 1024; 1372 if (endp[1] == 'i' && endp[2] == 'B') 1373 endp += 2; 1374 case '\0': 1375 break; 1376 default: 1377 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str); 1378 return -EINVAL; 1379 } 1380 1381 return result; 1382 } 1383 1384 /** 1385 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter. 1386 * @val: the parameter value to parse 1387 * @kp: not used 1388 * 1389 * This function returns zero in case of success and a negative error code in 1390 * case of error. 1391 */ 1392 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp) 1393 { 1394 int i, len; 1395 struct mtd_dev_param *p; 1396 char buf[MTD_PARAM_LEN_MAX]; 1397 char *pbuf = &buf[0]; 1398 char *tokens[MTD_PARAM_MAX_COUNT], *token; 1399 1400 if (!val) 1401 return -EINVAL; 1402 1403 if (mtd_devs == UBI_MAX_DEVICES) { 1404 pr_err("UBI error: too many parameters, max. is %d\n", 1405 UBI_MAX_DEVICES); 1406 return -EINVAL; 1407 } 1408 1409 len = strnlen(val, MTD_PARAM_LEN_MAX); 1410 if (len == MTD_PARAM_LEN_MAX) { 1411 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n", 1412 val, MTD_PARAM_LEN_MAX); 1413 return -EINVAL; 1414 } 1415 1416 if (len == 0) { 1417 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n"); 1418 return 0; 1419 } 1420 1421 strcpy(buf, val); 1422 1423 /* Get rid of the final newline */ 1424 if (buf[len - 1] == '\n') 1425 buf[len - 1] = '\0'; 1426 1427 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++) 1428 tokens[i] = strsep(&pbuf, ","); 1429 1430 if (pbuf) { 1431 pr_err("UBI error: too many arguments at \"%s\"\n", val); 1432 return -EINVAL; 1433 } 1434 1435 p = &mtd_dev_param[mtd_devs]; 1436 strcpy(&p->name[0], tokens[0]); 1437 1438 token = tokens[1]; 1439 if (token) { 1440 p->vid_hdr_offs = bytes_str_to_int(token); 1441 1442 if (p->vid_hdr_offs < 0) 1443 return p->vid_hdr_offs; 1444 } 1445 1446 token = tokens[2]; 1447 if (token) { 1448 int err = kstrtoint(token, 10, &p->max_beb_per1024); 1449 1450 if (err) { 1451 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s", 1452 token); 1453 return -EINVAL; 1454 } 1455 } 1456 1457 token = tokens[3]; 1458 if (token) { 1459 int err = kstrtoint(token, 10, &p->ubi_num); 1460 1461 if (err) { 1462 pr_err("UBI error: bad value for ubi_num parameter: %s", 1463 token); 1464 return -EINVAL; 1465 } 1466 } else 1467 p->ubi_num = UBI_DEV_NUM_AUTO; 1468 1469 mtd_devs += 1; 1470 return 0; 1471 } 1472 1473 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000); 1474 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n" 1475 "Multiple \"mtd\" parameters may be specified.\n" 1476 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n" 1477 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n" 1478 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value (" 1479 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n" 1480 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n" 1481 "\n" 1482 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n" 1483 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n" 1484 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n" 1485 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n" 1486 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device)."); 1487 #ifdef CONFIG_MTD_UBI_FASTMAP 1488 module_param(fm_autoconvert, bool, 0644); 1489 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap."); 1490 module_param(fm_debug, bool, 0); 1491 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!"); 1492 #endif 1493 MODULE_VERSION(__stringify(UBI_VERSION)); 1494 MODULE_DESCRIPTION("UBI - Unsorted Block Images"); 1495 MODULE_AUTHOR("Artem Bityutskiy"); 1496 MODULE_LICENSE("GPL"); 1497