1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * UBI attaching sub-system. 23 * 24 * This sub-system is responsible for attaching MTD devices and it also 25 * implements flash media scanning. 26 * 27 * The attaching information is represented by a &struct ubi_attach_info' 28 * object. Information about volumes is represented by &struct ubi_ainf_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These 33 * objects are kept in per-volume RB-trees with the root at the corresponding 34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of 35 * per-volume objects and each of these objects is the root of RB-tree of 36 * per-LEB objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 * 42 * About corruptions 43 * ~~~~~~~~~~~~~~~~~ 44 * 45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect 46 * whether the headers are corrupted or not. Sometimes UBI also protects the 47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or 48 * when it moves the contents of a PEB for wear-leveling purposes. 49 * 50 * UBI tries to distinguish between 2 types of corruptions. 51 * 52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI 53 * tries to handle them gracefully, without printing too many warnings and 54 * error messages. The idea is that we do not lose important data in these 55 * cases - we may lose only the data which were being written to the media just 56 * before the power cut happened, and the upper layers (e.g., UBIFS) are 57 * supposed to handle such data losses (e.g., by using the FS journal). 58 * 59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like 60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all 61 * PEBs in the @erase list are scheduled for erasure later. 62 * 63 * 2. Unexpected corruptions which are not caused by power cuts. During 64 * attaching, such PEBs are put to the @corr list and UBI preserves them. 65 * Obviously, this lessens the amount of available PEBs, and if at some point 66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs 67 * about such PEBs every time the MTD device is attached. 68 * 69 * However, it is difficult to reliably distinguish between these types of 70 * corruptions and UBI's strategy is as follows (in case of attaching by 71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and 72 * the data area does not contain all 0xFFs, and there were no bit-flips or 73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data 74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria 75 * are as follows. 76 * o If the data area contains only 0xFFs, there are no data, and it is safe 77 * to just erase this PEB - this is corruption type 1. 78 * o If the data area has bit-flips or data integrity errors (ECC errors on 79 * NAND), it is probably a PEB which was being erased when power cut 80 * happened, so this is corruption type 1. However, this is just a guess, 81 * which might be wrong. 82 * o Otherwise this is corruption type 2. 83 */ 84 85 #include <linux/err.h> 86 #include <linux/slab.h> 87 #include <linux/crc32.h> 88 #include <linux/math64.h> 89 #include <linux/random.h> 90 #include "ubi.h" 91 92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); 93 94 /* Temporary variables used during scanning */ 95 static struct ubi_ec_hdr *ech; 96 static struct ubi_vid_hdr *vidh; 97 98 /** 99 * add_to_list - add physical eraseblock to a list. 100 * @ai: attaching information 101 * @pnum: physical eraseblock number to add 102 * @vol_id: the last used volume id for the PEB 103 * @lnum: the last used LEB number for the PEB 104 * @ec: erase counter of the physical eraseblock 105 * @to_head: if not zero, add to the head of the list 106 * @list: the list to add to 107 * 108 * This function allocates a 'struct ubi_ainf_peb' object for physical 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. 110 * It stores the @lnum and @vol_id alongside, which can both be 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned. 112 * If @to_head is not zero, PEB will be added to the head of the list, which 113 * basically means it will be processed first later. E.g., we add corrupted 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make 115 * sure we erase them first and get rid of corruptions ASAP. This function 116 * returns zero in case of success and a negative error code in case of 117 * failure. 118 */ 119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, 120 int lnum, int ec, int to_head, struct list_head *list) 121 { 122 struct ubi_ainf_peb *aeb; 123 124 if (list == &ai->free) { 125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 126 } else if (list == &ai->erase) { 127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 128 } else if (list == &ai->alien) { 129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 130 ai->alien_peb_count += 1; 131 } else 132 BUG(); 133 134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 135 if (!aeb) 136 return -ENOMEM; 137 138 aeb->pnum = pnum; 139 aeb->vol_id = vol_id; 140 aeb->lnum = lnum; 141 aeb->ec = ec; 142 if (to_head) 143 list_add(&aeb->u.list, list); 144 else 145 list_add_tail(&aeb->u.list, list); 146 return 0; 147 } 148 149 /** 150 * add_corrupted - add a corrupted physical eraseblock. 151 * @ai: attaching information 152 * @pnum: physical eraseblock number to add 153 * @ec: erase counter of the physical eraseblock 154 * 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted 156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption 157 * was presumably not caused by a power cut. Returns zero in case of success 158 * and a negative error code in case of failure. 159 */ 160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) 161 { 162 struct ubi_ainf_peb *aeb; 163 164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 165 166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 167 if (!aeb) 168 return -ENOMEM; 169 170 ai->corr_peb_count += 1; 171 aeb->pnum = pnum; 172 aeb->ec = ec; 173 list_add(&aeb->u.list, &ai->corr); 174 return 0; 175 } 176 177 /** 178 * validate_vid_hdr - check volume identifier header. 179 * @vid_hdr: the volume identifier header to check 180 * @av: information about the volume this logical eraseblock belongs to 181 * @pnum: physical eraseblock number the VID header came from 182 * 183 * This function checks that data stored in @vid_hdr is consistent. Returns 184 * non-zero if an inconsistency was found and zero if not. 185 * 186 * Note, UBI does sanity check of everything it reads from the flash media. 187 * Most of the checks are done in the I/O sub-system. Here we check that the 188 * information in the VID header is consistent to the information in other VID 189 * headers of the same volume. 190 */ 191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 192 const struct ubi_ainf_volume *av, int pnum) 193 { 194 int vol_type = vid_hdr->vol_type; 195 int vol_id = be32_to_cpu(vid_hdr->vol_id); 196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 197 int data_pad = be32_to_cpu(vid_hdr->data_pad); 198 199 if (av->leb_count != 0) { 200 int av_vol_type; 201 202 /* 203 * This is not the first logical eraseblock belonging to this 204 * volume. Ensure that the data in its VID header is consistent 205 * to the data in previous logical eraseblock headers. 206 */ 207 208 if (vol_id != av->vol_id) { 209 ubi_err("inconsistent vol_id"); 210 goto bad; 211 } 212 213 if (av->vol_type == UBI_STATIC_VOLUME) 214 av_vol_type = UBI_VID_STATIC; 215 else 216 av_vol_type = UBI_VID_DYNAMIC; 217 218 if (vol_type != av_vol_type) { 219 ubi_err("inconsistent vol_type"); 220 goto bad; 221 } 222 223 if (used_ebs != av->used_ebs) { 224 ubi_err("inconsistent used_ebs"); 225 goto bad; 226 } 227 228 if (data_pad != av->data_pad) { 229 ubi_err("inconsistent data_pad"); 230 goto bad; 231 } 232 } 233 234 return 0; 235 236 bad: 237 ubi_err("inconsistent VID header at PEB %d", pnum); 238 ubi_dump_vid_hdr(vid_hdr); 239 ubi_dump_av(av); 240 return -EINVAL; 241 } 242 243 /** 244 * add_volume - add volume to the attaching information. 245 * @ai: attaching information 246 * @vol_id: ID of the volume to add 247 * @pnum: physical eraseblock number 248 * @vid_hdr: volume identifier header 249 * 250 * If the volume corresponding to the @vid_hdr logical eraseblock is already 251 * present in the attaching information, this function does nothing. Otherwise 252 * it adds corresponding volume to the attaching information. Returns a pointer 253 * to the allocated "av" object in case of success and a negative error code in 254 * case of failure. 255 */ 256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, 257 int vol_id, int pnum, 258 const struct ubi_vid_hdr *vid_hdr) 259 { 260 struct ubi_ainf_volume *av; 261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; 262 263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 264 265 /* Walk the volume RB-tree to look if this volume is already present */ 266 while (*p) { 267 parent = *p; 268 av = rb_entry(parent, struct ubi_ainf_volume, rb); 269 270 if (vol_id == av->vol_id) 271 return av; 272 273 if (vol_id > av->vol_id) 274 p = &(*p)->rb_left; 275 else 276 p = &(*p)->rb_right; 277 } 278 279 /* The volume is absent - add it */ 280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); 281 if (!av) 282 return ERR_PTR(-ENOMEM); 283 284 av->highest_lnum = av->leb_count = 0; 285 av->vol_id = vol_id; 286 av->root = RB_ROOT; 287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 288 av->data_pad = be32_to_cpu(vid_hdr->data_pad); 289 av->compat = vid_hdr->compat; 290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 291 : UBI_STATIC_VOLUME; 292 if (vol_id > ai->highest_vol_id) 293 ai->highest_vol_id = vol_id; 294 295 rb_link_node(&av->rb, parent, p); 296 rb_insert_color(&av->rb, &ai->volumes); 297 ai->vols_found += 1; 298 dbg_bld("added volume %d", vol_id); 299 return av; 300 } 301 302 /** 303 * ubi_compare_lebs - find out which logical eraseblock is newer. 304 * @ubi: UBI device description object 305 * @aeb: first logical eraseblock to compare 306 * @pnum: physical eraseblock number of the second logical eraseblock to 307 * compare 308 * @vid_hdr: volume identifier header of the second logical eraseblock 309 * 310 * This function compares 2 copies of a LEB and informs which one is newer. In 311 * case of success this function returns a positive value, in case of failure, a 312 * negative error code is returned. The success return codes use the following 313 * bits: 314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the 315 * second PEB (described by @pnum and @vid_hdr); 316 * o bit 0 is set: the second PEB is newer; 317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 318 * o bit 1 is set: bit-flips were detected in the newer LEB; 319 * o bit 2 is cleared: the older LEB is not corrupted; 320 * o bit 2 is set: the older LEB is corrupted. 321 */ 322 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, 323 int pnum, const struct ubi_vid_hdr *vid_hdr) 324 { 325 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 326 uint32_t data_crc, crc; 327 struct ubi_vid_hdr *vh = NULL; 328 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 329 330 if (sqnum2 == aeb->sqnum) { 331 /* 332 * This must be a really ancient UBI image which has been 333 * created before sequence numbers support has been added. At 334 * that times we used 32-bit LEB versions stored in logical 335 * eraseblocks. That was before UBI got into mainline. We do not 336 * support these images anymore. Well, those images still work, 337 * but only if no unclean reboots happened. 338 */ 339 ubi_err("unsupported on-flash UBI format"); 340 return -EINVAL; 341 } 342 343 /* Obviously the LEB with lower sequence counter is older */ 344 second_is_newer = (sqnum2 > aeb->sqnum); 345 346 /* 347 * Now we know which copy is newer. If the copy flag of the PEB with 348 * newer version is not set, then we just return, otherwise we have to 349 * check data CRC. For the second PEB we already have the VID header, 350 * for the first one - we'll need to re-read it from flash. 351 * 352 * Note: this may be optimized so that we wouldn't read twice. 353 */ 354 355 if (second_is_newer) { 356 if (!vid_hdr->copy_flag) { 357 /* It is not a copy, so it is newer */ 358 dbg_bld("second PEB %d is newer, copy_flag is unset", 359 pnum); 360 return 1; 361 } 362 } else { 363 if (!aeb->copy_flag) { 364 /* It is not a copy, so it is newer */ 365 dbg_bld("first PEB %d is newer, copy_flag is unset", 366 pnum); 367 return bitflips << 1; 368 } 369 370 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 371 if (!vh) 372 return -ENOMEM; 373 374 pnum = aeb->pnum; 375 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 376 if (err) { 377 if (err == UBI_IO_BITFLIPS) 378 bitflips = 1; 379 else { 380 ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d", 381 pnum, err); 382 if (err > 0) 383 err = -EIO; 384 385 goto out_free_vidh; 386 } 387 } 388 389 vid_hdr = vh; 390 } 391 392 /* Read the data of the copy and check the CRC */ 393 394 len = be32_to_cpu(vid_hdr->data_size); 395 396 mutex_lock(&ubi->buf_mutex); 397 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len); 398 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 399 goto out_unlock; 400 401 data_crc = be32_to_cpu(vid_hdr->data_crc); 402 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len); 403 if (crc != data_crc) { 404 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 405 pnum, crc, data_crc); 406 corrupted = 1; 407 bitflips = 0; 408 second_is_newer = !second_is_newer; 409 } else { 410 dbg_bld("PEB %d CRC is OK", pnum); 411 bitflips = !!err; 412 } 413 mutex_unlock(&ubi->buf_mutex); 414 415 ubi_free_vid_hdr(ubi, vh); 416 417 if (second_is_newer) 418 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 419 else 420 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 421 422 return second_is_newer | (bitflips << 1) | (corrupted << 2); 423 424 out_unlock: 425 mutex_unlock(&ubi->buf_mutex); 426 out_free_vidh: 427 ubi_free_vid_hdr(ubi, vh); 428 return err; 429 } 430 431 /** 432 * ubi_add_to_av - add used physical eraseblock to the attaching information. 433 * @ubi: UBI device description object 434 * @ai: attaching information 435 * @pnum: the physical eraseblock number 436 * @ec: erase counter 437 * @vid_hdr: the volume identifier header 438 * @bitflips: if bit-flips were detected when this physical eraseblock was read 439 * 440 * This function adds information about a used physical eraseblock to the 441 * 'used' tree of the corresponding volume. The function is rather complex 442 * because it has to handle cases when this is not the first physical 443 * eraseblock belonging to the same logical eraseblock, and the newer one has 444 * to be picked, while the older one has to be dropped. This function returns 445 * zero in case of success and a negative error code in case of failure. 446 */ 447 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, 448 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) 449 { 450 int err, vol_id, lnum; 451 unsigned long long sqnum; 452 struct ubi_ainf_volume *av; 453 struct ubi_ainf_peb *aeb; 454 struct rb_node **p, *parent = NULL; 455 456 vol_id = be32_to_cpu(vid_hdr->vol_id); 457 lnum = be32_to_cpu(vid_hdr->lnum); 458 sqnum = be64_to_cpu(vid_hdr->sqnum); 459 460 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 461 pnum, vol_id, lnum, ec, sqnum, bitflips); 462 463 av = add_volume(ai, vol_id, pnum, vid_hdr); 464 if (IS_ERR(av)) 465 return PTR_ERR(av); 466 467 if (ai->max_sqnum < sqnum) 468 ai->max_sqnum = sqnum; 469 470 /* 471 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 472 * if this is the first instance of this logical eraseblock or not. 473 */ 474 p = &av->root.rb_node; 475 while (*p) { 476 int cmp_res; 477 478 parent = *p; 479 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); 480 if (lnum != aeb->lnum) { 481 if (lnum < aeb->lnum) 482 p = &(*p)->rb_left; 483 else 484 p = &(*p)->rb_right; 485 continue; 486 } 487 488 /* 489 * There is already a physical eraseblock describing the same 490 * logical eraseblock present. 491 */ 492 493 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", 494 aeb->pnum, aeb->sqnum, aeb->ec); 495 496 /* 497 * Make sure that the logical eraseblocks have different 498 * sequence numbers. Otherwise the image is bad. 499 * 500 * However, if the sequence number is zero, we assume it must 501 * be an ancient UBI image from the era when UBI did not have 502 * sequence numbers. We still can attach these images, unless 503 * there is a need to distinguish between old and new 504 * eraseblocks, in which case we'll refuse the image in 505 * 'ubi_compare_lebs()'. In other words, we attach old clean 506 * images, but refuse attaching old images with duplicated 507 * logical eraseblocks because there was an unclean reboot. 508 */ 509 if (aeb->sqnum == sqnum && sqnum != 0) { 510 ubi_err("two LEBs with same sequence number %llu", 511 sqnum); 512 ubi_dump_aeb(aeb, 0); 513 ubi_dump_vid_hdr(vid_hdr); 514 return -EINVAL; 515 } 516 517 /* 518 * Now we have to drop the older one and preserve the newer 519 * one. 520 */ 521 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr); 522 if (cmp_res < 0) 523 return cmp_res; 524 525 if (cmp_res & 1) { 526 /* 527 * This logical eraseblock is newer than the one 528 * found earlier. 529 */ 530 err = validate_vid_hdr(vid_hdr, av, pnum); 531 if (err) 532 return err; 533 534 err = add_to_list(ai, aeb->pnum, aeb->vol_id, 535 aeb->lnum, aeb->ec, cmp_res & 4, 536 &ai->erase); 537 if (err) 538 return err; 539 540 aeb->ec = ec; 541 aeb->pnum = pnum; 542 aeb->vol_id = vol_id; 543 aeb->lnum = lnum; 544 aeb->scrub = ((cmp_res & 2) || bitflips); 545 aeb->copy_flag = vid_hdr->copy_flag; 546 aeb->sqnum = sqnum; 547 548 if (av->highest_lnum == lnum) 549 av->last_data_size = 550 be32_to_cpu(vid_hdr->data_size); 551 552 return 0; 553 } else { 554 /* 555 * This logical eraseblock is older than the one found 556 * previously. 557 */ 558 return add_to_list(ai, pnum, vol_id, lnum, ec, 559 cmp_res & 4, &ai->erase); 560 } 561 } 562 563 /* 564 * We've met this logical eraseblock for the first time, add it to the 565 * attaching information. 566 */ 567 568 err = validate_vid_hdr(vid_hdr, av, pnum); 569 if (err) 570 return err; 571 572 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 573 if (!aeb) 574 return -ENOMEM; 575 576 aeb->ec = ec; 577 aeb->pnum = pnum; 578 aeb->vol_id = vol_id; 579 aeb->lnum = lnum; 580 aeb->scrub = bitflips; 581 aeb->copy_flag = vid_hdr->copy_flag; 582 aeb->sqnum = sqnum; 583 584 if (av->highest_lnum <= lnum) { 585 av->highest_lnum = lnum; 586 av->last_data_size = be32_to_cpu(vid_hdr->data_size); 587 } 588 589 av->leb_count += 1; 590 rb_link_node(&aeb->u.rb, parent, p); 591 rb_insert_color(&aeb->u.rb, &av->root); 592 return 0; 593 } 594 595 /** 596 * ubi_find_av - find volume in the attaching information. 597 * @ai: attaching information 598 * @vol_id: the requested volume ID 599 * 600 * This function returns a pointer to the volume description or %NULL if there 601 * are no data about this volume in the attaching information. 602 */ 603 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, 604 int vol_id) 605 { 606 struct ubi_ainf_volume *av; 607 struct rb_node *p = ai->volumes.rb_node; 608 609 while (p) { 610 av = rb_entry(p, struct ubi_ainf_volume, rb); 611 612 if (vol_id == av->vol_id) 613 return av; 614 615 if (vol_id > av->vol_id) 616 p = p->rb_left; 617 else 618 p = p->rb_right; 619 } 620 621 return NULL; 622 } 623 624 /** 625 * ubi_remove_av - delete attaching information about a volume. 626 * @ai: attaching information 627 * @av: the volume attaching information to delete 628 */ 629 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 630 { 631 struct rb_node *rb; 632 struct ubi_ainf_peb *aeb; 633 634 dbg_bld("remove attaching information about volume %d", av->vol_id); 635 636 while ((rb = rb_first(&av->root))) { 637 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); 638 rb_erase(&aeb->u.rb, &av->root); 639 list_add_tail(&aeb->u.list, &ai->erase); 640 } 641 642 rb_erase(&av->rb, &ai->volumes); 643 kfree(av); 644 ai->vols_found -= 1; 645 } 646 647 /** 648 * early_erase_peb - erase a physical eraseblock. 649 * @ubi: UBI device description object 650 * @ai: attaching information 651 * @pnum: physical eraseblock number to erase; 652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) 653 * 654 * This function erases physical eraseblock 'pnum', and writes the erase 655 * counter header to it. This function should only be used on UBI device 656 * initialization stages, when the EBA sub-system had not been yet initialized. 657 * This function returns zero in case of success and a negative error code in 658 * case of failure. 659 */ 660 static int early_erase_peb(struct ubi_device *ubi, 661 const struct ubi_attach_info *ai, int pnum, int ec) 662 { 663 int err; 664 struct ubi_ec_hdr *ec_hdr; 665 666 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 667 /* 668 * Erase counter overflow. Upgrade UBI and use 64-bit 669 * erase counters internally. 670 */ 671 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 672 return -EINVAL; 673 } 674 675 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 676 if (!ec_hdr) 677 return -ENOMEM; 678 679 ec_hdr->ec = cpu_to_be64(ec); 680 681 err = ubi_io_sync_erase(ubi, pnum, 0); 682 if (err < 0) 683 goto out_free; 684 685 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 686 687 out_free: 688 kfree(ec_hdr); 689 return err; 690 } 691 692 /** 693 * ubi_early_get_peb - get a free physical eraseblock. 694 * @ubi: UBI device description object 695 * @ai: attaching information 696 * 697 * This function returns a free physical eraseblock. It is supposed to be 698 * called on the UBI initialization stages when the wear-leveling sub-system is 699 * not initialized yet. This function picks a physical eraseblocks from one of 700 * the lists, writes the EC header if it is needed, and removes it from the 701 * list. 702 * 703 * This function returns a pointer to the "aeb" of the found free PEB in case 704 * of success and an error code in case of failure. 705 */ 706 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, 707 struct ubi_attach_info *ai) 708 { 709 int err = 0; 710 struct ubi_ainf_peb *aeb, *tmp_aeb; 711 712 if (!list_empty(&ai->free)) { 713 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); 714 list_del(&aeb->u.list); 715 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); 716 return aeb; 717 } 718 719 /* 720 * We try to erase the first physical eraseblock from the erase list 721 * and pick it if we succeed, or try to erase the next one if not. And 722 * so forth. We don't want to take care about bad eraseblocks here - 723 * they'll be handled later. 724 */ 725 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { 726 if (aeb->ec == UBI_UNKNOWN) 727 aeb->ec = ai->mean_ec; 728 729 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); 730 if (err) 731 continue; 732 733 aeb->ec += 1; 734 list_del(&aeb->u.list); 735 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); 736 return aeb; 737 } 738 739 ubi_err("no free eraseblocks"); 740 return ERR_PTR(-ENOSPC); 741 } 742 743 /** 744 * check_corruption - check the data area of PEB. 745 * @ubi: UBI device description object 746 * @vid_hdr: the (corrupted) VID header of this PEB 747 * @pnum: the physical eraseblock number to check 748 * 749 * This is a helper function which is used to distinguish between VID header 750 * corruptions caused by power cuts and other reasons. If the PEB contains only 751 * 0xFF bytes in the data area, the VID header is most probably corrupted 752 * because of a power cut (%0 is returned in this case). Otherwise, it was 753 * probably corrupted for some other reasons (%1 is returned in this case). A 754 * negative error code is returned if a read error occurred. 755 * 756 * If the corruption reason was a power cut, UBI can safely erase this PEB. 757 * Otherwise, it should preserve it to avoid possibly destroying important 758 * information. 759 */ 760 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, 761 int pnum) 762 { 763 int err; 764 765 mutex_lock(&ubi->buf_mutex); 766 memset(ubi->peb_buf, 0x00, ubi->leb_size); 767 768 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, 769 ubi->leb_size); 770 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 771 /* 772 * Bit-flips or integrity errors while reading the data area. 773 * It is difficult to say for sure what type of corruption is 774 * this, but presumably a power cut happened while this PEB was 775 * erased, so it became unstable and corrupted, and should be 776 * erased. 777 */ 778 err = 0; 779 goto out_unlock; 780 } 781 782 if (err) 783 goto out_unlock; 784 785 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) 786 goto out_unlock; 787 788 ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF", 789 pnum); 790 ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection"); 791 ubi_dump_vid_hdr(vid_hdr); 792 pr_err("hexdump of PEB %d offset %d, length %d", 793 pnum, ubi->leb_start, ubi->leb_size); 794 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 795 ubi->peb_buf, ubi->leb_size, 1); 796 err = 1; 797 798 out_unlock: 799 mutex_unlock(&ubi->buf_mutex); 800 return err; 801 } 802 803 /** 804 * scan_peb - scan and process UBI headers of a PEB. 805 * @ubi: UBI device description object 806 * @ai: attaching information 807 * @pnum: the physical eraseblock number 808 * @vid: The volume ID of the found volume will be stored in this pointer 809 * @sqnum: The sqnum of the found volume will be stored in this pointer 810 * 811 * This function reads UBI headers of PEB @pnum, checks them, and adds 812 * information about this PEB to the corresponding list or RB-tree in the 813 * "attaching info" structure. Returns zero if the physical eraseblock was 814 * successfully handled and a negative error code in case of failure. 815 */ 816 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, 817 int pnum, int *vid, unsigned long long *sqnum) 818 { 819 long long uninitialized_var(ec); 820 int err, bitflips = 0, vol_id = -1, ec_err = 0; 821 822 dbg_bld("scan PEB %d", pnum); 823 824 /* Skip bad physical eraseblocks */ 825 err = ubi_io_is_bad(ubi, pnum); 826 if (err < 0) 827 return err; 828 else if (err) { 829 ai->bad_peb_count += 1; 830 return 0; 831 } 832 833 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 834 if (err < 0) 835 return err; 836 switch (err) { 837 case 0: 838 break; 839 case UBI_IO_BITFLIPS: 840 bitflips = 1; 841 break; 842 case UBI_IO_FF: 843 ai->empty_peb_count += 1; 844 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 845 UBI_UNKNOWN, 0, &ai->erase); 846 case UBI_IO_FF_BITFLIPS: 847 ai->empty_peb_count += 1; 848 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 849 UBI_UNKNOWN, 1, &ai->erase); 850 case UBI_IO_BAD_HDR_EBADMSG: 851 case UBI_IO_BAD_HDR: 852 /* 853 * We have to also look at the VID header, possibly it is not 854 * corrupted. Set %bitflips flag in order to make this PEB be 855 * moved and EC be re-created. 856 */ 857 ec_err = err; 858 ec = UBI_UNKNOWN; 859 bitflips = 1; 860 break; 861 default: 862 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); 863 return -EINVAL; 864 } 865 866 if (!ec_err) { 867 int image_seq; 868 869 /* Make sure UBI version is OK */ 870 if (ech->version != UBI_VERSION) { 871 ubi_err("this UBI version is %d, image version is %d", 872 UBI_VERSION, (int)ech->version); 873 return -EINVAL; 874 } 875 876 ec = be64_to_cpu(ech->ec); 877 if (ec > UBI_MAX_ERASECOUNTER) { 878 /* 879 * Erase counter overflow. The EC headers have 64 bits 880 * reserved, but we anyway make use of only 31 bit 881 * values, as this seems to be enough for any existing 882 * flash. Upgrade UBI and use 64-bit erase counters 883 * internally. 884 */ 885 ubi_err("erase counter overflow, max is %d", 886 UBI_MAX_ERASECOUNTER); 887 ubi_dump_ec_hdr(ech); 888 return -EINVAL; 889 } 890 891 /* 892 * Make sure that all PEBs have the same image sequence number. 893 * This allows us to detect situations when users flash UBI 894 * images incorrectly, so that the flash has the new UBI image 895 * and leftovers from the old one. This feature was added 896 * relatively recently, and the sequence number was always 897 * zero, because old UBI implementations always set it to zero. 898 * For this reasons, we do not panic if some PEBs have zero 899 * sequence number, while other PEBs have non-zero sequence 900 * number. 901 */ 902 image_seq = be32_to_cpu(ech->image_seq); 903 if (!ubi->image_seq) 904 ubi->image_seq = image_seq; 905 if (image_seq && ubi->image_seq != image_seq) { 906 ubi_err("bad image sequence number %d in PEB %d, expected %d", 907 image_seq, pnum, ubi->image_seq); 908 ubi_dump_ec_hdr(ech); 909 return -EINVAL; 910 } 911 } 912 913 /* OK, we've done with the EC header, let's look at the VID header */ 914 915 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 916 if (err < 0) 917 return err; 918 switch (err) { 919 case 0: 920 break; 921 case UBI_IO_BITFLIPS: 922 bitflips = 1; 923 break; 924 case UBI_IO_BAD_HDR_EBADMSG: 925 if (ec_err == UBI_IO_BAD_HDR_EBADMSG) 926 /* 927 * Both EC and VID headers are corrupted and were read 928 * with data integrity error, probably this is a bad 929 * PEB, bit it is not marked as bad yet. This may also 930 * be a result of power cut during erasure. 931 */ 932 ai->maybe_bad_peb_count += 1; 933 case UBI_IO_BAD_HDR: 934 if (ec_err) 935 /* 936 * Both headers are corrupted. There is a possibility 937 * that this a valid UBI PEB which has corresponding 938 * LEB, but the headers are corrupted. However, it is 939 * impossible to distinguish it from a PEB which just 940 * contains garbage because of a power cut during erase 941 * operation. So we just schedule this PEB for erasure. 942 * 943 * Besides, in case of NOR flash, we deliberately 944 * corrupt both headers because NOR flash erasure is 945 * slow and can start from the end. 946 */ 947 err = 0; 948 else 949 /* 950 * The EC was OK, but the VID header is corrupted. We 951 * have to check what is in the data area. 952 */ 953 err = check_corruption(ubi, vidh, pnum); 954 955 if (err < 0) 956 return err; 957 else if (!err) 958 /* This corruption is caused by a power cut */ 959 err = add_to_list(ai, pnum, UBI_UNKNOWN, 960 UBI_UNKNOWN, ec, 1, &ai->erase); 961 else 962 /* This is an unexpected corruption */ 963 err = add_corrupted(ai, pnum, ec); 964 if (err) 965 return err; 966 goto adjust_mean_ec; 967 case UBI_IO_FF_BITFLIPS: 968 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 969 ec, 1, &ai->erase); 970 if (err) 971 return err; 972 goto adjust_mean_ec; 973 case UBI_IO_FF: 974 if (ec_err || bitflips) 975 err = add_to_list(ai, pnum, UBI_UNKNOWN, 976 UBI_UNKNOWN, ec, 1, &ai->erase); 977 else 978 err = add_to_list(ai, pnum, UBI_UNKNOWN, 979 UBI_UNKNOWN, ec, 0, &ai->free); 980 if (err) 981 return err; 982 goto adjust_mean_ec; 983 default: 984 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", 985 err); 986 return -EINVAL; 987 } 988 989 vol_id = be32_to_cpu(vidh->vol_id); 990 if (vid) 991 *vid = vol_id; 992 if (sqnum) 993 *sqnum = be64_to_cpu(vidh->sqnum); 994 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 995 int lnum = be32_to_cpu(vidh->lnum); 996 997 /* Unsupported internal volume */ 998 switch (vidh->compat) { 999 case UBI_COMPAT_DELETE: 1000 if (vol_id != UBI_FM_SB_VOLUME_ID 1001 && vol_id != UBI_FM_DATA_VOLUME_ID) { 1002 ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it", 1003 vol_id, lnum); 1004 } 1005 err = add_to_list(ai, pnum, vol_id, lnum, 1006 ec, 1, &ai->erase); 1007 if (err) 1008 return err; 1009 return 0; 1010 1011 case UBI_COMPAT_RO: 1012 ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode", 1013 vol_id, lnum); 1014 ubi->ro_mode = 1; 1015 break; 1016 1017 case UBI_COMPAT_PRESERVE: 1018 ubi_msg("\"preserve\" compatible internal volume %d:%d found", 1019 vol_id, lnum); 1020 err = add_to_list(ai, pnum, vol_id, lnum, 1021 ec, 0, &ai->alien); 1022 if (err) 1023 return err; 1024 return 0; 1025 1026 case UBI_COMPAT_REJECT: 1027 ubi_err("incompatible internal volume %d:%d found", 1028 vol_id, lnum); 1029 return -EINVAL; 1030 } 1031 } 1032 1033 if (ec_err) 1034 ubi_warn("valid VID header but corrupted EC header at PEB %d", 1035 pnum); 1036 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); 1037 if (err) 1038 return err; 1039 1040 adjust_mean_ec: 1041 if (!ec_err) { 1042 ai->ec_sum += ec; 1043 ai->ec_count += 1; 1044 if (ec > ai->max_ec) 1045 ai->max_ec = ec; 1046 if (ec < ai->min_ec) 1047 ai->min_ec = ec; 1048 } 1049 1050 return 0; 1051 } 1052 1053 /** 1054 * late_analysis - analyze the overall situation with PEB. 1055 * @ubi: UBI device description object 1056 * @ai: attaching information 1057 * 1058 * This is a helper function which takes a look what PEBs we have after we 1059 * gather information about all of them ("ai" is compete). It decides whether 1060 * the flash is empty and should be formatted of whether there are too many 1061 * corrupted PEBs and we should not attach this MTD device. Returns zero if we 1062 * should proceed with attaching the MTD device, and %-EINVAL if we should not. 1063 */ 1064 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) 1065 { 1066 struct ubi_ainf_peb *aeb; 1067 int max_corr, peb_count; 1068 1069 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; 1070 max_corr = peb_count / 20 ?: 8; 1071 1072 /* 1073 * Few corrupted PEBs is not a problem and may be just a result of 1074 * unclean reboots. However, many of them may indicate some problems 1075 * with the flash HW or driver. 1076 */ 1077 if (ai->corr_peb_count) { 1078 ubi_err("%d PEBs are corrupted and preserved", 1079 ai->corr_peb_count); 1080 pr_err("Corrupted PEBs are:"); 1081 list_for_each_entry(aeb, &ai->corr, u.list) 1082 pr_cont(" %d", aeb->pnum); 1083 pr_cont("\n"); 1084 1085 /* 1086 * If too many PEBs are corrupted, we refuse attaching, 1087 * otherwise, only print a warning. 1088 */ 1089 if (ai->corr_peb_count >= max_corr) { 1090 ubi_err("too many corrupted PEBs, refusing"); 1091 return -EINVAL; 1092 } 1093 } 1094 1095 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { 1096 /* 1097 * All PEBs are empty, or almost all - a couple PEBs look like 1098 * they may be bad PEBs which were not marked as bad yet. 1099 * 1100 * This piece of code basically tries to distinguish between 1101 * the following situations: 1102 * 1103 * 1. Flash is empty, but there are few bad PEBs, which are not 1104 * marked as bad so far, and which were read with error. We 1105 * want to go ahead and format this flash. While formatting, 1106 * the faulty PEBs will probably be marked as bad. 1107 * 1108 * 2. Flash contains non-UBI data and we do not want to format 1109 * it and destroy possibly important information. 1110 */ 1111 if (ai->maybe_bad_peb_count <= 2) { 1112 ai->is_empty = 1; 1113 ubi_msg("empty MTD device detected"); 1114 get_random_bytes(&ubi->image_seq, 1115 sizeof(ubi->image_seq)); 1116 } else { 1117 ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it"); 1118 return -EINVAL; 1119 } 1120 1121 } 1122 1123 return 0; 1124 } 1125 1126 /** 1127 * destroy_av - free volume attaching information. 1128 * @av: volume attaching information 1129 * @ai: attaching information 1130 * 1131 * This function destroys the volume attaching information. 1132 */ 1133 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 1134 { 1135 struct ubi_ainf_peb *aeb; 1136 struct rb_node *this = av->root.rb_node; 1137 1138 while (this) { 1139 if (this->rb_left) 1140 this = this->rb_left; 1141 else if (this->rb_right) 1142 this = this->rb_right; 1143 else { 1144 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); 1145 this = rb_parent(this); 1146 if (this) { 1147 if (this->rb_left == &aeb->u.rb) 1148 this->rb_left = NULL; 1149 else 1150 this->rb_right = NULL; 1151 } 1152 1153 kmem_cache_free(ai->aeb_slab_cache, aeb); 1154 } 1155 } 1156 kfree(av); 1157 } 1158 1159 /** 1160 * destroy_ai - destroy attaching information. 1161 * @ai: attaching information 1162 */ 1163 static void destroy_ai(struct ubi_attach_info *ai) 1164 { 1165 struct ubi_ainf_peb *aeb, *aeb_tmp; 1166 struct ubi_ainf_volume *av; 1167 struct rb_node *rb; 1168 1169 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { 1170 list_del(&aeb->u.list); 1171 kmem_cache_free(ai->aeb_slab_cache, aeb); 1172 } 1173 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { 1174 list_del(&aeb->u.list); 1175 kmem_cache_free(ai->aeb_slab_cache, aeb); 1176 } 1177 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { 1178 list_del(&aeb->u.list); 1179 kmem_cache_free(ai->aeb_slab_cache, aeb); 1180 } 1181 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { 1182 list_del(&aeb->u.list); 1183 kmem_cache_free(ai->aeb_slab_cache, aeb); 1184 } 1185 1186 /* Destroy the volume RB-tree */ 1187 rb = ai->volumes.rb_node; 1188 while (rb) { 1189 if (rb->rb_left) 1190 rb = rb->rb_left; 1191 else if (rb->rb_right) 1192 rb = rb->rb_right; 1193 else { 1194 av = rb_entry(rb, struct ubi_ainf_volume, rb); 1195 1196 rb = rb_parent(rb); 1197 if (rb) { 1198 if (rb->rb_left == &av->rb) 1199 rb->rb_left = NULL; 1200 else 1201 rb->rb_right = NULL; 1202 } 1203 1204 destroy_av(ai, av); 1205 } 1206 } 1207 1208 if (ai->aeb_slab_cache) 1209 kmem_cache_destroy(ai->aeb_slab_cache); 1210 1211 kfree(ai); 1212 } 1213 1214 /** 1215 * scan_all - scan entire MTD device. 1216 * @ubi: UBI device description object 1217 * @ai: attach info object 1218 * @start: start scanning at this PEB 1219 * 1220 * This function does full scanning of an MTD device and returns complete 1221 * information about it in form of a "struct ubi_attach_info" object. In case 1222 * of failure, an error code is returned. 1223 */ 1224 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai, 1225 int start) 1226 { 1227 int err, pnum; 1228 struct rb_node *rb1, *rb2; 1229 struct ubi_ainf_volume *av; 1230 struct ubi_ainf_peb *aeb; 1231 1232 err = -ENOMEM; 1233 1234 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1235 if (!ech) 1236 return err; 1237 1238 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1239 if (!vidh) 1240 goto out_ech; 1241 1242 for (pnum = start; pnum < ubi->peb_count; pnum++) { 1243 cond_resched(); 1244 1245 dbg_gen("process PEB %d", pnum); 1246 err = scan_peb(ubi, ai, pnum, NULL, NULL); 1247 if (err < 0) 1248 goto out_vidh; 1249 } 1250 1251 ubi_msg("scanning is finished"); 1252 1253 /* Calculate mean erase counter */ 1254 if (ai->ec_count) 1255 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); 1256 1257 err = late_analysis(ubi, ai); 1258 if (err) 1259 goto out_vidh; 1260 1261 /* 1262 * In case of unknown erase counter we use the mean erase counter 1263 * value. 1264 */ 1265 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1266 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1267 if (aeb->ec == UBI_UNKNOWN) 1268 aeb->ec = ai->mean_ec; 1269 } 1270 1271 list_for_each_entry(aeb, &ai->free, u.list) { 1272 if (aeb->ec == UBI_UNKNOWN) 1273 aeb->ec = ai->mean_ec; 1274 } 1275 1276 list_for_each_entry(aeb, &ai->corr, u.list) 1277 if (aeb->ec == UBI_UNKNOWN) 1278 aeb->ec = ai->mean_ec; 1279 1280 list_for_each_entry(aeb, &ai->erase, u.list) 1281 if (aeb->ec == UBI_UNKNOWN) 1282 aeb->ec = ai->mean_ec; 1283 1284 err = self_check_ai(ubi, ai); 1285 if (err) 1286 goto out_vidh; 1287 1288 ubi_free_vid_hdr(ubi, vidh); 1289 kfree(ech); 1290 1291 return 0; 1292 1293 out_vidh: 1294 ubi_free_vid_hdr(ubi, vidh); 1295 out_ech: 1296 kfree(ech); 1297 return err; 1298 } 1299 1300 #ifdef CONFIG_MTD_UBI_FASTMAP 1301 1302 /** 1303 * scan_fastmap - try to find a fastmap and attach from it. 1304 * @ubi: UBI device description object 1305 * @ai: attach info object 1306 * 1307 * Returns 0 on success, negative return values indicate an internal 1308 * error. 1309 * UBI_NO_FASTMAP denotes that no fastmap was found. 1310 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid. 1311 */ 1312 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai) 1313 { 1314 int err, pnum, fm_anchor = -1; 1315 unsigned long long max_sqnum = 0; 1316 1317 err = -ENOMEM; 1318 1319 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1320 if (!ech) 1321 goto out; 1322 1323 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1324 if (!vidh) 1325 goto out_ech; 1326 1327 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) { 1328 int vol_id = -1; 1329 unsigned long long sqnum = -1; 1330 cond_resched(); 1331 1332 dbg_gen("process PEB %d", pnum); 1333 err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum); 1334 if (err < 0) 1335 goto out_vidh; 1336 1337 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) { 1338 max_sqnum = sqnum; 1339 fm_anchor = pnum; 1340 } 1341 } 1342 1343 ubi_free_vid_hdr(ubi, vidh); 1344 kfree(ech); 1345 1346 if (fm_anchor < 0) 1347 return UBI_NO_FASTMAP; 1348 1349 return ubi_scan_fastmap(ubi, ai, fm_anchor); 1350 1351 out_vidh: 1352 ubi_free_vid_hdr(ubi, vidh); 1353 out_ech: 1354 kfree(ech); 1355 out: 1356 return err; 1357 } 1358 1359 #endif 1360 1361 static struct ubi_attach_info *alloc_ai(const char *slab_name) 1362 { 1363 struct ubi_attach_info *ai; 1364 1365 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); 1366 if (!ai) 1367 return ai; 1368 1369 INIT_LIST_HEAD(&ai->corr); 1370 INIT_LIST_HEAD(&ai->free); 1371 INIT_LIST_HEAD(&ai->erase); 1372 INIT_LIST_HEAD(&ai->alien); 1373 ai->volumes = RB_ROOT; 1374 ai->aeb_slab_cache = kmem_cache_create(slab_name, 1375 sizeof(struct ubi_ainf_peb), 1376 0, 0, NULL); 1377 if (!ai->aeb_slab_cache) { 1378 kfree(ai); 1379 ai = NULL; 1380 } 1381 1382 return ai; 1383 } 1384 1385 /** 1386 * ubi_attach - attach an MTD device. 1387 * @ubi: UBI device descriptor 1388 * @force_scan: if set to non-zero attach by scanning 1389 * 1390 * This function returns zero in case of success and a negative error code in 1391 * case of failure. 1392 */ 1393 int ubi_attach(struct ubi_device *ubi, int force_scan) 1394 { 1395 int err; 1396 struct ubi_attach_info *ai; 1397 1398 ai = alloc_ai("ubi_aeb_slab_cache"); 1399 if (!ai) 1400 return -ENOMEM; 1401 1402 #ifdef CONFIG_MTD_UBI_FASTMAP 1403 /* On small flash devices we disable fastmap in any case. */ 1404 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) { 1405 ubi->fm_disabled = 1; 1406 force_scan = 1; 1407 } 1408 1409 if (force_scan) 1410 err = scan_all(ubi, ai, 0); 1411 else { 1412 err = scan_fast(ubi, ai); 1413 if (err > 0) { 1414 if (err != UBI_NO_FASTMAP) { 1415 destroy_ai(ai); 1416 ai = alloc_ai("ubi_aeb_slab_cache2"); 1417 if (!ai) 1418 return -ENOMEM; 1419 1420 err = scan_all(ubi, ai, 0); 1421 } else { 1422 err = scan_all(ubi, ai, UBI_FM_MAX_START); 1423 } 1424 } 1425 } 1426 #else 1427 err = scan_all(ubi, ai, 0); 1428 #endif 1429 if (err) 1430 goto out_ai; 1431 1432 ubi->bad_peb_count = ai->bad_peb_count; 1433 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 1434 ubi->corr_peb_count = ai->corr_peb_count; 1435 ubi->max_ec = ai->max_ec; 1436 ubi->mean_ec = ai->mean_ec; 1437 dbg_gen("max. sequence number: %llu", ai->max_sqnum); 1438 1439 err = ubi_read_volume_table(ubi, ai); 1440 if (err) 1441 goto out_ai; 1442 1443 err = ubi_wl_init(ubi, ai); 1444 if (err) 1445 goto out_vtbl; 1446 1447 err = ubi_eba_init(ubi, ai); 1448 if (err) 1449 goto out_wl; 1450 1451 #ifdef CONFIG_MTD_UBI_FASTMAP 1452 if (ubi->fm && ubi_dbg_chk_gen(ubi)) { 1453 struct ubi_attach_info *scan_ai; 1454 1455 scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache"); 1456 if (!scan_ai) { 1457 err = -ENOMEM; 1458 goto out_wl; 1459 } 1460 1461 err = scan_all(ubi, scan_ai, 0); 1462 if (err) { 1463 destroy_ai(scan_ai); 1464 goto out_wl; 1465 } 1466 1467 err = self_check_eba(ubi, ai, scan_ai); 1468 destroy_ai(scan_ai); 1469 1470 if (err) 1471 goto out_wl; 1472 } 1473 #endif 1474 1475 destroy_ai(ai); 1476 return 0; 1477 1478 out_wl: 1479 ubi_wl_close(ubi); 1480 out_vtbl: 1481 ubi_free_internal_volumes(ubi); 1482 vfree(ubi->vtbl); 1483 out_ai: 1484 destroy_ai(ai); 1485 return err; 1486 } 1487 1488 /** 1489 * self_check_ai - check the attaching information. 1490 * @ubi: UBI device description object 1491 * @ai: attaching information 1492 * 1493 * This function returns zero if the attaching information is all right, and a 1494 * negative error code if not or if an error occurred. 1495 */ 1496 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) 1497 { 1498 int pnum, err, vols_found = 0; 1499 struct rb_node *rb1, *rb2; 1500 struct ubi_ainf_volume *av; 1501 struct ubi_ainf_peb *aeb, *last_aeb; 1502 uint8_t *buf; 1503 1504 if (!ubi_dbg_chk_gen(ubi)) 1505 return 0; 1506 1507 /* 1508 * At first, check that attaching information is OK. 1509 */ 1510 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1511 int leb_count = 0; 1512 1513 cond_resched(); 1514 1515 vols_found += 1; 1516 1517 if (ai->is_empty) { 1518 ubi_err("bad is_empty flag"); 1519 goto bad_av; 1520 } 1521 1522 if (av->vol_id < 0 || av->highest_lnum < 0 || 1523 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || 1524 av->data_pad < 0 || av->last_data_size < 0) { 1525 ubi_err("negative values"); 1526 goto bad_av; 1527 } 1528 1529 if (av->vol_id >= UBI_MAX_VOLUMES && 1530 av->vol_id < UBI_INTERNAL_VOL_START) { 1531 ubi_err("bad vol_id"); 1532 goto bad_av; 1533 } 1534 1535 if (av->vol_id > ai->highest_vol_id) { 1536 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1537 ai->highest_vol_id, av->vol_id); 1538 goto out; 1539 } 1540 1541 if (av->vol_type != UBI_DYNAMIC_VOLUME && 1542 av->vol_type != UBI_STATIC_VOLUME) { 1543 ubi_err("bad vol_type"); 1544 goto bad_av; 1545 } 1546 1547 if (av->data_pad > ubi->leb_size / 2) { 1548 ubi_err("bad data_pad"); 1549 goto bad_av; 1550 } 1551 1552 last_aeb = NULL; 1553 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1554 cond_resched(); 1555 1556 last_aeb = aeb; 1557 leb_count += 1; 1558 1559 if (aeb->pnum < 0 || aeb->ec < 0) { 1560 ubi_err("negative values"); 1561 goto bad_aeb; 1562 } 1563 1564 if (aeb->ec < ai->min_ec) { 1565 ubi_err("bad ai->min_ec (%d), %d found", 1566 ai->min_ec, aeb->ec); 1567 goto bad_aeb; 1568 } 1569 1570 if (aeb->ec > ai->max_ec) { 1571 ubi_err("bad ai->max_ec (%d), %d found", 1572 ai->max_ec, aeb->ec); 1573 goto bad_aeb; 1574 } 1575 1576 if (aeb->pnum >= ubi->peb_count) { 1577 ubi_err("too high PEB number %d, total PEBs %d", 1578 aeb->pnum, ubi->peb_count); 1579 goto bad_aeb; 1580 } 1581 1582 if (av->vol_type == UBI_STATIC_VOLUME) { 1583 if (aeb->lnum >= av->used_ebs) { 1584 ubi_err("bad lnum or used_ebs"); 1585 goto bad_aeb; 1586 } 1587 } else { 1588 if (av->used_ebs != 0) { 1589 ubi_err("non-zero used_ebs"); 1590 goto bad_aeb; 1591 } 1592 } 1593 1594 if (aeb->lnum > av->highest_lnum) { 1595 ubi_err("incorrect highest_lnum or lnum"); 1596 goto bad_aeb; 1597 } 1598 } 1599 1600 if (av->leb_count != leb_count) { 1601 ubi_err("bad leb_count, %d objects in the tree", 1602 leb_count); 1603 goto bad_av; 1604 } 1605 1606 if (!last_aeb) 1607 continue; 1608 1609 aeb = last_aeb; 1610 1611 if (aeb->lnum != av->highest_lnum) { 1612 ubi_err("bad highest_lnum"); 1613 goto bad_aeb; 1614 } 1615 } 1616 1617 if (vols_found != ai->vols_found) { 1618 ubi_err("bad ai->vols_found %d, should be %d", 1619 ai->vols_found, vols_found); 1620 goto out; 1621 } 1622 1623 /* Check that attaching information is correct */ 1624 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1625 last_aeb = NULL; 1626 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1627 int vol_type; 1628 1629 cond_resched(); 1630 1631 last_aeb = aeb; 1632 1633 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); 1634 if (err && err != UBI_IO_BITFLIPS) { 1635 ubi_err("VID header is not OK (%d)", err); 1636 if (err > 0) 1637 err = -EIO; 1638 return err; 1639 } 1640 1641 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1642 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1643 if (av->vol_type != vol_type) { 1644 ubi_err("bad vol_type"); 1645 goto bad_vid_hdr; 1646 } 1647 1648 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { 1649 ubi_err("bad sqnum %llu", aeb->sqnum); 1650 goto bad_vid_hdr; 1651 } 1652 1653 if (av->vol_id != be32_to_cpu(vidh->vol_id)) { 1654 ubi_err("bad vol_id %d", av->vol_id); 1655 goto bad_vid_hdr; 1656 } 1657 1658 if (av->compat != vidh->compat) { 1659 ubi_err("bad compat %d", vidh->compat); 1660 goto bad_vid_hdr; 1661 } 1662 1663 if (aeb->lnum != be32_to_cpu(vidh->lnum)) { 1664 ubi_err("bad lnum %d", aeb->lnum); 1665 goto bad_vid_hdr; 1666 } 1667 1668 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1669 ubi_err("bad used_ebs %d", av->used_ebs); 1670 goto bad_vid_hdr; 1671 } 1672 1673 if (av->data_pad != be32_to_cpu(vidh->data_pad)) { 1674 ubi_err("bad data_pad %d", av->data_pad); 1675 goto bad_vid_hdr; 1676 } 1677 } 1678 1679 if (!last_aeb) 1680 continue; 1681 1682 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { 1683 ubi_err("bad highest_lnum %d", av->highest_lnum); 1684 goto bad_vid_hdr; 1685 } 1686 1687 if (av->last_data_size != be32_to_cpu(vidh->data_size)) { 1688 ubi_err("bad last_data_size %d", av->last_data_size); 1689 goto bad_vid_hdr; 1690 } 1691 } 1692 1693 /* 1694 * Make sure that all the physical eraseblocks are in one of the lists 1695 * or trees. 1696 */ 1697 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1698 if (!buf) 1699 return -ENOMEM; 1700 1701 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1702 err = ubi_io_is_bad(ubi, pnum); 1703 if (err < 0) { 1704 kfree(buf); 1705 return err; 1706 } else if (err) 1707 buf[pnum] = 1; 1708 } 1709 1710 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) 1711 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1712 buf[aeb->pnum] = 1; 1713 1714 list_for_each_entry(aeb, &ai->free, u.list) 1715 buf[aeb->pnum] = 1; 1716 1717 list_for_each_entry(aeb, &ai->corr, u.list) 1718 buf[aeb->pnum] = 1; 1719 1720 list_for_each_entry(aeb, &ai->erase, u.list) 1721 buf[aeb->pnum] = 1; 1722 1723 list_for_each_entry(aeb, &ai->alien, u.list) 1724 buf[aeb->pnum] = 1; 1725 1726 err = 0; 1727 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1728 if (!buf[pnum]) { 1729 ubi_err("PEB %d is not referred", pnum); 1730 err = 1; 1731 } 1732 1733 kfree(buf); 1734 if (err) 1735 goto out; 1736 return 0; 1737 1738 bad_aeb: 1739 ubi_err("bad attaching information about LEB %d", aeb->lnum); 1740 ubi_dump_aeb(aeb, 0); 1741 ubi_dump_av(av); 1742 goto out; 1743 1744 bad_av: 1745 ubi_err("bad attaching information about volume %d", av->vol_id); 1746 ubi_dump_av(av); 1747 goto out; 1748 1749 bad_vid_hdr: 1750 ubi_err("bad attaching information about volume %d", av->vol_id); 1751 ubi_dump_av(av); 1752 ubi_dump_vid_hdr(vidh); 1753 1754 out: 1755 dump_stack(); 1756 return -EINVAL; 1757 } 1758