1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Author: Artem Bityutskiy (Битюцкий Артём) 19 */ 20 21 /* 22 * UBI attaching sub-system. 23 * 24 * This sub-system is responsible for attaching MTD devices and it also 25 * implements flash media scanning. 26 * 27 * The attaching information is represented by a &struct ubi_attach_info' 28 * object. Information about volumes is represented by &struct ubi_ainf_volume 29 * objects which are kept in volume RB-tree with root at the @volumes field. 30 * The RB-tree is indexed by the volume ID. 31 * 32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These 33 * objects are kept in per-volume RB-trees with the root at the corresponding 34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of 35 * per-volume objects and each of these objects is the root of RB-tree of 36 * per-LEB objects. 37 * 38 * Corrupted physical eraseblocks are put to the @corr list, free physical 39 * eraseblocks are put to the @free list and the physical eraseblock to be 40 * erased are put to the @erase list. 41 * 42 * About corruptions 43 * ~~~~~~~~~~~~~~~~~ 44 * 45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect 46 * whether the headers are corrupted or not. Sometimes UBI also protects the 47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or 48 * when it moves the contents of a PEB for wear-leveling purposes. 49 * 50 * UBI tries to distinguish between 2 types of corruptions. 51 * 52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI 53 * tries to handle them gracefully, without printing too many warnings and 54 * error messages. The idea is that we do not lose important data in these 55 * cases - we may lose only the data which were being written to the media just 56 * before the power cut happened, and the upper layers (e.g., UBIFS) are 57 * supposed to handle such data losses (e.g., by using the FS journal). 58 * 59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like 60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all 61 * PEBs in the @erase list are scheduled for erasure later. 62 * 63 * 2. Unexpected corruptions which are not caused by power cuts. During 64 * attaching, such PEBs are put to the @corr list and UBI preserves them. 65 * Obviously, this lessens the amount of available PEBs, and if at some point 66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs 67 * about such PEBs every time the MTD device is attached. 68 * 69 * However, it is difficult to reliably distinguish between these types of 70 * corruptions and UBI's strategy is as follows (in case of attaching by 71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and 72 * the data area does not contain all 0xFFs, and there were no bit-flips or 73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data 74 * area. Otherwise UBI assumes corruption type 1. So the decision criteria 75 * are as follows. 76 * o If the data area contains only 0xFFs, there are no data, and it is safe 77 * to just erase this PEB - this is corruption type 1. 78 * o If the data area has bit-flips or data integrity errors (ECC errors on 79 * NAND), it is probably a PEB which was being erased when power cut 80 * happened, so this is corruption type 1. However, this is just a guess, 81 * which might be wrong. 82 * o Otherwise this it corruption type 2. 83 */ 84 85 #include <linux/err.h> 86 #include <linux/slab.h> 87 #include <linux/crc32.h> 88 #include <linux/math64.h> 89 #include <linux/random.h> 90 #include "ubi.h" 91 92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai); 93 94 /* Temporary variables used during scanning */ 95 static struct ubi_ec_hdr *ech; 96 static struct ubi_vid_hdr *vidh; 97 98 /** 99 * add_to_list - add physical eraseblock to a list. 100 * @ai: attaching information 101 * @pnum: physical eraseblock number to add 102 * @vol_id: the last used volume id for the PEB 103 * @lnum: the last used LEB number for the PEB 104 * @ec: erase counter of the physical eraseblock 105 * @to_head: if not zero, add to the head of the list 106 * @list: the list to add to 107 * 108 * This function allocates a 'struct ubi_ainf_peb' object for physical 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists. 110 * It stores the @lnum and @vol_id alongside, which can both be 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned. 112 * If @to_head is not zero, PEB will be added to the head of the list, which 113 * basically means it will be processed first later. E.g., we add corrupted 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make 115 * sure we erase them first and get rid of corruptions ASAP. This function 116 * returns zero in case of success and a negative error code in case of 117 * failure. 118 */ 119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id, 120 int lnum, int ec, int to_head, struct list_head *list) 121 { 122 struct ubi_ainf_peb *aeb; 123 124 if (list == &ai->free) { 125 dbg_bld("add to free: PEB %d, EC %d", pnum, ec); 126 } else if (list == &ai->erase) { 127 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); 128 } else if (list == &ai->alien) { 129 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); 130 ai->alien_peb_count += 1; 131 } else 132 BUG(); 133 134 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 135 if (!aeb) 136 return -ENOMEM; 137 138 aeb->pnum = pnum; 139 aeb->vol_id = vol_id; 140 aeb->lnum = lnum; 141 aeb->ec = ec; 142 if (to_head) 143 list_add(&aeb->u.list, list); 144 else 145 list_add_tail(&aeb->u.list, list); 146 return 0; 147 } 148 149 /** 150 * add_corrupted - add a corrupted physical eraseblock. 151 * @ai: attaching information 152 * @pnum: physical eraseblock number to add 153 * @ec: erase counter of the physical eraseblock 154 * 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted 156 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption 157 * was presumably not caused by a power cut. Returns zero in case of success 158 * and a negative error code in case of failure. 159 */ 160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec) 161 { 162 struct ubi_ainf_peb *aeb; 163 164 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); 165 166 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 167 if (!aeb) 168 return -ENOMEM; 169 170 ai->corr_peb_count += 1; 171 aeb->pnum = pnum; 172 aeb->ec = ec; 173 list_add(&aeb->u.list, &ai->corr); 174 return 0; 175 } 176 177 /** 178 * validate_vid_hdr - check volume identifier header. 179 * @vid_hdr: the volume identifier header to check 180 * @av: information about the volume this logical eraseblock belongs to 181 * @pnum: physical eraseblock number the VID header came from 182 * 183 * This function checks that data stored in @vid_hdr is consistent. Returns 184 * non-zero if an inconsistency was found and zero if not. 185 * 186 * Note, UBI does sanity check of everything it reads from the flash media. 187 * Most of the checks are done in the I/O sub-system. Here we check that the 188 * information in the VID header is consistent to the information in other VID 189 * headers of the same volume. 190 */ 191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, 192 const struct ubi_ainf_volume *av, int pnum) 193 { 194 int vol_type = vid_hdr->vol_type; 195 int vol_id = be32_to_cpu(vid_hdr->vol_id); 196 int used_ebs = be32_to_cpu(vid_hdr->used_ebs); 197 int data_pad = be32_to_cpu(vid_hdr->data_pad); 198 199 if (av->leb_count != 0) { 200 int av_vol_type; 201 202 /* 203 * This is not the first logical eraseblock belonging to this 204 * volume. Ensure that the data in its VID header is consistent 205 * to the data in previous logical eraseblock headers. 206 */ 207 208 if (vol_id != av->vol_id) { 209 ubi_err("inconsistent vol_id"); 210 goto bad; 211 } 212 213 if (av->vol_type == UBI_STATIC_VOLUME) 214 av_vol_type = UBI_VID_STATIC; 215 else 216 av_vol_type = UBI_VID_DYNAMIC; 217 218 if (vol_type != av_vol_type) { 219 ubi_err("inconsistent vol_type"); 220 goto bad; 221 } 222 223 if (used_ebs != av->used_ebs) { 224 ubi_err("inconsistent used_ebs"); 225 goto bad; 226 } 227 228 if (data_pad != av->data_pad) { 229 ubi_err("inconsistent data_pad"); 230 goto bad; 231 } 232 } 233 234 return 0; 235 236 bad: 237 ubi_err("inconsistent VID header at PEB %d", pnum); 238 ubi_dump_vid_hdr(vid_hdr); 239 ubi_dump_av(av); 240 return -EINVAL; 241 } 242 243 /** 244 * add_volume - add volume to the attaching information. 245 * @ai: attaching information 246 * @vol_id: ID of the volume to add 247 * @pnum: physical eraseblock number 248 * @vid_hdr: volume identifier header 249 * 250 * If the volume corresponding to the @vid_hdr logical eraseblock is already 251 * present in the attaching information, this function does nothing. Otherwise 252 * it adds corresponding volume to the attaching information. Returns a pointer 253 * to the allocated "av" object in case of success and a negative error code in 254 * case of failure. 255 */ 256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai, 257 int vol_id, int pnum, 258 const struct ubi_vid_hdr *vid_hdr) 259 { 260 struct ubi_ainf_volume *av; 261 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL; 262 263 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); 264 265 /* Walk the volume RB-tree to look if this volume is already present */ 266 while (*p) { 267 parent = *p; 268 av = rb_entry(parent, struct ubi_ainf_volume, rb); 269 270 if (vol_id == av->vol_id) 271 return av; 272 273 if (vol_id > av->vol_id) 274 p = &(*p)->rb_left; 275 else 276 p = &(*p)->rb_right; 277 } 278 279 /* The volume is absent - add it */ 280 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL); 281 if (!av) 282 return ERR_PTR(-ENOMEM); 283 284 av->highest_lnum = av->leb_count = 0; 285 av->vol_id = vol_id; 286 av->root = RB_ROOT; 287 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs); 288 av->data_pad = be32_to_cpu(vid_hdr->data_pad); 289 av->compat = vid_hdr->compat; 290 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME 291 : UBI_STATIC_VOLUME; 292 if (vol_id > ai->highest_vol_id) 293 ai->highest_vol_id = vol_id; 294 295 rb_link_node(&av->rb, parent, p); 296 rb_insert_color(&av->rb, &ai->volumes); 297 ai->vols_found += 1; 298 dbg_bld("added volume %d", vol_id); 299 return av; 300 } 301 302 /** 303 * compare_lebs - find out which logical eraseblock is newer. 304 * @ubi: UBI device description object 305 * @aeb: first logical eraseblock to compare 306 * @pnum: physical eraseblock number of the second logical eraseblock to 307 * compare 308 * @vid_hdr: volume identifier header of the second logical eraseblock 309 * 310 * This function compares 2 copies of a LEB and informs which one is newer. In 311 * case of success this function returns a positive value, in case of failure, a 312 * negative error code is returned. The success return codes use the following 313 * bits: 314 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the 315 * second PEB (described by @pnum and @vid_hdr); 316 * o bit 0 is set: the second PEB is newer; 317 * o bit 1 is cleared: no bit-flips were detected in the newer LEB; 318 * o bit 1 is set: bit-flips were detected in the newer LEB; 319 * o bit 2 is cleared: the older LEB is not corrupted; 320 * o bit 2 is set: the older LEB is corrupted. 321 */ 322 static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb, 323 int pnum, const struct ubi_vid_hdr *vid_hdr) 324 { 325 void *buf; 326 int len, err, second_is_newer, bitflips = 0, corrupted = 0; 327 uint32_t data_crc, crc; 328 struct ubi_vid_hdr *vh = NULL; 329 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); 330 331 if (sqnum2 == aeb->sqnum) { 332 /* 333 * This must be a really ancient UBI image which has been 334 * created before sequence numbers support has been added. At 335 * that times we used 32-bit LEB versions stored in logical 336 * eraseblocks. That was before UBI got into mainline. We do not 337 * support these images anymore. Well, those images still work, 338 * but only if no unclean reboots happened. 339 */ 340 ubi_err("unsupported on-flash UBI format\n"); 341 return -EINVAL; 342 } 343 344 /* Obviously the LEB with lower sequence counter is older */ 345 second_is_newer = (sqnum2 > aeb->sqnum); 346 347 /* 348 * Now we know which copy is newer. If the copy flag of the PEB with 349 * newer version is not set, then we just return, otherwise we have to 350 * check data CRC. For the second PEB we already have the VID header, 351 * for the first one - we'll need to re-read it from flash. 352 * 353 * Note: this may be optimized so that we wouldn't read twice. 354 */ 355 356 if (second_is_newer) { 357 if (!vid_hdr->copy_flag) { 358 /* It is not a copy, so it is newer */ 359 dbg_bld("second PEB %d is newer, copy_flag is unset", 360 pnum); 361 return 1; 362 } 363 } else { 364 if (!aeb->copy_flag) { 365 /* It is not a copy, so it is newer */ 366 dbg_bld("first PEB %d is newer, copy_flag is unset", 367 pnum); 368 return bitflips << 1; 369 } 370 371 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 372 if (!vh) 373 return -ENOMEM; 374 375 pnum = aeb->pnum; 376 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); 377 if (err) { 378 if (err == UBI_IO_BITFLIPS) 379 bitflips = 1; 380 else { 381 ubi_err("VID of PEB %d header is bad, but it " 382 "was OK earlier, err %d", pnum, err); 383 if (err > 0) 384 err = -EIO; 385 386 goto out_free_vidh; 387 } 388 } 389 390 vid_hdr = vh; 391 } 392 393 /* Read the data of the copy and check the CRC */ 394 395 len = be32_to_cpu(vid_hdr->data_size); 396 buf = vmalloc(len); 397 if (!buf) { 398 err = -ENOMEM; 399 goto out_free_vidh; 400 } 401 402 err = ubi_io_read_data(ubi, buf, pnum, 0, len); 403 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) 404 goto out_free_buf; 405 406 data_crc = be32_to_cpu(vid_hdr->data_crc); 407 crc = crc32(UBI_CRC32_INIT, buf, len); 408 if (crc != data_crc) { 409 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", 410 pnum, crc, data_crc); 411 corrupted = 1; 412 bitflips = 0; 413 second_is_newer = !second_is_newer; 414 } else { 415 dbg_bld("PEB %d CRC is OK", pnum); 416 bitflips = !!err; 417 } 418 419 vfree(buf); 420 ubi_free_vid_hdr(ubi, vh); 421 422 if (second_is_newer) 423 dbg_bld("second PEB %d is newer, copy_flag is set", pnum); 424 else 425 dbg_bld("first PEB %d is newer, copy_flag is set", pnum); 426 427 return second_is_newer | (bitflips << 1) | (corrupted << 2); 428 429 out_free_buf: 430 vfree(buf); 431 out_free_vidh: 432 ubi_free_vid_hdr(ubi, vh); 433 return err; 434 } 435 436 /** 437 * ubi_add_to_av - add used physical eraseblock to the attaching information. 438 * @ubi: UBI device description object 439 * @ai: attaching information 440 * @pnum: the physical eraseblock number 441 * @ec: erase counter 442 * @vid_hdr: the volume identifier header 443 * @bitflips: if bit-flips were detected when this physical eraseblock was read 444 * 445 * This function adds information about a used physical eraseblock to the 446 * 'used' tree of the corresponding volume. The function is rather complex 447 * because it has to handle cases when this is not the first physical 448 * eraseblock belonging to the same logical eraseblock, and the newer one has 449 * to be picked, while the older one has to be dropped. This function returns 450 * zero in case of success and a negative error code in case of failure. 451 */ 452 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum, 453 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips) 454 { 455 int err, vol_id, lnum; 456 unsigned long long sqnum; 457 struct ubi_ainf_volume *av; 458 struct ubi_ainf_peb *aeb; 459 struct rb_node **p, *parent = NULL; 460 461 vol_id = be32_to_cpu(vid_hdr->vol_id); 462 lnum = be32_to_cpu(vid_hdr->lnum); 463 sqnum = be64_to_cpu(vid_hdr->sqnum); 464 465 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", 466 pnum, vol_id, lnum, ec, sqnum, bitflips); 467 468 av = add_volume(ai, vol_id, pnum, vid_hdr); 469 if (IS_ERR(av)) 470 return PTR_ERR(av); 471 472 if (ai->max_sqnum < sqnum) 473 ai->max_sqnum = sqnum; 474 475 /* 476 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look 477 * if this is the first instance of this logical eraseblock or not. 478 */ 479 p = &av->root.rb_node; 480 while (*p) { 481 int cmp_res; 482 483 parent = *p; 484 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb); 485 if (lnum != aeb->lnum) { 486 if (lnum < aeb->lnum) 487 p = &(*p)->rb_left; 488 else 489 p = &(*p)->rb_right; 490 continue; 491 } 492 493 /* 494 * There is already a physical eraseblock describing the same 495 * logical eraseblock present. 496 */ 497 498 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d", 499 aeb->pnum, aeb->sqnum, aeb->ec); 500 501 /* 502 * Make sure that the logical eraseblocks have different 503 * sequence numbers. Otherwise the image is bad. 504 * 505 * However, if the sequence number is zero, we assume it must 506 * be an ancient UBI image from the era when UBI did not have 507 * sequence numbers. We still can attach these images, unless 508 * there is a need to distinguish between old and new 509 * eraseblocks, in which case we'll refuse the image in 510 * 'compare_lebs()'. In other words, we attach old clean 511 * images, but refuse attaching old images with duplicated 512 * logical eraseblocks because there was an unclean reboot. 513 */ 514 if (aeb->sqnum == sqnum && sqnum != 0) { 515 ubi_err("two LEBs with same sequence number %llu", 516 sqnum); 517 ubi_dump_aeb(aeb, 0); 518 ubi_dump_vid_hdr(vid_hdr); 519 return -EINVAL; 520 } 521 522 /* 523 * Now we have to drop the older one and preserve the newer 524 * one. 525 */ 526 cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr); 527 if (cmp_res < 0) 528 return cmp_res; 529 530 if (cmp_res & 1) { 531 /* 532 * This logical eraseblock is newer than the one 533 * found earlier. 534 */ 535 err = validate_vid_hdr(vid_hdr, av, pnum); 536 if (err) 537 return err; 538 539 err = add_to_list(ai, aeb->pnum, aeb->vol_id, 540 aeb->lnum, aeb->ec, cmp_res & 4, 541 &ai->erase); 542 if (err) 543 return err; 544 545 aeb->ec = ec; 546 aeb->pnum = pnum; 547 aeb->vol_id = vol_id; 548 aeb->lnum = lnum; 549 aeb->scrub = ((cmp_res & 2) || bitflips); 550 aeb->copy_flag = vid_hdr->copy_flag; 551 aeb->sqnum = sqnum; 552 553 if (av->highest_lnum == lnum) 554 av->last_data_size = 555 be32_to_cpu(vid_hdr->data_size); 556 557 return 0; 558 } else { 559 /* 560 * This logical eraseblock is older than the one found 561 * previously. 562 */ 563 return add_to_list(ai, pnum, vol_id, lnum, ec, 564 cmp_res & 4, &ai->erase); 565 } 566 } 567 568 /* 569 * We've met this logical eraseblock for the first time, add it to the 570 * attaching information. 571 */ 572 573 err = validate_vid_hdr(vid_hdr, av, pnum); 574 if (err) 575 return err; 576 577 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL); 578 if (!aeb) 579 return -ENOMEM; 580 581 aeb->ec = ec; 582 aeb->pnum = pnum; 583 aeb->vol_id = vol_id; 584 aeb->lnum = lnum; 585 aeb->scrub = bitflips; 586 aeb->copy_flag = vid_hdr->copy_flag; 587 aeb->sqnum = sqnum; 588 589 if (av->highest_lnum <= lnum) { 590 av->highest_lnum = lnum; 591 av->last_data_size = be32_to_cpu(vid_hdr->data_size); 592 } 593 594 av->leb_count += 1; 595 rb_link_node(&aeb->u.rb, parent, p); 596 rb_insert_color(&aeb->u.rb, &av->root); 597 return 0; 598 } 599 600 /** 601 * ubi_find_av - find volume in the attaching information. 602 * @ai: attaching information 603 * @vol_id: the requested volume ID 604 * 605 * This function returns a pointer to the volume description or %NULL if there 606 * are no data about this volume in the attaching information. 607 */ 608 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai, 609 int vol_id) 610 { 611 struct ubi_ainf_volume *av; 612 struct rb_node *p = ai->volumes.rb_node; 613 614 while (p) { 615 av = rb_entry(p, struct ubi_ainf_volume, rb); 616 617 if (vol_id == av->vol_id) 618 return av; 619 620 if (vol_id > av->vol_id) 621 p = p->rb_left; 622 else 623 p = p->rb_right; 624 } 625 626 return NULL; 627 } 628 629 /** 630 * ubi_remove_av - delete attaching information about a volume. 631 * @ai: attaching information 632 * @av: the volume attaching information to delete 633 */ 634 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 635 { 636 struct rb_node *rb; 637 struct ubi_ainf_peb *aeb; 638 639 dbg_bld("remove attaching information about volume %d", av->vol_id); 640 641 while ((rb = rb_first(&av->root))) { 642 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb); 643 rb_erase(&aeb->u.rb, &av->root); 644 list_add_tail(&aeb->u.list, &ai->erase); 645 } 646 647 rb_erase(&av->rb, &ai->volumes); 648 kfree(av); 649 ai->vols_found -= 1; 650 } 651 652 /** 653 * early_erase_peb - erase a physical eraseblock. 654 * @ubi: UBI device description object 655 * @ai: attaching information 656 * @pnum: physical eraseblock number to erase; 657 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown) 658 * 659 * This function erases physical eraseblock 'pnum', and writes the erase 660 * counter header to it. This function should only be used on UBI device 661 * initialization stages, when the EBA sub-system had not been yet initialized. 662 * This function returns zero in case of success and a negative error code in 663 * case of failure. 664 */ 665 static int early_erase_peb(struct ubi_device *ubi, 666 const struct ubi_attach_info *ai, int pnum, int ec) 667 { 668 int err; 669 struct ubi_ec_hdr *ec_hdr; 670 671 if ((long long)ec >= UBI_MAX_ERASECOUNTER) { 672 /* 673 * Erase counter overflow. Upgrade UBI and use 64-bit 674 * erase counters internally. 675 */ 676 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); 677 return -EINVAL; 678 } 679 680 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 681 if (!ec_hdr) 682 return -ENOMEM; 683 684 ec_hdr->ec = cpu_to_be64(ec); 685 686 err = ubi_io_sync_erase(ubi, pnum, 0); 687 if (err < 0) 688 goto out_free; 689 690 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); 691 692 out_free: 693 kfree(ec_hdr); 694 return err; 695 } 696 697 /** 698 * ubi_early_get_peb - get a free physical eraseblock. 699 * @ubi: UBI device description object 700 * @ai: attaching information 701 * 702 * This function returns a free physical eraseblock. It is supposed to be 703 * called on the UBI initialization stages when the wear-leveling sub-system is 704 * not initialized yet. This function picks a physical eraseblocks from one of 705 * the lists, writes the EC header if it is needed, and removes it from the 706 * list. 707 * 708 * This function returns a pointer to the "aeb" of the found free PEB in case 709 * of success and an error code in case of failure. 710 */ 711 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi, 712 struct ubi_attach_info *ai) 713 { 714 int err = 0; 715 struct ubi_ainf_peb *aeb, *tmp_aeb; 716 717 if (!list_empty(&ai->free)) { 718 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list); 719 list_del(&aeb->u.list); 720 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec); 721 return aeb; 722 } 723 724 /* 725 * We try to erase the first physical eraseblock from the erase list 726 * and pick it if we succeed, or try to erase the next one if not. And 727 * so forth. We don't want to take care about bad eraseblocks here - 728 * they'll be handled later. 729 */ 730 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) { 731 if (aeb->ec == UBI_UNKNOWN) 732 aeb->ec = ai->mean_ec; 733 734 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1); 735 if (err) 736 continue; 737 738 aeb->ec += 1; 739 list_del(&aeb->u.list); 740 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec); 741 return aeb; 742 } 743 744 ubi_err("no free eraseblocks"); 745 return ERR_PTR(-ENOSPC); 746 } 747 748 /** 749 * check_corruption - check the data area of PEB. 750 * @ubi: UBI device description object 751 * @vid_hrd: the (corrupted) VID header of this PEB 752 * @pnum: the physical eraseblock number to check 753 * 754 * This is a helper function which is used to distinguish between VID header 755 * corruptions caused by power cuts and other reasons. If the PEB contains only 756 * 0xFF bytes in the data area, the VID header is most probably corrupted 757 * because of a power cut (%0 is returned in this case). Otherwise, it was 758 * probably corrupted for some other reasons (%1 is returned in this case). A 759 * negative error code is returned if a read error occurred. 760 * 761 * If the corruption reason was a power cut, UBI can safely erase this PEB. 762 * Otherwise, it should preserve it to avoid possibly destroying important 763 * information. 764 */ 765 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, 766 int pnum) 767 { 768 int err; 769 770 mutex_lock(&ubi->buf_mutex); 771 memset(ubi->peb_buf, 0x00, ubi->leb_size); 772 773 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, 774 ubi->leb_size); 775 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { 776 /* 777 * Bit-flips or integrity errors while reading the data area. 778 * It is difficult to say for sure what type of corruption is 779 * this, but presumably a power cut happened while this PEB was 780 * erased, so it became unstable and corrupted, and should be 781 * erased. 782 */ 783 err = 0; 784 goto out_unlock; 785 } 786 787 if (err) 788 goto out_unlock; 789 790 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) 791 goto out_unlock; 792 793 ubi_err("PEB %d contains corrupted VID header, and the data does not " 794 "contain all 0xFF, this may be a non-UBI PEB or a severe VID " 795 "header corruption which requires manual inspection", pnum); 796 ubi_dump_vid_hdr(vid_hdr); 797 dbg_msg("hexdump of PEB %d offset %d, length %d", 798 pnum, ubi->leb_start, ubi->leb_size); 799 ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 800 ubi->peb_buf, ubi->leb_size, 1); 801 err = 1; 802 803 out_unlock: 804 mutex_unlock(&ubi->buf_mutex); 805 return err; 806 } 807 808 /** 809 * scan_peb - scan and process UBI headers of a PEB. 810 * @ubi: UBI device description object 811 * @ai: attaching information 812 * @pnum: the physical eraseblock number 813 * 814 * This function reads UBI headers of PEB @pnum, checks them, and adds 815 * information about this PEB to the corresponding list or RB-tree in the 816 * "attaching info" structure. Returns zero if the physical eraseblock was 817 * successfully handled and a negative error code in case of failure. 818 */ 819 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai, 820 int pnum) 821 { 822 long long uninitialized_var(ec); 823 int err, bitflips = 0, vol_id, ec_err = 0; 824 825 dbg_bld("scan PEB %d", pnum); 826 827 /* Skip bad physical eraseblocks */ 828 err = ubi_io_is_bad(ubi, pnum); 829 if (err < 0) 830 return err; 831 else if (err) { 832 ai->bad_peb_count += 1; 833 return 0; 834 } 835 836 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); 837 if (err < 0) 838 return err; 839 switch (err) { 840 case 0: 841 break; 842 case UBI_IO_BITFLIPS: 843 bitflips = 1; 844 break; 845 case UBI_IO_FF: 846 ai->empty_peb_count += 1; 847 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 848 UBI_UNKNOWN, 0, &ai->erase); 849 case UBI_IO_FF_BITFLIPS: 850 ai->empty_peb_count += 1; 851 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 852 UBI_UNKNOWN, 1, &ai->erase); 853 case UBI_IO_BAD_HDR_EBADMSG: 854 case UBI_IO_BAD_HDR: 855 /* 856 * We have to also look at the VID header, possibly it is not 857 * corrupted. Set %bitflips flag in order to make this PEB be 858 * moved and EC be re-created. 859 */ 860 ec_err = err; 861 ec = UBI_UNKNOWN; 862 bitflips = 1; 863 break; 864 default: 865 ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err); 866 return -EINVAL; 867 } 868 869 if (!ec_err) { 870 int image_seq; 871 872 /* Make sure UBI version is OK */ 873 if (ech->version != UBI_VERSION) { 874 ubi_err("this UBI version is %d, image version is %d", 875 UBI_VERSION, (int)ech->version); 876 return -EINVAL; 877 } 878 879 ec = be64_to_cpu(ech->ec); 880 if (ec > UBI_MAX_ERASECOUNTER) { 881 /* 882 * Erase counter overflow. The EC headers have 64 bits 883 * reserved, but we anyway make use of only 31 bit 884 * values, as this seems to be enough for any existing 885 * flash. Upgrade UBI and use 64-bit erase counters 886 * internally. 887 */ 888 ubi_err("erase counter overflow, max is %d", 889 UBI_MAX_ERASECOUNTER); 890 ubi_dump_ec_hdr(ech); 891 return -EINVAL; 892 } 893 894 /* 895 * Make sure that all PEBs have the same image sequence number. 896 * This allows us to detect situations when users flash UBI 897 * images incorrectly, so that the flash has the new UBI image 898 * and leftovers from the old one. This feature was added 899 * relatively recently, and the sequence number was always 900 * zero, because old UBI implementations always set it to zero. 901 * For this reasons, we do not panic if some PEBs have zero 902 * sequence number, while other PEBs have non-zero sequence 903 * number. 904 */ 905 image_seq = be32_to_cpu(ech->image_seq); 906 if (!ubi->image_seq && image_seq) 907 ubi->image_seq = image_seq; 908 if (ubi->image_seq && image_seq && 909 ubi->image_seq != image_seq) { 910 ubi_err("bad image sequence number %d in PEB %d, " 911 "expected %d", image_seq, pnum, ubi->image_seq); 912 ubi_dump_ec_hdr(ech); 913 return -EINVAL; 914 } 915 } 916 917 /* OK, we've done with the EC header, let's look at the VID header */ 918 919 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); 920 if (err < 0) 921 return err; 922 switch (err) { 923 case 0: 924 break; 925 case UBI_IO_BITFLIPS: 926 bitflips = 1; 927 break; 928 case UBI_IO_BAD_HDR_EBADMSG: 929 if (ec_err == UBI_IO_BAD_HDR_EBADMSG) 930 /* 931 * Both EC and VID headers are corrupted and were read 932 * with data integrity error, probably this is a bad 933 * PEB, bit it is not marked as bad yet. This may also 934 * be a result of power cut during erasure. 935 */ 936 ai->maybe_bad_peb_count += 1; 937 case UBI_IO_BAD_HDR: 938 if (ec_err) 939 /* 940 * Both headers are corrupted. There is a possibility 941 * that this a valid UBI PEB which has corresponding 942 * LEB, but the headers are corrupted. However, it is 943 * impossible to distinguish it from a PEB which just 944 * contains garbage because of a power cut during erase 945 * operation. So we just schedule this PEB for erasure. 946 * 947 * Besides, in case of NOR flash, we deliberately 948 * corrupt both headers because NOR flash erasure is 949 * slow and can start from the end. 950 */ 951 err = 0; 952 else 953 /* 954 * The EC was OK, but the VID header is corrupted. We 955 * have to check what is in the data area. 956 */ 957 err = check_corruption(ubi, vidh, pnum); 958 959 if (err < 0) 960 return err; 961 else if (!err) 962 /* This corruption is caused by a power cut */ 963 err = add_to_list(ai, pnum, UBI_UNKNOWN, 964 UBI_UNKNOWN, ec, 1, &ai->erase); 965 else 966 /* This is an unexpected corruption */ 967 err = add_corrupted(ai, pnum, ec); 968 if (err) 969 return err; 970 goto adjust_mean_ec; 971 case UBI_IO_FF_BITFLIPS: 972 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN, 973 ec, 1, &ai->erase); 974 if (err) 975 return err; 976 goto adjust_mean_ec; 977 case UBI_IO_FF: 978 if (ec_err) 979 err = add_to_list(ai, pnum, UBI_UNKNOWN, 980 UBI_UNKNOWN, ec, 1, &ai->erase); 981 else 982 err = add_to_list(ai, pnum, UBI_UNKNOWN, 983 UBI_UNKNOWN, ec, 0, &ai->free); 984 if (err) 985 return err; 986 goto adjust_mean_ec; 987 default: 988 ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d", 989 err); 990 return -EINVAL; 991 } 992 993 vol_id = be32_to_cpu(vidh->vol_id); 994 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { 995 int lnum = be32_to_cpu(vidh->lnum); 996 997 /* Unsupported internal volume */ 998 switch (vidh->compat) { 999 case UBI_COMPAT_DELETE: 1000 ubi_msg("\"delete\" compatible internal volume %d:%d" 1001 " found, will remove it", vol_id, lnum); 1002 err = add_to_list(ai, pnum, vol_id, lnum, 1003 ec, 1, &ai->erase); 1004 if (err) 1005 return err; 1006 return 0; 1007 1008 case UBI_COMPAT_RO: 1009 ubi_msg("read-only compatible internal volume %d:%d" 1010 " found, switch to read-only mode", 1011 vol_id, lnum); 1012 ubi->ro_mode = 1; 1013 break; 1014 1015 case UBI_COMPAT_PRESERVE: 1016 ubi_msg("\"preserve\" compatible internal volume %d:%d" 1017 " found", vol_id, lnum); 1018 err = add_to_list(ai, pnum, vol_id, lnum, 1019 ec, 0, &ai->alien); 1020 if (err) 1021 return err; 1022 return 0; 1023 1024 case UBI_COMPAT_REJECT: 1025 ubi_err("incompatible internal volume %d:%d found", 1026 vol_id, lnum); 1027 return -EINVAL; 1028 } 1029 } 1030 1031 if (ec_err) 1032 ubi_warn("valid VID header but corrupted EC header at PEB %d", 1033 pnum); 1034 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips); 1035 if (err) 1036 return err; 1037 1038 adjust_mean_ec: 1039 if (!ec_err) { 1040 ai->ec_sum += ec; 1041 ai->ec_count += 1; 1042 if (ec > ai->max_ec) 1043 ai->max_ec = ec; 1044 if (ec < ai->min_ec) 1045 ai->min_ec = ec; 1046 } 1047 1048 return 0; 1049 } 1050 1051 /** 1052 * late_analysis - analyze the overall situation with PEB. 1053 * @ubi: UBI device description object 1054 * @ai: attaching information 1055 * 1056 * This is a helper function which takes a look what PEBs we have after we 1057 * gather information about all of them ("ai" is compete). It decides whether 1058 * the flash is empty and should be formatted of whether there are too many 1059 * corrupted PEBs and we should not attach this MTD device. Returns zero if we 1060 * should proceed with attaching the MTD device, and %-EINVAL if we should not. 1061 */ 1062 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai) 1063 { 1064 struct ubi_ainf_peb *aeb; 1065 int max_corr, peb_count; 1066 1067 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count; 1068 max_corr = peb_count / 20 ?: 8; 1069 1070 /* 1071 * Few corrupted PEBs is not a problem and may be just a result of 1072 * unclean reboots. However, many of them may indicate some problems 1073 * with the flash HW or driver. 1074 */ 1075 if (ai->corr_peb_count) { 1076 ubi_err("%d PEBs are corrupted and preserved", 1077 ai->corr_peb_count); 1078 printk(KERN_ERR "Corrupted PEBs are:"); 1079 list_for_each_entry(aeb, &ai->corr, u.list) 1080 printk(KERN_CONT " %d", aeb->pnum); 1081 printk(KERN_CONT "\n"); 1082 1083 /* 1084 * If too many PEBs are corrupted, we refuse attaching, 1085 * otherwise, only print a warning. 1086 */ 1087 if (ai->corr_peb_count >= max_corr) { 1088 ubi_err("too many corrupted PEBs, refusing"); 1089 return -EINVAL; 1090 } 1091 } 1092 1093 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) { 1094 /* 1095 * All PEBs are empty, or almost all - a couple PEBs look like 1096 * they may be bad PEBs which were not marked as bad yet. 1097 * 1098 * This piece of code basically tries to distinguish between 1099 * the following situations: 1100 * 1101 * 1. Flash is empty, but there are few bad PEBs, which are not 1102 * marked as bad so far, and which were read with error. We 1103 * want to go ahead and format this flash. While formatting, 1104 * the faulty PEBs will probably be marked as bad. 1105 * 1106 * 2. Flash contains non-UBI data and we do not want to format 1107 * it and destroy possibly important information. 1108 */ 1109 if (ai->maybe_bad_peb_count <= 2) { 1110 ai->is_empty = 1; 1111 ubi_msg("empty MTD device detected"); 1112 get_random_bytes(&ubi->image_seq, 1113 sizeof(ubi->image_seq)); 1114 } else { 1115 ubi_err("MTD device is not UBI-formatted and possibly " 1116 "contains non-UBI data - refusing it"); 1117 return -EINVAL; 1118 } 1119 1120 } 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * scan_all - scan entire MTD device. 1127 * @ubi: UBI device description object 1128 * 1129 * This function does full scanning of an MTD device and returns complete 1130 * information about it in form of a "struct ubi_attach_info" object. In case 1131 * of failure, an error code is returned. 1132 */ 1133 static struct ubi_attach_info *scan_all(struct ubi_device *ubi) 1134 { 1135 int err, pnum; 1136 struct rb_node *rb1, *rb2; 1137 struct ubi_ainf_volume *av; 1138 struct ubi_ainf_peb *aeb; 1139 struct ubi_attach_info *ai; 1140 1141 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL); 1142 if (!ai) 1143 return ERR_PTR(-ENOMEM); 1144 1145 INIT_LIST_HEAD(&ai->corr); 1146 INIT_LIST_HEAD(&ai->free); 1147 INIT_LIST_HEAD(&ai->erase); 1148 INIT_LIST_HEAD(&ai->alien); 1149 ai->volumes = RB_ROOT; 1150 1151 err = -ENOMEM; 1152 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache", 1153 sizeof(struct ubi_ainf_peb), 1154 0, 0, NULL); 1155 if (!ai->aeb_slab_cache) 1156 goto out_ai; 1157 1158 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); 1159 if (!ech) 1160 goto out_ai; 1161 1162 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); 1163 if (!vidh) 1164 goto out_ech; 1165 1166 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1167 cond_resched(); 1168 1169 dbg_gen("process PEB %d", pnum); 1170 err = scan_peb(ubi, ai, pnum); 1171 if (err < 0) 1172 goto out_vidh; 1173 } 1174 1175 dbg_msg("scanning is finished"); 1176 1177 /* Calculate mean erase counter */ 1178 if (ai->ec_count) 1179 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count); 1180 1181 err = late_analysis(ubi, ai); 1182 if (err) 1183 goto out_vidh; 1184 1185 /* 1186 * In case of unknown erase counter we use the mean erase counter 1187 * value. 1188 */ 1189 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1190 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1191 if (aeb->ec == UBI_UNKNOWN) 1192 aeb->ec = ai->mean_ec; 1193 } 1194 1195 list_for_each_entry(aeb, &ai->free, u.list) { 1196 if (aeb->ec == UBI_UNKNOWN) 1197 aeb->ec = ai->mean_ec; 1198 } 1199 1200 list_for_each_entry(aeb, &ai->corr, u.list) 1201 if (aeb->ec == UBI_UNKNOWN) 1202 aeb->ec = ai->mean_ec; 1203 1204 list_for_each_entry(aeb, &ai->erase, u.list) 1205 if (aeb->ec == UBI_UNKNOWN) 1206 aeb->ec = ai->mean_ec; 1207 1208 err = self_check_ai(ubi, ai); 1209 if (err) 1210 goto out_vidh; 1211 1212 ubi_free_vid_hdr(ubi, vidh); 1213 kfree(ech); 1214 1215 return ai; 1216 1217 out_vidh: 1218 ubi_free_vid_hdr(ubi, vidh); 1219 out_ech: 1220 kfree(ech); 1221 out_ai: 1222 ubi_destroy_ai(ai); 1223 return ERR_PTR(err); 1224 } 1225 1226 /** 1227 * ubi_attach - attach an MTD device. 1228 * @ubi: UBI device descriptor 1229 * 1230 * This function returns zero in case of success and a negative error code in 1231 * case of failure. 1232 */ 1233 int ubi_attach(struct ubi_device *ubi) 1234 { 1235 int err; 1236 struct ubi_attach_info *ai; 1237 1238 ai = scan_all(ubi); 1239 if (IS_ERR(ai)) 1240 return PTR_ERR(ai); 1241 1242 ubi->bad_peb_count = ai->bad_peb_count; 1243 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count; 1244 ubi->corr_peb_count = ai->corr_peb_count; 1245 ubi->max_ec = ai->max_ec; 1246 ubi->mean_ec = ai->mean_ec; 1247 ubi_msg("max. sequence number: %llu", ai->max_sqnum); 1248 1249 err = ubi_read_volume_table(ubi, ai); 1250 if (err) 1251 goto out_ai; 1252 1253 err = ubi_wl_init(ubi, ai); 1254 if (err) 1255 goto out_vtbl; 1256 1257 err = ubi_eba_init(ubi, ai); 1258 if (err) 1259 goto out_wl; 1260 1261 ubi_destroy_ai(ai); 1262 return 0; 1263 1264 out_wl: 1265 ubi_wl_close(ubi); 1266 out_vtbl: 1267 ubi_free_internal_volumes(ubi); 1268 vfree(ubi->vtbl); 1269 out_ai: 1270 ubi_destroy_ai(ai); 1271 return err; 1272 } 1273 1274 /** 1275 * destroy_av - free volume attaching information. 1276 * @av: volume attaching information 1277 * @ai: attaching information 1278 * 1279 * This function destroys the volume attaching information. 1280 */ 1281 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av) 1282 { 1283 struct ubi_ainf_peb *aeb; 1284 struct rb_node *this = av->root.rb_node; 1285 1286 while (this) { 1287 if (this->rb_left) 1288 this = this->rb_left; 1289 else if (this->rb_right) 1290 this = this->rb_right; 1291 else { 1292 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb); 1293 this = rb_parent(this); 1294 if (this) { 1295 if (this->rb_left == &aeb->u.rb) 1296 this->rb_left = NULL; 1297 else 1298 this->rb_right = NULL; 1299 } 1300 1301 kmem_cache_free(ai->aeb_slab_cache, aeb); 1302 } 1303 } 1304 kfree(av); 1305 } 1306 1307 /** 1308 * ubi_destroy_ai - destroy attaching information. 1309 * @ai: attaching information 1310 */ 1311 void ubi_destroy_ai(struct ubi_attach_info *ai) 1312 { 1313 struct ubi_ainf_peb *aeb, *aeb_tmp; 1314 struct ubi_ainf_volume *av; 1315 struct rb_node *rb; 1316 1317 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) { 1318 list_del(&aeb->u.list); 1319 kmem_cache_free(ai->aeb_slab_cache, aeb); 1320 } 1321 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) { 1322 list_del(&aeb->u.list); 1323 kmem_cache_free(ai->aeb_slab_cache, aeb); 1324 } 1325 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) { 1326 list_del(&aeb->u.list); 1327 kmem_cache_free(ai->aeb_slab_cache, aeb); 1328 } 1329 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) { 1330 list_del(&aeb->u.list); 1331 kmem_cache_free(ai->aeb_slab_cache, aeb); 1332 } 1333 1334 /* Destroy the volume RB-tree */ 1335 rb = ai->volumes.rb_node; 1336 while (rb) { 1337 if (rb->rb_left) 1338 rb = rb->rb_left; 1339 else if (rb->rb_right) 1340 rb = rb->rb_right; 1341 else { 1342 av = rb_entry(rb, struct ubi_ainf_volume, rb); 1343 1344 rb = rb_parent(rb); 1345 if (rb) { 1346 if (rb->rb_left == &av->rb) 1347 rb->rb_left = NULL; 1348 else 1349 rb->rb_right = NULL; 1350 } 1351 1352 destroy_av(ai, av); 1353 } 1354 } 1355 1356 if (ai->aeb_slab_cache) 1357 kmem_cache_destroy(ai->aeb_slab_cache); 1358 1359 kfree(ai); 1360 } 1361 1362 /** 1363 * self_check_ai - check the attaching information. 1364 * @ubi: UBI device description object 1365 * @ai: attaching information 1366 * 1367 * This function returns zero if the attaching information is all right, and a 1368 * negative error code if not or if an error occurred. 1369 */ 1370 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai) 1371 { 1372 int pnum, err, vols_found = 0; 1373 struct rb_node *rb1, *rb2; 1374 struct ubi_ainf_volume *av; 1375 struct ubi_ainf_peb *aeb, *last_aeb; 1376 uint8_t *buf; 1377 1378 if (!ubi->dbg->chk_gen) 1379 return 0; 1380 1381 /* 1382 * At first, check that attaching information is OK. 1383 */ 1384 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1385 int leb_count = 0; 1386 1387 cond_resched(); 1388 1389 vols_found += 1; 1390 1391 if (ai->is_empty) { 1392 ubi_err("bad is_empty flag"); 1393 goto bad_av; 1394 } 1395 1396 if (av->vol_id < 0 || av->highest_lnum < 0 || 1397 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 || 1398 av->data_pad < 0 || av->last_data_size < 0) { 1399 ubi_err("negative values"); 1400 goto bad_av; 1401 } 1402 1403 if (av->vol_id >= UBI_MAX_VOLUMES && 1404 av->vol_id < UBI_INTERNAL_VOL_START) { 1405 ubi_err("bad vol_id"); 1406 goto bad_av; 1407 } 1408 1409 if (av->vol_id > ai->highest_vol_id) { 1410 ubi_err("highest_vol_id is %d, but vol_id %d is there", 1411 ai->highest_vol_id, av->vol_id); 1412 goto out; 1413 } 1414 1415 if (av->vol_type != UBI_DYNAMIC_VOLUME && 1416 av->vol_type != UBI_STATIC_VOLUME) { 1417 ubi_err("bad vol_type"); 1418 goto bad_av; 1419 } 1420 1421 if (av->data_pad > ubi->leb_size / 2) { 1422 ubi_err("bad data_pad"); 1423 goto bad_av; 1424 } 1425 1426 last_aeb = NULL; 1427 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1428 cond_resched(); 1429 1430 last_aeb = aeb; 1431 leb_count += 1; 1432 1433 if (aeb->pnum < 0 || aeb->ec < 0) { 1434 ubi_err("negative values"); 1435 goto bad_aeb; 1436 } 1437 1438 if (aeb->ec < ai->min_ec) { 1439 ubi_err("bad ai->min_ec (%d), %d found", 1440 ai->min_ec, aeb->ec); 1441 goto bad_aeb; 1442 } 1443 1444 if (aeb->ec > ai->max_ec) { 1445 ubi_err("bad ai->max_ec (%d), %d found", 1446 ai->max_ec, aeb->ec); 1447 goto bad_aeb; 1448 } 1449 1450 if (aeb->pnum >= ubi->peb_count) { 1451 ubi_err("too high PEB number %d, total PEBs %d", 1452 aeb->pnum, ubi->peb_count); 1453 goto bad_aeb; 1454 } 1455 1456 if (av->vol_type == UBI_STATIC_VOLUME) { 1457 if (aeb->lnum >= av->used_ebs) { 1458 ubi_err("bad lnum or used_ebs"); 1459 goto bad_aeb; 1460 } 1461 } else { 1462 if (av->used_ebs != 0) { 1463 ubi_err("non-zero used_ebs"); 1464 goto bad_aeb; 1465 } 1466 } 1467 1468 if (aeb->lnum > av->highest_lnum) { 1469 ubi_err("incorrect highest_lnum or lnum"); 1470 goto bad_aeb; 1471 } 1472 } 1473 1474 if (av->leb_count != leb_count) { 1475 ubi_err("bad leb_count, %d objects in the tree", 1476 leb_count); 1477 goto bad_av; 1478 } 1479 1480 if (!last_aeb) 1481 continue; 1482 1483 aeb = last_aeb; 1484 1485 if (aeb->lnum != av->highest_lnum) { 1486 ubi_err("bad highest_lnum"); 1487 goto bad_aeb; 1488 } 1489 } 1490 1491 if (vols_found != ai->vols_found) { 1492 ubi_err("bad ai->vols_found %d, should be %d", 1493 ai->vols_found, vols_found); 1494 goto out; 1495 } 1496 1497 /* Check that attaching information is correct */ 1498 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1499 last_aeb = NULL; 1500 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1501 int vol_type; 1502 1503 cond_resched(); 1504 1505 last_aeb = aeb; 1506 1507 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1); 1508 if (err && err != UBI_IO_BITFLIPS) { 1509 ubi_err("VID header is not OK (%d)", err); 1510 if (err > 0) 1511 err = -EIO; 1512 return err; 1513 } 1514 1515 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? 1516 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; 1517 if (av->vol_type != vol_type) { 1518 ubi_err("bad vol_type"); 1519 goto bad_vid_hdr; 1520 } 1521 1522 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) { 1523 ubi_err("bad sqnum %llu", aeb->sqnum); 1524 goto bad_vid_hdr; 1525 } 1526 1527 if (av->vol_id != be32_to_cpu(vidh->vol_id)) { 1528 ubi_err("bad vol_id %d", av->vol_id); 1529 goto bad_vid_hdr; 1530 } 1531 1532 if (av->compat != vidh->compat) { 1533 ubi_err("bad compat %d", vidh->compat); 1534 goto bad_vid_hdr; 1535 } 1536 1537 if (aeb->lnum != be32_to_cpu(vidh->lnum)) { 1538 ubi_err("bad lnum %d", aeb->lnum); 1539 goto bad_vid_hdr; 1540 } 1541 1542 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) { 1543 ubi_err("bad used_ebs %d", av->used_ebs); 1544 goto bad_vid_hdr; 1545 } 1546 1547 if (av->data_pad != be32_to_cpu(vidh->data_pad)) { 1548 ubi_err("bad data_pad %d", av->data_pad); 1549 goto bad_vid_hdr; 1550 } 1551 } 1552 1553 if (!last_aeb) 1554 continue; 1555 1556 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) { 1557 ubi_err("bad highest_lnum %d", av->highest_lnum); 1558 goto bad_vid_hdr; 1559 } 1560 1561 if (av->last_data_size != be32_to_cpu(vidh->data_size)) { 1562 ubi_err("bad last_data_size %d", av->last_data_size); 1563 goto bad_vid_hdr; 1564 } 1565 } 1566 1567 /* 1568 * Make sure that all the physical eraseblocks are in one of the lists 1569 * or trees. 1570 */ 1571 buf = kzalloc(ubi->peb_count, GFP_KERNEL); 1572 if (!buf) 1573 return -ENOMEM; 1574 1575 for (pnum = 0; pnum < ubi->peb_count; pnum++) { 1576 err = ubi_io_is_bad(ubi, pnum); 1577 if (err < 0) { 1578 kfree(buf); 1579 return err; 1580 } else if (err) 1581 buf[pnum] = 1; 1582 } 1583 1584 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) 1585 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) 1586 buf[aeb->pnum] = 1; 1587 1588 list_for_each_entry(aeb, &ai->free, u.list) 1589 buf[aeb->pnum] = 1; 1590 1591 list_for_each_entry(aeb, &ai->corr, u.list) 1592 buf[aeb->pnum] = 1; 1593 1594 list_for_each_entry(aeb, &ai->erase, u.list) 1595 buf[aeb->pnum] = 1; 1596 1597 list_for_each_entry(aeb, &ai->alien, u.list) 1598 buf[aeb->pnum] = 1; 1599 1600 err = 0; 1601 for (pnum = 0; pnum < ubi->peb_count; pnum++) 1602 if (!buf[pnum]) { 1603 ubi_err("PEB %d is not referred", pnum); 1604 err = 1; 1605 } 1606 1607 kfree(buf); 1608 if (err) 1609 goto out; 1610 return 0; 1611 1612 bad_aeb: 1613 ubi_err("bad attaching information about LEB %d", aeb->lnum); 1614 ubi_dump_aeb(aeb, 0); 1615 ubi_dump_av(av); 1616 goto out; 1617 1618 bad_av: 1619 ubi_err("bad attaching information about volume %d", av->vol_id); 1620 ubi_dump_av(av); 1621 goto out; 1622 1623 bad_vid_hdr: 1624 ubi_err("bad attaching information about volume %d", av->vol_id); 1625 ubi_dump_av(av); 1626 ubi_dump_vid_hdr(vidh); 1627 1628 out: 1629 dump_stack(); 1630 return -EINVAL; 1631 } 1632