1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * UBI attaching sub-system. 23 * 24 * This sub-system is responsible for attaching MTD devices and it also 25 * implements flash media scanning. 26 * 27 * The attaching information is represented by a &struct ubi_attach_info' 28 * object. Information about volumes is represented by &struct ubi_ainf_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These 33 * objects are kept in per-volume RB-trees with the root at the corresponding 34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of 35 * per-volume objects and each of these objects is the root of RB-tree of 36 * per-LEB objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 * 42 * About corruptions 43 * ~~~~~~~~~~~~~~~~~ 44 * 45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect 46 * whether the headers are corrupted or not. Sometimes UBI also protects the 47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or 48 * when it moves the contents of a PEB for wear-leveling purposes. 49 * 50 * UBI tries to distinguish between 2 types of corruptions. 51 * 52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI 53 * tries to handle them gracefully, without printing too many warnings and 54 * error messages. The idea is that we do not lose important data in these 55 * cases - we may lose only the data which were being written to the media just 56 * before the power cut happened, and the upper layers (e.g., UBIFS) are 57 * supposed to handle such data losses (e.g., by using the FS journal). 58 * 59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like 60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all 61 * PEBs in the @erase list are scheduled for erasure later. 62 * 63 * 2. Unexpected corruptions which are not caused by power cuts. During 64 * attaching, such PEBs are put to the @corr list and UBI preserves them. 65 * Obviously, this lessens the amount of available PEBs, and if at some point 66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs 67 * about such PEBs every time the MTD device is attached. 68 * 69 * However, it is difficult to reliably distinguish between these types of 70 * corruptions and UBI's strategy is as follows (in case of attaching by 71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and 72 * the data area does not contain all 0xFFs, and there were no bit-flips or 73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data 74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria 75 * are as follows. 76 * o If the data area contains only 0xFFs, there are no data, and it is safe 77 * to just erase this PEB - this is corruption type 1. 78 * o If the data area has bit-flips or data integrity errors (ECC errors on 79 * NAND), it is probably a PEB which was being erased when power cut 80 * happened, so this is corruption type 1. However, this is just a guess, 81 * which might be wrong. 82 * o Otherwise this is corruption type 2. 83 */ 84 85 #include <linux/err.h> 86 #include <linux/slab.h> 87 #include <linux/crc32.h> 88 #include <linux/math64.h> 89 #include <linux/random.h> 90 #include "ubi.h" 91 92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); 93 94 /* Temporary variables used during scanning */ 95 static struct ubi_ec_hdr *ech; 96 static struct ubi_vid_hdr *vidh; 97 98 /** 99 * add_to_list - add physical eraseblock to a list. 100 * @ai: attaching information 101 * @pnum: physical eraseblock number to add 102 * @vol_id: the last used volume id for the PEB 103 * @lnum: the last used LEB number for the PEB 104 * @ec: erase counter of the physical eraseblock 105 * @to_head: if not zero, add to the head of the list 106 * @list: the list to add to 107 * 108 * This function allocates a 'struct ubi_ainf_peb' object for physical 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. 110 * It stores the @lnum and @vol_id alongside, which can both be 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned. 112 * If @to_head is not zero, PEB will be added to the head of the list, which 113 * basically means it will be processed first later. E.g., we add corrupted 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make 115 * sure we erase them first and get rid of corruptions ASAP. This function 116 * returns zero in case of success and a negative error code in case of 117 * failure. 118 */ 119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, 120 int lnum, int ec, int to_head, struct list_head *list) 121 { 122 struct ubi_ainf_peb *aeb; 123 124 if (list == &ai->free) { 125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 126 } else if (list == &ai->erase) { 127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 128 } else if (list == &ai->alien) { 129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 130 ai->alien_peb_count += 1; 131 } else 132 BUG(); 133 134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 135 if (!aeb) 136 return -ENOMEM; 137 138 aeb->pnum = pnum; 139 aeb->vol_id = vol_id; 140 aeb->lnum = lnum; 141 aeb->ec = ec; 142 if (to_head) 143 list_add(&aeb->u.list, list); 144 else 145 list_add_tail(&aeb->u.list, list); 146 return 0; 147 } 148 149 /** 150 * add_corrupted - add a corrupted physical eraseblock. 151 * @ai: attaching information 152 * @pnum: physical eraseblock number to add 153 * @ec: erase counter of the physical eraseblock 154 * 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted 156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption 157 * was presumably not caused by a power cut. Returns zero in case of success 158 * and a negative error code in case of failure. 159 */ 160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) 161 { 162 struct ubi_ainf_peb *aeb; 163 164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 165 166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 167 if (!aeb) 168 return -ENOMEM; 169 170 ai->corr_peb_count += 1; 171 aeb->pnum = pnum; 172 aeb->ec = ec; 173 list_add(&aeb->u.list, &ai->corr); 174 return 0; 175 } 176 177 /** 178 * add_fastmap - add a Fastmap related physical eraseblock. 179 * @ai: attaching information 180 * @pnum: physical eraseblock number the VID header came from 181 * @vid_hdr: the volume identifier header 182 * @ec: erase counter of the physical eraseblock 183 * 184 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp 185 * physical eraseblock @pnum and adds it to the 'fastmap' list. 186 * Such blocks can be Fastmap super and data blocks from both the most 187 * recent Fastmap we're attaching from or from old Fastmaps which will 188 * be erased. 189 */ 190 static int add_fastmap(struct ubi_attach_info *ai, int pnum, 191 struct ubi_vid_hdr *vid_hdr, int ec) 192 { 193 struct ubi_ainf_peb *aeb; 194 195 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 196 if (!aeb) 197 return -ENOMEM; 198 199 aeb->pnum = pnum; 200 aeb->vol_id = be32_to_cpu(vidh->vol_id); 201 aeb->sqnum = be64_to_cpu(vidh->sqnum); 202 aeb->ec = ec; 203 list_add(&aeb->u.list, &ai->fastmap); 204 205 dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum, 206 aeb->vol_id, aeb->sqnum); 207 208 return 0; 209 } 210 211 /** 212 * validate_vid_hdr - check volume identifier header. 213 * @ubi: UBI device description object 214 * @vid_hdr: the volume identifier header to check 215 * @av: information about the volume this logical eraseblock belongs to 216 * @pnum: physical eraseblock number the VID header came from 217 * 218 * This function checks that data stored in @vid_hdr is consistent. Returns 219 * non-zero if an inconsistency was found and zero if not. 220 * 221 * Note, UBI does sanity check of everything it reads from the flash media. 222 * Most of the checks are done in the I/O sub-system. Here we check that the 223 * information in the VID header is consistent to the information in other VID 224 * headers of the same volume. 225 */ 226 static int validate_vid_hdr(const struct ubi_device *ubi, 227 const struct ubi_vid_hdr *vid_hdr, 228 const struct ubi_ainf_volume *av, int pnum) 229 { 230 int vol_type = vid_hdr->vol_type; 231 int vol_id = be32_to_cpu(vid_hdr->vol_id); 232 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 233 int data_pad = be32_to_cpu(vid_hdr->data_pad); 234 235 if (av->leb_count != 0) { 236 int av_vol_type; 237 238 /* 239 * This is not the first logical eraseblock belonging to this 240 * volume. Ensure that the data in its VID header is consistent 241 * to the data in previous logical eraseblock headers. 242 */ 243 244 if (vol_id != av->vol_id) { 245 ubi_err(ubi, "inconsistent vol_id"); 246 goto bad; 247 } 248 249 if (av->vol_type == UBI_STATIC_VOLUME) 250 av_vol_type = UBI_VID_STATIC; 251 else 252 av_vol_type = UBI_VID_DYNAMIC; 253 254 if (vol_type != av_vol_type) { 255 ubi_err(ubi, "inconsistent vol_type"); 256 goto bad; 257 } 258 259 if (used_ebs != av->used_ebs) { 260 ubi_err(ubi, "inconsistent used_ebs"); 261 goto bad; 262 } 263 264 if (data_pad != av->data_pad) { 265 ubi_err(ubi, "inconsistent data_pad"); 266 goto bad; 267 } 268 } 269 270 return 0; 271 272 bad: 273 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum); 274 ubi_dump_vid_hdr(vid_hdr); 275 ubi_dump_av(av); 276 return -EINVAL; 277 } 278 279 /** 280 * add_volume - add volume to the attaching information. 281 * @ai: attaching information 282 * @vol_id: ID of the volume to add 283 * @pnum: physical eraseblock number 284 * @vid_hdr: volume identifier header 285 * 286 * If the volume corresponding to the @vid_hdr logical eraseblock is already 287 * present in the attaching information, this function does nothing. Otherwise 288 * it adds corresponding volume to the attaching information. Returns a pointer 289 * to the allocated "av" object in case of success and a negative error code in 290 * case of failure. 291 */ 292 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, 293 int vol_id, int pnum, 294 const struct ubi_vid_hdr *vid_hdr) 295 { 296 struct ubi_ainf_volume *av; 297 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; 298 299 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 300 301 /* Walk the volume RB-tree to look if this volume is already present */ 302 while (*p) { 303 parent = *p; 304 av = rb_entry(parent, struct ubi_ainf_volume, rb); 305 306 if (vol_id == av->vol_id) 307 return av; 308 309 if (vol_id > av->vol_id) 310 p = &(*p)->rb_left; 311 else 312 p = &(*p)->rb_right; 313 } 314 315 /* The volume is absent - add it */ 316 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); 317 if (!av) 318 return ERR_PTR(-ENOMEM); 319 320 av->highest_lnum = av->leb_count = 0; 321 av->vol_id = vol_id; 322 av->root = RB_ROOT; 323 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 324 av->data_pad = be32_to_cpu(vid_hdr->data_pad); 325 av->compat = vid_hdr->compat; 326 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 327 : UBI_STATIC_VOLUME; 328 if (vol_id > ai->highest_vol_id) 329 ai->highest_vol_id = vol_id; 330 331 rb_link_node(&av->rb, parent, p); 332 rb_insert_color(&av->rb, &ai->volumes); 333 ai->vols_found += 1; 334 dbg_bld("added volume %d", vol_id); 335 return av; 336 } 337 338 /** 339 * ubi_compare_lebs - find out which logical eraseblock is newer. 340 * @ubi: UBI device description object 341 * @aeb: first logical eraseblock to compare 342 * @pnum: physical eraseblock number of the second logical eraseblock to 343 * compare 344 * @vid_hdr: volume identifier header of the second logical eraseblock 345 * 346 * This function compares 2 copies of a LEB and informs which one is newer. In 347 * case of success this function returns a positive value, in case of failure, a 348 * negative error code is returned. The success return codes use the following 349 * bits: 350 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the 351 * second PEB (described by @pnum and @vid_hdr); 352 * o bit 0 is set: the second PEB is newer; 353 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 354 * o bit 1 is set: bit-flips were detected in the newer LEB; 355 * o bit 2 is cleared: the older LEB is not corrupted; 356 * o bit 2 is set: the older LEB is corrupted. 357 */ 358 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, 359 int pnum, const struct ubi_vid_hdr *vid_hdr) 360 { 361 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 362 uint32_t data_crc, crc; 363 struct ubi_vid_hdr *vh = NULL; 364 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 365 366 if (sqnum2 == aeb->sqnum) { 367 /* 368 * This must be a really ancient UBI image which has been 369 * created before sequence numbers support has been added. At 370 * that times we used 32-bit LEB versions stored in logical 371 * eraseblocks. That was before UBI got into mainline. We do not 372 * support these images anymore. Well, those images still work, 373 * but only if no unclean reboots happened. 374 */ 375 ubi_err(ubi, "unsupported on-flash UBI format"); 376 return -EINVAL; 377 } 378 379 /* Obviously the LEB with lower sequence counter is older */ 380 second_is_newer = (sqnum2 > aeb->sqnum); 381 382 /* 383 * Now we know which copy is newer. If the copy flag of the PEB with 384 * newer version is not set, then we just return, otherwise we have to 385 * check data CRC. For the second PEB we already have the VID header, 386 * for the first one - we'll need to re-read it from flash. 387 * 388 * Note: this may be optimized so that we wouldn't read twice. 389 */ 390 391 if (second_is_newer) { 392 if (!vid_hdr->copy_flag) { 393 /* It is not a copy, so it is newer */ 394 dbg_bld("second PEB %d is newer, copy_flag is unset", 395 pnum); 396 return 1; 397 } 398 } else { 399 if (!aeb->copy_flag) { 400 /* It is not a copy, so it is newer */ 401 dbg_bld("first PEB %d is newer, copy_flag is unset", 402 pnum); 403 return bitflips << 1; 404 } 405 406 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 407 if (!vh) 408 return -ENOMEM; 409 410 pnum = aeb->pnum; 411 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 412 if (err) { 413 if (err == UBI_IO_BITFLIPS) 414 bitflips = 1; 415 else { 416 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d", 417 pnum, err); 418 if (err > 0) 419 err = -EIO; 420 421 goto out_free_vidh; 422 } 423 } 424 425 vid_hdr = vh; 426 } 427 428 /* Read the data of the copy and check the CRC */ 429 430 len = be32_to_cpu(vid_hdr->data_size); 431 432 mutex_lock(&ubi->buf_mutex); 433 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); 434 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 435 goto out_unlock; 436 437 data_crc = be32_to_cpu(vid_hdr->data_crc); 438 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); 439 if (crc != data_crc) { 440 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 441 pnum, crc, data_crc); 442 corrupted = 1; 443 bitflips = 0; 444 second_is_newer = !second_is_newer; 445 } else { 446 dbg_bld("PEB %d CRC is OK", pnum); 447 bitflips |= !!err; 448 } 449 mutex_unlock(&ubi->buf_mutex); 450 451 ubi_free_vid_hdr(ubi, vh); 452 453 if (second_is_newer) 454 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 455 else 456 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 457 458 return second_is_newer | (bitflips << 1) | (corrupted << 2); 459 460 out_unlock: 461 mutex_unlock(&ubi->buf_mutex); 462 out_free_vidh: 463 ubi_free_vid_hdr(ubi, vh); 464 return err; 465 } 466 467 /** 468 * ubi_add_to_av - add used physical eraseblock to the attaching information. 469 * @ubi: UBI device description object 470 * @ai: attaching information 471 * @pnum: the physical eraseblock number 472 * @ec: erase counter 473 * @vid_hdr: the volume identifier header 474 * @bitflips: if bit-flips were detected when this physical eraseblock was read 475 * 476 * This function adds information about a used physical eraseblock to the 477 * 'used' tree of the corresponding volume. The function is rather complex 478 * because it has to handle cases when this is not the first physical 479 * eraseblock belonging to the same logical eraseblock, and the newer one has 480 * to be picked, while the older one has to be dropped. This function returns 481 * zero in case of success and a negative error code in case of failure. 482 */ 483 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, 484 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) 485 { 486 int err, vol_id, lnum; 487 unsigned long long sqnum; 488 struct ubi_ainf_volume *av; 489 struct ubi_ainf_peb *aeb; 490 struct rb_node **p, *parent = NULL; 491 492 vol_id = be32_to_cpu(vid_hdr->vol_id); 493 lnum = be32_to_cpu(vid_hdr->lnum); 494 sqnum = be64_to_cpu(vid_hdr->sqnum); 495 496 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 497 pnum, vol_id, lnum, ec, sqnum, bitflips); 498 499 av = add_volume(ai, vol_id, pnum, vid_hdr); 500 if (IS_ERR(av)) 501 return PTR_ERR(av); 502 503 if (ai->max_sqnum < sqnum) 504 ai->max_sqnum = sqnum; 505 506 /* 507 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 508 * if this is the first instance of this logical eraseblock or not. 509 */ 510 p = &av->root.rb_node; 511 while (*p) { 512 int cmp_res; 513 514 parent = *p; 515 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); 516 if (lnum != aeb->lnum) { 517 if (lnum < aeb->lnum) 518 p = &(*p)->rb_left; 519 else 520 p = &(*p)->rb_right; 521 continue; 522 } 523 524 /* 525 * There is already a physical eraseblock describing the same 526 * logical eraseblock present. 527 */ 528 529 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", 530 aeb->pnum, aeb->sqnum, aeb->ec); 531 532 /* 533 * Make sure that the logical eraseblocks have different 534 * sequence numbers. Otherwise the image is bad. 535 * 536 * However, if the sequence number is zero, we assume it must 537 * be an ancient UBI image from the era when UBI did not have 538 * sequence numbers. We still can attach these images, unless 539 * there is a need to distinguish between old and new 540 * eraseblocks, in which case we'll refuse the image in 541 * 'ubi_compare_lebs()'. In other words, we attach old clean 542 * images, but refuse attaching old images with duplicated 543 * logical eraseblocks because there was an unclean reboot. 544 */ 545 if (aeb->sqnum == sqnum && sqnum != 0) { 546 ubi_err(ubi, "two LEBs with same sequence number %llu", 547 sqnum); 548 ubi_dump_aeb(aeb, 0); 549 ubi_dump_vid_hdr(vid_hdr); 550 return -EINVAL; 551 } 552 553 /* 554 * Now we have to drop the older one and preserve the newer 555 * one. 556 */ 557 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); 558 if (cmp_res < 0) 559 return cmp_res; 560 561 if (cmp_res & 1) { 562 /* 563 * This logical eraseblock is newer than the one 564 * found earlier. 565 */ 566 err = validate_vid_hdr(ubi, vid_hdr, av, pnum); 567 if (err) 568 return err; 569 570 err = add_to_list(ai, aeb->pnum, aeb->vol_id, 571 aeb->lnum, aeb->ec, cmp_res & 4, 572 &ai->erase); 573 if (err) 574 return err; 575 576 aeb->ec = ec; 577 aeb->pnum = pnum; 578 aeb->vol_id = vol_id; 579 aeb->lnum = lnum; 580 aeb->scrub = ((cmp_res & 2) || bitflips); 581 aeb->copy_flag = vid_hdr->copy_flag; 582 aeb->sqnum = sqnum; 583 584 if (av->highest_lnum == lnum) 585 av->last_data_size = 586 be32_to_cpu(vid_hdr->data_size); 587 588 return 0; 589 } else { 590 /* 591 * This logical eraseblock is older than the one found 592 * previously. 593 */ 594 return add_to_list(ai, pnum, vol_id, lnum, ec, 595 cmp_res & 4, &ai->erase); 596 } 597 } 598 599 /* 600 * We've met this logical eraseblock for the first time, add it to the 601 * attaching information. 602 */ 603 604 err = validate_vid_hdr(ubi, vid_hdr, av, pnum); 605 if (err) 606 return err; 607 608 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 609 if (!aeb) 610 return -ENOMEM; 611 612 aeb->ec = ec; 613 aeb->pnum = pnum; 614 aeb->vol_id = vol_id; 615 aeb->lnum = lnum; 616 aeb->scrub = bitflips; 617 aeb->copy_flag = vid_hdr->copy_flag; 618 aeb->sqnum = sqnum; 619 620 if (av->highest_lnum <= lnum) { 621 av->highest_lnum = lnum; 622 av->last_data_size = be32_to_cpu(vid_hdr->data_size); 623 } 624 625 av->leb_count += 1; 626 rb_link_node(&aeb->u.rb, parent, p); 627 rb_insert_color(&aeb->u.rb, &av->root); 628 return 0; 629 } 630 631 /** 632 * ubi_find_av - find volume in the attaching information. 633 * @ai: attaching information 634 * @vol_id: the requested volume ID 635 * 636 * This function returns a pointer to the volume description or %NULL if there 637 * are no data about this volume in the attaching information. 638 */ 639 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, 640 int vol_id) 641 { 642 struct ubi_ainf_volume *av; 643 struct rb_node *p = ai->volumes.rb_node; 644 645 while (p) { 646 av = rb_entry(p, struct ubi_ainf_volume, rb); 647 648 if (vol_id == av->vol_id) 649 return av; 650 651 if (vol_id > av->vol_id) 652 p = p->rb_left; 653 else 654 p = p->rb_right; 655 } 656 657 return NULL; 658 } 659 660 /** 661 * ubi_remove_av - delete attaching information about a volume. 662 * @ai: attaching information 663 * @av: the volume attaching information to delete 664 */ 665 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 666 { 667 struct rb_node *rb; 668 struct ubi_ainf_peb *aeb; 669 670 dbg_bld("remove attaching information about volume %d", av->vol_id); 671 672 while ((rb = rb_first(&av->root))) { 673 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); 674 rb_erase(&aeb->u.rb, &av->root); 675 list_add_tail(&aeb->u.list, &ai->erase); 676 } 677 678 rb_erase(&av->rb, &ai->volumes); 679 kfree(av); 680 ai->vols_found -= 1; 681 } 682 683 /** 684 * early_erase_peb - erase a physical eraseblock. 685 * @ubi: UBI device description object 686 * @ai: attaching information 687 * @pnum: physical eraseblock number to erase; 688 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) 689 * 690 * This function erases physical eraseblock 'pnum', and writes the erase 691 * counter header to it. This function should only be used on UBI device 692 * initialization stages, when the EBA sub-system had not been yet initialized. 693 * This function returns zero in case of success and a negative error code in 694 * case of failure. 695 */ 696 static int early_erase_peb(struct ubi_device *ubi, 697 const struct ubi_attach_info *ai, int pnum, int ec) 698 { 699 int err; 700 struct ubi_ec_hdr *ec_hdr; 701 702 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 703 /* 704 * Erase counter overflow. Upgrade UBI and use 64-bit 705 * erase counters internally. 706 */ 707 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d", 708 pnum, ec); 709 return -EINVAL; 710 } 711 712 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 713 if (!ec_hdr) 714 return -ENOMEM; 715 716 ec_hdr->ec = cpu_to_be64(ec); 717 718 err = ubi_io_sync_erase(ubi, pnum, 0); 719 if (err < 0) 720 goto out_free; 721 722 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 723 724 out_free: 725 kfree(ec_hdr); 726 return err; 727 } 728 729 /** 730 * ubi_early_get_peb - get a free physical eraseblock. 731 * @ubi: UBI device description object 732 * @ai: attaching information 733 * 734 * This function returns a free physical eraseblock. It is supposed to be 735 * called on the UBI initialization stages when the wear-leveling sub-system is 736 * not initialized yet. This function picks a physical eraseblocks from one of 737 * the lists, writes the EC header if it is needed, and removes it from the 738 * list. 739 * 740 * This function returns a pointer to the "aeb" of the found free PEB in case 741 * of success and an error code in case of failure. 742 */ 743 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, 744 struct ubi_attach_info *ai) 745 { 746 int err = 0; 747 struct ubi_ainf_peb *aeb, *tmp_aeb; 748 749 if (!list_empty(&ai->free)) { 750 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); 751 list_del(&aeb->u.list); 752 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); 753 return aeb; 754 } 755 756 /* 757 * We try to erase the first physical eraseblock from the erase list 758 * and pick it if we succeed, or try to erase the next one if not. And 759 * so forth. We don't want to take care about bad eraseblocks here - 760 * they'll be handled later. 761 */ 762 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { 763 if (aeb->ec == UBI_UNKNOWN) 764 aeb->ec = ai->mean_ec; 765 766 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); 767 if (err) 768 continue; 769 770 aeb->ec += 1; 771 list_del(&aeb->u.list); 772 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); 773 return aeb; 774 } 775 776 ubi_err(ubi, "no free eraseblocks"); 777 return ERR_PTR(-ENOSPC); 778 } 779 780 /** 781 * check_corruption - check the data area of PEB. 782 * @ubi: UBI device description object 783 * @vid_hdr: the (corrupted) VID header of this PEB 784 * @pnum: the physical eraseblock number to check 785 * 786 * This is a helper function which is used to distinguish between VID header 787 * corruptions caused by power cuts and other reasons. If the PEB contains only 788 * 0xFF bytes in the data area, the VID header is most probably corrupted 789 * because of a power cut (%0 is returned in this case). Otherwise, it was 790 * probably corrupted for some other reasons (%1 is returned in this case). A 791 * negative error code is returned if a read error occurred. 792 * 793 * If the corruption reason was a power cut, UBI can safely erase this PEB. 794 * Otherwise, it should preserve it to avoid possibly destroying important 795 * information. 796 */ 797 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, 798 int pnum) 799 { 800 int err; 801 802 mutex_lock(&ubi->buf_mutex); 803 memset(ubi->peb_buf, 0x00, ubi->leb_size); 804 805 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, 806 ubi->leb_size); 807 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 808 /* 809 * Bit-flips or integrity errors while reading the data area. 810 * It is difficult to say for sure what type of corruption is 811 * this, but presumably a power cut happened while this PEB was 812 * erased, so it became unstable and corrupted, and should be 813 * erased. 814 */ 815 err = 0; 816 goto out_unlock; 817 } 818 819 if (err) 820 goto out_unlock; 821 822 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) 823 goto out_unlock; 824 825 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF", 826 pnum); 827 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); 828 ubi_dump_vid_hdr(vid_hdr); 829 pr_err("hexdump of PEB %d offset %d, length %d", 830 pnum, ubi->leb_start, ubi->leb_size); 831 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 832 ubi->peb_buf, ubi->leb_size, 1); 833 err = 1; 834 835 out_unlock: 836 mutex_unlock(&ubi->buf_mutex); 837 return err; 838 } 839 840 static bool vol_ignored(int vol_id) 841 { 842 switch (vol_id) { 843 case UBI_LAYOUT_VOLUME_ID: 844 return true; 845 } 846 847 #ifdef CONFIG_MTD_UBI_FASTMAP 848 return ubi_is_fm_vol(vol_id); 849 #else 850 return false; 851 #endif 852 } 853 854 /** 855 * scan_peb - scan and process UBI headers of a PEB. 856 * @ubi: UBI device description object 857 * @ai: attaching information 858 * @pnum: the physical eraseblock number 859 * @fast: true if we're scanning for a Fastmap 860 * 861 * This function reads UBI headers of PEB @pnum, checks them, and adds 862 * information about this PEB to the corresponding list or RB-tree in the 863 * "attaching info" structure. Returns zero if the physical eraseblock was 864 * successfully handled and a negative error code in case of failure. 865 */ 866 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, 867 int pnum, bool fast) 868 { 869 long long ec; 870 int err, bitflips = 0, vol_id = -1, ec_err = 0; 871 872 dbg_bld("scan PEB %d", pnum); 873 874 /* Skip bad physical eraseblocks */ 875 err = ubi_io_is_bad(ubi, pnum); 876 if (err < 0) 877 return err; 878 else if (err) { 879 ai->bad_peb_count += 1; 880 return 0; 881 } 882 883 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 884 if (err < 0) 885 return err; 886 switch (err) { 887 case 0: 888 break; 889 case UBI_IO_BITFLIPS: 890 bitflips = 1; 891 break; 892 case UBI_IO_FF: 893 ai->empty_peb_count += 1; 894 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 895 UBI_UNKNOWN, 0, &ai->erase); 896 case UBI_IO_FF_BITFLIPS: 897 ai->empty_peb_count += 1; 898 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 899 UBI_UNKNOWN, 1, &ai->erase); 900 case UBI_IO_BAD_HDR_EBADMSG: 901 case UBI_IO_BAD_HDR: 902 /* 903 * We have to also look at the VID header, possibly it is not 904 * corrupted. Set %bitflips flag in order to make this PEB be 905 * moved and EC be re-created. 906 */ 907 ec_err = err; 908 ec = UBI_UNKNOWN; 909 bitflips = 1; 910 break; 911 default: 912 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d", 913 err); 914 return -EINVAL; 915 } 916 917 if (!ec_err) { 918 int image_seq; 919 920 /* Make sure UBI version is OK */ 921 if (ech->version != UBI_VERSION) { 922 ubi_err(ubi, "this UBI version is %d, image version is %d", 923 UBI_VERSION, (int)ech->version); 924 return -EINVAL; 925 } 926 927 ec = be64_to_cpu(ech->ec); 928 if (ec > UBI_MAX_ERASECOUNTER) { 929 /* 930 * Erase counter overflow. The EC headers have 64 bits 931 * reserved, but we anyway make use of only 31 bit 932 * values, as this seems to be enough for any existing 933 * flash. Upgrade UBI and use 64-bit erase counters 934 * internally. 935 */ 936 ubi_err(ubi, "erase counter overflow, max is %d", 937 UBI_MAX_ERASECOUNTER); 938 ubi_dump_ec_hdr(ech); 939 return -EINVAL; 940 } 941 942 /* 943 * Make sure that all PEBs have the same image sequence number. 944 * This allows us to detect situations when users flash UBI 945 * images incorrectly, so that the flash has the new UBI image 946 * and leftovers from the old one. This feature was added 947 * relatively recently, and the sequence number was always 948 * zero, because old UBI implementations always set it to zero. 949 * For this reasons, we do not panic if some PEBs have zero 950 * sequence number, while other PEBs have non-zero sequence 951 * number. 952 */ 953 image_seq = be32_to_cpu(ech->image_seq); 954 if (!ubi->image_seq) 955 ubi->image_seq = image_seq; 956 if (image_seq && ubi->image_seq != image_seq) { 957 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d", 958 image_seq, pnum, ubi->image_seq); 959 ubi_dump_ec_hdr(ech); 960 return -EINVAL; 961 } 962 } 963 964 /* OK, we've done with the EC header, let's look at the VID header */ 965 966 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 967 if (err < 0) 968 return err; 969 switch (err) { 970 case 0: 971 break; 972 case UBI_IO_BITFLIPS: 973 bitflips = 1; 974 break; 975 case UBI_IO_BAD_HDR_EBADMSG: 976 if (ec_err == UBI_IO_BAD_HDR_EBADMSG) 977 /* 978 * Both EC and VID headers are corrupted and were read 979 * with data integrity error, probably this is a bad 980 * PEB, bit it is not marked as bad yet. This may also 981 * be a result of power cut during erasure. 982 */ 983 ai->maybe_bad_peb_count += 1; 984 case UBI_IO_BAD_HDR: 985 /* 986 * If we're facing a bad VID header we have to drop *all* 987 * Fastmap data structures we find. The most recent Fastmap 988 * could be bad and therefore there is a chance that we attach 989 * from an old one. On a fine MTD stack a PEB must not render 990 * bad all of a sudden, but the reality is different. 991 * So, let's be paranoid and help finding the root cause by 992 * falling back to scanning mode instead of attaching with a 993 * bad EBA table and cause data corruption which is hard to 994 * analyze. 995 */ 996 if (fast) 997 ai->force_full_scan = 1; 998 999 if (ec_err) 1000 /* 1001 * Both headers are corrupted. There is a possibility 1002 * that this a valid UBI PEB which has corresponding 1003 * LEB, but the headers are corrupted. However, it is 1004 * impossible to distinguish it from a PEB which just 1005 * contains garbage because of a power cut during erase 1006 * operation. So we just schedule this PEB for erasure. 1007 * 1008 * Besides, in case of NOR flash, we deliberately 1009 * corrupt both headers because NOR flash erasure is 1010 * slow and can start from the end. 1011 */ 1012 err = 0; 1013 else 1014 /* 1015 * The EC was OK, but the VID header is corrupted. We 1016 * have to check what is in the data area. 1017 */ 1018 err = check_corruption(ubi, vidh, pnum); 1019 1020 if (err < 0) 1021 return err; 1022 else if (!err) 1023 /* This corruption is caused by a power cut */ 1024 err = add_to_list(ai, pnum, UBI_UNKNOWN, 1025 UBI_UNKNOWN, ec, 1, &ai->erase); 1026 else 1027 /* This is an unexpected corruption */ 1028 err = add_corrupted(ai, pnum, ec); 1029 if (err) 1030 return err; 1031 goto adjust_mean_ec; 1032 case UBI_IO_FF_BITFLIPS: 1033 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 1034 ec, 1, &ai->erase); 1035 if (err) 1036 return err; 1037 goto adjust_mean_ec; 1038 case UBI_IO_FF: 1039 if (ec_err || bitflips) 1040 err = add_to_list(ai, pnum, UBI_UNKNOWN, 1041 UBI_UNKNOWN, ec, 1, &ai->erase); 1042 else 1043 err = add_to_list(ai, pnum, UBI_UNKNOWN, 1044 UBI_UNKNOWN, ec, 0, &ai->free); 1045 if (err) 1046 return err; 1047 goto adjust_mean_ec; 1048 default: 1049 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d", 1050 err); 1051 return -EINVAL; 1052 } 1053 1054 vol_id = be32_to_cpu(vidh->vol_id); 1055 if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) { 1056 int lnum = be32_to_cpu(vidh->lnum); 1057 1058 /* Unsupported internal volume */ 1059 switch (vidh->compat) { 1060 case UBI_COMPAT_DELETE: 1061 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it", 1062 vol_id, lnum); 1063 1064 err = add_to_list(ai, pnum, vol_id, lnum, 1065 ec, 1, &ai->erase); 1066 if (err) 1067 return err; 1068 return 0; 1069 1070 case UBI_COMPAT_RO: 1071 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode", 1072 vol_id, lnum); 1073 ubi->ro_mode = 1; 1074 break; 1075 1076 case UBI_COMPAT_PRESERVE: 1077 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found", 1078 vol_id, lnum); 1079 err = add_to_list(ai, pnum, vol_id, lnum, 1080 ec, 0, &ai->alien); 1081 if (err) 1082 return err; 1083 return 0; 1084 1085 case UBI_COMPAT_REJECT: 1086 ubi_err(ubi, "incompatible internal volume %d:%d found", 1087 vol_id, lnum); 1088 return -EINVAL; 1089 } 1090 } 1091 1092 if (ec_err) 1093 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d", 1094 pnum); 1095 1096 if (ubi_is_fm_vol(vol_id)) 1097 err = add_fastmap(ai, pnum, vidh, ec); 1098 else 1099 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); 1100 1101 if (err) 1102 return err; 1103 1104 adjust_mean_ec: 1105 if (!ec_err) { 1106 ai->ec_sum += ec; 1107 ai->ec_count += 1; 1108 if (ec > ai->max_ec) 1109 ai->max_ec = ec; 1110 if (ec < ai->min_ec) 1111 ai->min_ec = ec; 1112 } 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * late_analysis - analyze the overall situation with PEB. 1119 * @ubi: UBI device description object 1120 * @ai: attaching information 1121 * 1122 * This is a helper function which takes a look what PEBs we have after we 1123 * gather information about all of them ("ai" is compete). It decides whether 1124 * the flash is empty and should be formatted of whether there are too many 1125 * corrupted PEBs and we should not attach this MTD device. Returns zero if we 1126 * should proceed with attaching the MTD device, and %-EINVAL if we should not. 1127 */ 1128 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) 1129 { 1130 struct ubi_ainf_peb *aeb; 1131 int max_corr, peb_count; 1132 1133 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; 1134 max_corr = peb_count / 20 ?: 8; 1135 1136 /* 1137 * Few corrupted PEBs is not a problem and may be just a result of 1138 * unclean reboots. However, many of them may indicate some problems 1139 * with the flash HW or driver. 1140 */ 1141 if (ai->corr_peb_count) { 1142 ubi_err(ubi, "%d PEBs are corrupted and preserved", 1143 ai->corr_peb_count); 1144 pr_err("Corrupted PEBs are:"); 1145 list_for_each_entry(aeb, &ai->corr, u.list) 1146 pr_cont(" %d", aeb->pnum); 1147 pr_cont("\n"); 1148 1149 /* 1150 * If too many PEBs are corrupted, we refuse attaching, 1151 * otherwise, only print a warning. 1152 */ 1153 if (ai->corr_peb_count >= max_corr) { 1154 ubi_err(ubi, "too many corrupted PEBs, refusing"); 1155 return -EINVAL; 1156 } 1157 } 1158 1159 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { 1160 /* 1161 * All PEBs are empty, or almost all - a couple PEBs look like 1162 * they may be bad PEBs which were not marked as bad yet. 1163 * 1164 * This piece of code basically tries to distinguish between 1165 * the following situations: 1166 * 1167 * 1. Flash is empty, but there are few bad PEBs, which are not 1168 * marked as bad so far, and which were read with error. We 1169 * want to go ahead and format this flash. While formatting, 1170 * the faulty PEBs will probably be marked as bad. 1171 * 1172 * 2. Flash contains non-UBI data and we do not want to format 1173 * it and destroy possibly important information. 1174 */ 1175 if (ai->maybe_bad_peb_count <= 2) { 1176 ai->is_empty = 1; 1177 ubi_msg(ubi, "empty MTD device detected"); 1178 get_random_bytes(&ubi->image_seq, 1179 sizeof(ubi->image_seq)); 1180 } else { 1181 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); 1182 return -EINVAL; 1183 } 1184 1185 } 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * destroy_av - free volume attaching information. 1192 * @av: volume attaching information 1193 * @ai: attaching information 1194 * 1195 * This function destroys the volume attaching information. 1196 */ 1197 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 1198 { 1199 struct ubi_ainf_peb *aeb; 1200 struct rb_node *this = av->root.rb_node; 1201 1202 while (this) { 1203 if (this->rb_left) 1204 this = this->rb_left; 1205 else if (this->rb_right) 1206 this = this->rb_right; 1207 else { 1208 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); 1209 this = rb_parent(this); 1210 if (this) { 1211 if (this->rb_left == &aeb->u.rb) 1212 this->rb_left = NULL; 1213 else 1214 this->rb_right = NULL; 1215 } 1216 1217 kmem_cache_free(ai->aeb_slab_cache, aeb); 1218 } 1219 } 1220 kfree(av); 1221 } 1222 1223 /** 1224 * destroy_ai - destroy attaching information. 1225 * @ai: attaching information 1226 */ 1227 static void destroy_ai(struct ubi_attach_info *ai) 1228 { 1229 struct ubi_ainf_peb *aeb, *aeb_tmp; 1230 struct ubi_ainf_volume *av; 1231 struct rb_node *rb; 1232 1233 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { 1234 list_del(&aeb->u.list); 1235 kmem_cache_free(ai->aeb_slab_cache, aeb); 1236 } 1237 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { 1238 list_del(&aeb->u.list); 1239 kmem_cache_free(ai->aeb_slab_cache, aeb); 1240 } 1241 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { 1242 list_del(&aeb->u.list); 1243 kmem_cache_free(ai->aeb_slab_cache, aeb); 1244 } 1245 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { 1246 list_del(&aeb->u.list); 1247 kmem_cache_free(ai->aeb_slab_cache, aeb); 1248 } 1249 list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) { 1250 list_del(&aeb->u.list); 1251 kmem_cache_free(ai->aeb_slab_cache, aeb); 1252 } 1253 1254 /* Destroy the volume RB-tree */ 1255 rb = ai->volumes.rb_node; 1256 while (rb) { 1257 if (rb->rb_left) 1258 rb = rb->rb_left; 1259 else if (rb->rb_right) 1260 rb = rb->rb_right; 1261 else { 1262 av = rb_entry(rb, struct ubi_ainf_volume, rb); 1263 1264 rb = rb_parent(rb); 1265 if (rb) { 1266 if (rb->rb_left == &av->rb) 1267 rb->rb_left = NULL; 1268 else 1269 rb->rb_right = NULL; 1270 } 1271 1272 destroy_av(ai, av); 1273 } 1274 } 1275 1276 kmem_cache_destroy(ai->aeb_slab_cache); 1277 kfree(ai); 1278 } 1279 1280 /** 1281 * scan_all - scan entire MTD device. 1282 * @ubi: UBI device description object 1283 * @ai: attach info object 1284 * @start: start scanning at this PEB 1285 * 1286 * This function does full scanning of an MTD device and returns complete 1287 * information about it in form of a "struct ubi_attach_info" object. In case 1288 * of failure, an error code is returned. 1289 */ 1290 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, 1291 int start) 1292 { 1293 int err, pnum; 1294 struct rb_node *rb1, *rb2; 1295 struct ubi_ainf_volume *av; 1296 struct ubi_ainf_peb *aeb; 1297 1298 err = -ENOMEM; 1299 1300 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1301 if (!ech) 1302 return err; 1303 1304 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1305 if (!vidh) 1306 goto out_ech; 1307 1308 for (pnum = start; pnum < ubi->peb_count; pnum++) { 1309 cond_resched(); 1310 1311 dbg_gen("process PEB %d", pnum); 1312 err = scan_peb(ubi, ai, pnum, false); 1313 if (err < 0) 1314 goto out_vidh; 1315 } 1316 1317 ubi_msg(ubi, "scanning is finished"); 1318 1319 /* Calculate mean erase counter */ 1320 if (ai->ec_count) 1321 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); 1322 1323 err = late_analysis(ubi, ai); 1324 if (err) 1325 goto out_vidh; 1326 1327 /* 1328 * In case of unknown erase counter we use the mean erase counter 1329 * value. 1330 */ 1331 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1332 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1333 if (aeb->ec == UBI_UNKNOWN) 1334 aeb->ec = ai->mean_ec; 1335 } 1336 1337 list_for_each_entry(aeb, &ai->free, u.list) { 1338 if (aeb->ec == UBI_UNKNOWN) 1339 aeb->ec = ai->mean_ec; 1340 } 1341 1342 list_for_each_entry(aeb, &ai->corr, u.list) 1343 if (aeb->ec == UBI_UNKNOWN) 1344 aeb->ec = ai->mean_ec; 1345 1346 list_for_each_entry(aeb, &ai->erase, u.list) 1347 if (aeb->ec == UBI_UNKNOWN) 1348 aeb->ec = ai->mean_ec; 1349 1350 err = self_check_ai(ubi, ai); 1351 if (err) 1352 goto out_vidh; 1353 1354 ubi_free_vid_hdr(ubi, vidh); 1355 kfree(ech); 1356 1357 return 0; 1358 1359 out_vidh: 1360 ubi_free_vid_hdr(ubi, vidh); 1361 out_ech: 1362 kfree(ech); 1363 return err; 1364 } 1365 1366 static struct ubi_attach_info *alloc_ai(void) 1367 { 1368 struct ubi_attach_info *ai; 1369 1370 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); 1371 if (!ai) 1372 return ai; 1373 1374 INIT_LIST_HEAD(&ai->corr); 1375 INIT_LIST_HEAD(&ai->free); 1376 INIT_LIST_HEAD(&ai->erase); 1377 INIT_LIST_HEAD(&ai->alien); 1378 INIT_LIST_HEAD(&ai->fastmap); 1379 ai->volumes = RB_ROOT; 1380 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", 1381 sizeof(struct ubi_ainf_peb), 1382 0, 0, NULL); 1383 if (!ai->aeb_slab_cache) { 1384 kfree(ai); 1385 ai = NULL; 1386 } 1387 1388 return ai; 1389 } 1390 1391 #ifdef CONFIG_MTD_UBI_FASTMAP 1392 1393 /** 1394 * scan_fast - try to find a fastmap and attach from it. 1395 * @ubi: UBI device description object 1396 * @ai: attach info object 1397 * 1398 * Returns 0 on success, negative return values indicate an internal 1399 * error. 1400 * UBI_NO_FASTMAP denotes that no fastmap was found. 1401 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. 1402 */ 1403 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai) 1404 { 1405 int err, pnum; 1406 struct ubi_attach_info *scan_ai; 1407 1408 err = -ENOMEM; 1409 1410 scan_ai = alloc_ai(); 1411 if (!scan_ai) 1412 goto out; 1413 1414 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1415 if (!ech) 1416 goto out_ai; 1417 1418 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1419 if (!vidh) 1420 goto out_ech; 1421 1422 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { 1423 cond_resched(); 1424 1425 dbg_gen("process PEB %d", pnum); 1426 err = scan_peb(ubi, scan_ai, pnum, true); 1427 if (err < 0) 1428 goto out_vidh; 1429 } 1430 1431 ubi_free_vid_hdr(ubi, vidh); 1432 kfree(ech); 1433 1434 if (scan_ai->force_full_scan) 1435 err = UBI_NO_FASTMAP; 1436 else 1437 err = ubi_scan_fastmap(ubi, *ai, scan_ai); 1438 1439 if (err) { 1440 /* 1441 * Didn't attach via fastmap, do a full scan but reuse what 1442 * we've aready scanned. 1443 */ 1444 destroy_ai(*ai); 1445 *ai = scan_ai; 1446 } else 1447 destroy_ai(scan_ai); 1448 1449 return err; 1450 1451 out_vidh: 1452 ubi_free_vid_hdr(ubi, vidh); 1453 out_ech: 1454 kfree(ech); 1455 out_ai: 1456 destroy_ai(scan_ai); 1457 out: 1458 return err; 1459 } 1460 1461 #endif 1462 1463 /** 1464 * ubi_attach - attach an MTD device. 1465 * @ubi: UBI device descriptor 1466 * @force_scan: if set to non-zero attach by scanning 1467 * 1468 * This function returns zero in case of success and a negative error code in 1469 * case of failure. 1470 */ 1471 int ubi_attach(struct ubi_device *ubi, int force_scan) 1472 { 1473 int err; 1474 struct ubi_attach_info *ai; 1475 1476 ai = alloc_ai(); 1477 if (!ai) 1478 return -ENOMEM; 1479 1480 #ifdef CONFIG_MTD_UBI_FASTMAP 1481 /* On small flash devices we disable fastmap in any case. */ 1482 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { 1483 ubi->fm_disabled = 1; 1484 force_scan = 1; 1485 } 1486 1487 if (force_scan) 1488 err = scan_all(ubi, ai, 0); 1489 else { 1490 err = scan_fast(ubi, &ai); 1491 if (err > 0 || mtd_is_eccerr(err)) { 1492 if (err != UBI_NO_FASTMAP) { 1493 destroy_ai(ai); 1494 ai = alloc_ai(); 1495 if (!ai) 1496 return -ENOMEM; 1497 1498 err = scan_all(ubi, ai, 0); 1499 } else { 1500 err = scan_all(ubi, ai, UBI_FM_MAX_START); 1501 } 1502 } 1503 } 1504 #else 1505 err = scan_all(ubi, ai, 0); 1506 #endif 1507 if (err) 1508 goto out_ai; 1509 1510 ubi->bad_peb_count = ai->bad_peb_count; 1511 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 1512 ubi->corr_peb_count = ai->corr_peb_count; 1513 ubi->max_ec = ai->max_ec; 1514 ubi->mean_ec = ai->mean_ec; 1515 dbg_gen("max. sequence number: %llu", ai->max_sqnum); 1516 1517 err = ubi_read_volume_table(ubi, ai); 1518 if (err) 1519 goto out_ai; 1520 1521 err = ubi_wl_init(ubi, ai); 1522 if (err) 1523 goto out_vtbl; 1524 1525 err = ubi_eba_init(ubi, ai); 1526 if (err) 1527 goto out_wl; 1528 1529 #ifdef CONFIG_MTD_UBI_FASTMAP 1530 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) { 1531 struct ubi_attach_info *scan_ai; 1532 1533 scan_ai = alloc_ai(); 1534 if (!scan_ai) { 1535 err = -ENOMEM; 1536 goto out_wl; 1537 } 1538 1539 err = scan_all(ubi, scan_ai, 0); 1540 if (err) { 1541 destroy_ai(scan_ai); 1542 goto out_wl; 1543 } 1544 1545 err = self_check_eba(ubi, ai, scan_ai); 1546 destroy_ai(scan_ai); 1547 1548 if (err) 1549 goto out_wl; 1550 } 1551 #endif 1552 1553 destroy_ai(ai); 1554 return 0; 1555 1556 out_wl: 1557 ubi_wl_close(ubi); 1558 out_vtbl: 1559 ubi_free_internal_volumes(ubi); 1560 vfree(ubi->vtbl); 1561 out_ai: 1562 destroy_ai(ai); 1563 return err; 1564 } 1565 1566 /** 1567 * self_check_ai - check the attaching information. 1568 * @ubi: UBI device description object 1569 * @ai: attaching information 1570 * 1571 * This function returns zero if the attaching information is all right, and a 1572 * negative error code if not or if an error occurred. 1573 */ 1574 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) 1575 { 1576 int pnum, err, vols_found = 0; 1577 struct rb_node *rb1, *rb2; 1578 struct ubi_ainf_volume *av; 1579 struct ubi_ainf_peb *aeb, *last_aeb; 1580 uint8_t *buf; 1581 1582 if (!ubi_dbg_chk_gen(ubi)) 1583 return 0; 1584 1585 /* 1586 * At first, check that attaching information is OK. 1587 */ 1588 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1589 int leb_count = 0; 1590 1591 cond_resched(); 1592 1593 vols_found += 1; 1594 1595 if (ai->is_empty) { 1596 ubi_err(ubi, "bad is_empty flag"); 1597 goto bad_av; 1598 } 1599 1600 if (av->vol_id < 0 || av->highest_lnum < 0 || 1601 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || 1602 av->data_pad < 0 || av->last_data_size < 0) { 1603 ubi_err(ubi, "negative values"); 1604 goto bad_av; 1605 } 1606 1607 if (av->vol_id >= UBI_MAX_VOLUMES && 1608 av->vol_id < UBI_INTERNAL_VOL_START) { 1609 ubi_err(ubi, "bad vol_id"); 1610 goto bad_av; 1611 } 1612 1613 if (av->vol_id > ai->highest_vol_id) { 1614 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there", 1615 ai->highest_vol_id, av->vol_id); 1616 goto out; 1617 } 1618 1619 if (av->vol_type != UBI_DYNAMIC_VOLUME && 1620 av->vol_type != UBI_STATIC_VOLUME) { 1621 ubi_err(ubi, "bad vol_type"); 1622 goto bad_av; 1623 } 1624 1625 if (av->data_pad > ubi->leb_size / 2) { 1626 ubi_err(ubi, "bad data_pad"); 1627 goto bad_av; 1628 } 1629 1630 last_aeb = NULL; 1631 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1632 cond_resched(); 1633 1634 last_aeb = aeb; 1635 leb_count += 1; 1636 1637 if (aeb->pnum < 0 || aeb->ec < 0) { 1638 ubi_err(ubi, "negative values"); 1639 goto bad_aeb; 1640 } 1641 1642 if (aeb->ec < ai->min_ec) { 1643 ubi_err(ubi, "bad ai->min_ec (%d), %d found", 1644 ai->min_ec, aeb->ec); 1645 goto bad_aeb; 1646 } 1647 1648 if (aeb->ec > ai->max_ec) { 1649 ubi_err(ubi, "bad ai->max_ec (%d), %d found", 1650 ai->max_ec, aeb->ec); 1651 goto bad_aeb; 1652 } 1653 1654 if (aeb->pnum >= ubi->peb_count) { 1655 ubi_err(ubi, "too high PEB number %d, total PEBs %d", 1656 aeb->pnum, ubi->peb_count); 1657 goto bad_aeb; 1658 } 1659 1660 if (av->vol_type == UBI_STATIC_VOLUME) { 1661 if (aeb->lnum >= av->used_ebs) { 1662 ubi_err(ubi, "bad lnum or used_ebs"); 1663 goto bad_aeb; 1664 } 1665 } else { 1666 if (av->used_ebs != 0) { 1667 ubi_err(ubi, "non-zero used_ebs"); 1668 goto bad_aeb; 1669 } 1670 } 1671 1672 if (aeb->lnum > av->highest_lnum) { 1673 ubi_err(ubi, "incorrect highest_lnum or lnum"); 1674 goto bad_aeb; 1675 } 1676 } 1677 1678 if (av->leb_count != leb_count) { 1679 ubi_err(ubi, "bad leb_count, %d objects in the tree", 1680 leb_count); 1681 goto bad_av; 1682 } 1683 1684 if (!last_aeb) 1685 continue; 1686 1687 aeb = last_aeb; 1688 1689 if (aeb->lnum != av->highest_lnum) { 1690 ubi_err(ubi, "bad highest_lnum"); 1691 goto bad_aeb; 1692 } 1693 } 1694 1695 if (vols_found != ai->vols_found) { 1696 ubi_err(ubi, "bad ai->vols_found %d, should be %d", 1697 ai->vols_found, vols_found); 1698 goto out; 1699 } 1700 1701 /* Check that attaching information is correct */ 1702 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1703 last_aeb = NULL; 1704 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1705 int vol_type; 1706 1707 cond_resched(); 1708 1709 last_aeb = aeb; 1710 1711 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); 1712 if (err && err != UBI_IO_BITFLIPS) { 1713 ubi_err(ubi, "VID header is not OK (%d)", 1714 err); 1715 if (err > 0) 1716 err = -EIO; 1717 return err; 1718 } 1719 1720 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1721 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1722 if (av->vol_type != vol_type) { 1723 ubi_err(ubi, "bad vol_type"); 1724 goto bad_vid_hdr; 1725 } 1726 1727 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { 1728 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum); 1729 goto bad_vid_hdr; 1730 } 1731 1732 if (av->vol_id != be32_to_cpu(vidh->vol_id)) { 1733 ubi_err(ubi, "bad vol_id %d", av->vol_id); 1734 goto bad_vid_hdr; 1735 } 1736 1737 if (av->compat != vidh->compat) { 1738 ubi_err(ubi, "bad compat %d", vidh->compat); 1739 goto bad_vid_hdr; 1740 } 1741 1742 if (aeb->lnum != be32_to_cpu(vidh->lnum)) { 1743 ubi_err(ubi, "bad lnum %d", aeb->lnum); 1744 goto bad_vid_hdr; 1745 } 1746 1747 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1748 ubi_err(ubi, "bad used_ebs %d", av->used_ebs); 1749 goto bad_vid_hdr; 1750 } 1751 1752 if (av->data_pad != be32_to_cpu(vidh->data_pad)) { 1753 ubi_err(ubi, "bad data_pad %d", av->data_pad); 1754 goto bad_vid_hdr; 1755 } 1756 } 1757 1758 if (!last_aeb) 1759 continue; 1760 1761 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { 1762 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum); 1763 goto bad_vid_hdr; 1764 } 1765 1766 if (av->last_data_size != be32_to_cpu(vidh->data_size)) { 1767 ubi_err(ubi, "bad last_data_size %d", 1768 av->last_data_size); 1769 goto bad_vid_hdr; 1770 } 1771 } 1772 1773 /* 1774 * Make sure that all the physical eraseblocks are in one of the lists 1775 * or trees. 1776 */ 1777 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1778 if (!buf) 1779 return -ENOMEM; 1780 1781 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1782 err = ubi_io_is_bad(ubi, pnum); 1783 if (err < 0) { 1784 kfree(buf); 1785 return err; 1786 } else if (err) 1787 buf[pnum] = 1; 1788 } 1789 1790 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) 1791 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1792 buf[aeb->pnum] = 1; 1793 1794 list_for_each_entry(aeb, &ai->free, u.list) 1795 buf[aeb->pnum] = 1; 1796 1797 list_for_each_entry(aeb, &ai->corr, u.list) 1798 buf[aeb->pnum] = 1; 1799 1800 list_for_each_entry(aeb, &ai->erase, u.list) 1801 buf[aeb->pnum] = 1; 1802 1803 list_for_each_entry(aeb, &ai->alien, u.list) 1804 buf[aeb->pnum] = 1; 1805 1806 err = 0; 1807 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1808 if (!buf[pnum]) { 1809 ubi_err(ubi, "PEB %d is not referred", pnum); 1810 err = 1; 1811 } 1812 1813 kfree(buf); 1814 if (err) 1815 goto out; 1816 return 0; 1817 1818 bad_aeb: 1819 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum); 1820 ubi_dump_aeb(aeb, 0); 1821 ubi_dump_av(av); 1822 goto out; 1823 1824 bad_av: 1825 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); 1826 ubi_dump_av(av); 1827 goto out; 1828 1829 bad_vid_hdr: 1830 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id); 1831 ubi_dump_av(av); 1832 ubi_dump_vid_hdr(vidh); 1833 1834 out: 1835 dump_stack(); 1836 return -EINVAL; 1837 } 1838