xref: /openbmc/linux/drivers/mtd/ubi/attach.c (revision 95e9fd10)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI attaching sub-system.
23  *
24  * This sub-system is responsible for attaching MTD devices and it also
25  * implements flash media scanning.
26  *
27  * The attaching information is represented by a &struct ubi_attach_info'
28  * object. Information about volumes is represented by &struct ubi_ainf_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33  * objects are kept in per-volume RB-trees with the root at the corresponding
34  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35  * per-volume objects and each of these objects is the root of RB-tree of
36  * per-LEB objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these
55  * cases - we may lose only the data which were being written to the media just
56  * before the power cut happened, and the upper layers (e.g., UBIFS) are
57  * supposed to handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * attaching, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows (in case of attaching by
71  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72  * the data area does not contain all 0xFFs, and there were no bit-flips or
73  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75  * are as follows.
76  *   o If the data area contains only 0xFFs, there are no data, and it is safe
77  *     to just erase this PEB - this is corruption type 1.
78  *   o If the data area has bit-flips or data integrity errors (ECC errors on
79  *     NAND), it is probably a PEB which was being erased when power cut
80  *     happened, so this is corruption type 1. However, this is just a guess,
81  *     which might be wrong.
82  *   o Otherwise this it corruption type 2.
83  */
84 
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91 
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
97 
98 /**
99  * add_to_list - add physical eraseblock to a list.
100  * @ai: attaching information
101  * @pnum: physical eraseblock number to add
102  * @vol_id: the last used volume id for the PEB
103  * @lnum: the last used LEB number for the PEB
104  * @ec: erase counter of the physical eraseblock
105  * @to_head: if not zero, add to the head of the list
106  * @list: the list to add to
107  *
108  * This function allocates a 'struct ubi_ainf_peb' object for physical
109  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110  * It stores the @lnum and @vol_id alongside, which can both be
111  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112  * If @to_head is not zero, PEB will be added to the head of the list, which
113  * basically means it will be processed first later. E.g., we add corrupted
114  * PEBs (corrupted due to power cuts) to the head of the erase list to make
115  * sure we erase them first and get rid of corruptions ASAP. This function
116  * returns zero in case of success and a negative error code in case of
117  * failure.
118  */
119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 		       int lnum, int ec, int to_head, struct list_head *list)
121 {
122 	struct ubi_ainf_peb *aeb;
123 
124 	if (list == &ai->free) {
125 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 	} else if (list == &ai->erase) {
127 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 	} else if (list == &ai->alien) {
129 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 		ai->alien_peb_count += 1;
131 	} else
132 		BUG();
133 
134 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 	if (!aeb)
136 		return -ENOMEM;
137 
138 	aeb->pnum = pnum;
139 	aeb->vol_id = vol_id;
140 	aeb->lnum = lnum;
141 	aeb->ec = ec;
142 	if (to_head)
143 		list_add(&aeb->u.list, list);
144 	else
145 		list_add_tail(&aeb->u.list, list);
146 	return 0;
147 }
148 
149 /**
150  * add_corrupted - add a corrupted physical eraseblock.
151  * @ai: attaching information
152  * @pnum: physical eraseblock number to add
153  * @ec: erase counter of the physical eraseblock
154  *
155  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157  * was presumably not caused by a power cut. Returns zero in case of success
158  * and a negative error code in case of failure.
159  */
160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161 {
162 	struct ubi_ainf_peb *aeb;
163 
164 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165 
166 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 	if (!aeb)
168 		return -ENOMEM;
169 
170 	ai->corr_peb_count += 1;
171 	aeb->pnum = pnum;
172 	aeb->ec = ec;
173 	list_add(&aeb->u.list, &ai->corr);
174 	return 0;
175 }
176 
177 /**
178  * validate_vid_hdr - check volume identifier header.
179  * @vid_hdr: the volume identifier header to check
180  * @av: information about the volume this logical eraseblock belongs to
181  * @pnum: physical eraseblock number the VID header came from
182  *
183  * This function checks that data stored in @vid_hdr is consistent. Returns
184  * non-zero if an inconsistency was found and zero if not.
185  *
186  * Note, UBI does sanity check of everything it reads from the flash media.
187  * Most of the checks are done in the I/O sub-system. Here we check that the
188  * information in the VID header is consistent to the information in other VID
189  * headers of the same volume.
190  */
191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
192 			    const struct ubi_ainf_volume *av, int pnum)
193 {
194 	int vol_type = vid_hdr->vol_type;
195 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
198 
199 	if (av->leb_count != 0) {
200 		int av_vol_type;
201 
202 		/*
203 		 * This is not the first logical eraseblock belonging to this
204 		 * volume. Ensure that the data in its VID header is consistent
205 		 * to the data in previous logical eraseblock headers.
206 		 */
207 
208 		if (vol_id != av->vol_id) {
209 			ubi_err("inconsistent vol_id");
210 			goto bad;
211 		}
212 
213 		if (av->vol_type == UBI_STATIC_VOLUME)
214 			av_vol_type = UBI_VID_STATIC;
215 		else
216 			av_vol_type = UBI_VID_DYNAMIC;
217 
218 		if (vol_type != av_vol_type) {
219 			ubi_err("inconsistent vol_type");
220 			goto bad;
221 		}
222 
223 		if (used_ebs != av->used_ebs) {
224 			ubi_err("inconsistent used_ebs");
225 			goto bad;
226 		}
227 
228 		if (data_pad != av->data_pad) {
229 			ubi_err("inconsistent data_pad");
230 			goto bad;
231 		}
232 	}
233 
234 	return 0;
235 
236 bad:
237 	ubi_err("inconsistent VID header at PEB %d", pnum);
238 	ubi_dump_vid_hdr(vid_hdr);
239 	ubi_dump_av(av);
240 	return -EINVAL;
241 }
242 
243 /**
244  * add_volume - add volume to the attaching information.
245  * @ai: attaching information
246  * @vol_id: ID of the volume to add
247  * @pnum: physical eraseblock number
248  * @vid_hdr: volume identifier header
249  *
250  * If the volume corresponding to the @vid_hdr logical eraseblock is already
251  * present in the attaching information, this function does nothing. Otherwise
252  * it adds corresponding volume to the attaching information. Returns a pointer
253  * to the allocated "av" object in case of success and a negative error code in
254  * case of failure.
255  */
256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257 					  int vol_id, int pnum,
258 					  const struct ubi_vid_hdr *vid_hdr)
259 {
260 	struct ubi_ainf_volume *av;
261 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
262 
263 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
264 
265 	/* Walk the volume RB-tree to look if this volume is already present */
266 	while (*p) {
267 		parent = *p;
268 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
269 
270 		if (vol_id == av->vol_id)
271 			return av;
272 
273 		if (vol_id > av->vol_id)
274 			p = &(*p)->rb_left;
275 		else
276 			p = &(*p)->rb_right;
277 	}
278 
279 	/* The volume is absent - add it */
280 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 	if (!av)
282 		return ERR_PTR(-ENOMEM);
283 
284 	av->highest_lnum = av->leb_count = 0;
285 	av->vol_id = vol_id;
286 	av->root = RB_ROOT;
287 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 	av->compat = vid_hdr->compat;
290 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291 							    : UBI_STATIC_VOLUME;
292 	if (vol_id > ai->highest_vol_id)
293 		ai->highest_vol_id = vol_id;
294 
295 	rb_link_node(&av->rb, parent, p);
296 	rb_insert_color(&av->rb, &ai->volumes);
297 	ai->vols_found += 1;
298 	dbg_bld("added volume %d", vol_id);
299 	return av;
300 }
301 
302 /**
303  * compare_lebs - find out which logical eraseblock is newer.
304  * @ubi: UBI device description object
305  * @aeb: first logical eraseblock to compare
306  * @pnum: physical eraseblock number of the second logical eraseblock to
307  * compare
308  * @vid_hdr: volume identifier header of the second logical eraseblock
309  *
310  * This function compares 2 copies of a LEB and informs which one is newer. In
311  * case of success this function returns a positive value, in case of failure, a
312  * negative error code is returned. The success return codes use the following
313  * bits:
314  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315  *       second PEB (described by @pnum and @vid_hdr);
316  *     o bit 0 is set: the second PEB is newer;
317  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318  *     o bit 1 is set: bit-flips were detected in the newer LEB;
319  *     o bit 2 is cleared: the older LEB is not corrupted;
320  *     o bit 2 is set: the older LEB is corrupted.
321  */
322 static int compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323 			int pnum, const struct ubi_vid_hdr *vid_hdr)
324 {
325 	void *buf;
326 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 	uint32_t data_crc, crc;
328 	struct ubi_vid_hdr *vh = NULL;
329 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
330 
331 	if (sqnum2 == aeb->sqnum) {
332 		/*
333 		 * This must be a really ancient UBI image which has been
334 		 * created before sequence numbers support has been added. At
335 		 * that times we used 32-bit LEB versions stored in logical
336 		 * eraseblocks. That was before UBI got into mainline. We do not
337 		 * support these images anymore. Well, those images still work,
338 		 * but only if no unclean reboots happened.
339 		 */
340 		ubi_err("unsupported on-flash UBI format\n");
341 		return -EINVAL;
342 	}
343 
344 	/* Obviously the LEB with lower sequence counter is older */
345 	second_is_newer = (sqnum2 > aeb->sqnum);
346 
347 	/*
348 	 * Now we know which copy is newer. If the copy flag of the PEB with
349 	 * newer version is not set, then we just return, otherwise we have to
350 	 * check data CRC. For the second PEB we already have the VID header,
351 	 * for the first one - we'll need to re-read it from flash.
352 	 *
353 	 * Note: this may be optimized so that we wouldn't read twice.
354 	 */
355 
356 	if (second_is_newer) {
357 		if (!vid_hdr->copy_flag) {
358 			/* It is not a copy, so it is newer */
359 			dbg_bld("second PEB %d is newer, copy_flag is unset",
360 				pnum);
361 			return 1;
362 		}
363 	} else {
364 		if (!aeb->copy_flag) {
365 			/* It is not a copy, so it is newer */
366 			dbg_bld("first PEB %d is newer, copy_flag is unset",
367 				pnum);
368 			return bitflips << 1;
369 		}
370 
371 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
372 		if (!vh)
373 			return -ENOMEM;
374 
375 		pnum = aeb->pnum;
376 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
377 		if (err) {
378 			if (err == UBI_IO_BITFLIPS)
379 				bitflips = 1;
380 			else {
381 				ubi_err("VID of PEB %d header is bad, but it "
382 					"was OK earlier, err %d", pnum, err);
383 				if (err > 0)
384 					err = -EIO;
385 
386 				goto out_free_vidh;
387 			}
388 		}
389 
390 		vid_hdr = vh;
391 	}
392 
393 	/* Read the data of the copy and check the CRC */
394 
395 	len = be32_to_cpu(vid_hdr->data_size);
396 	buf = vmalloc(len);
397 	if (!buf) {
398 		err = -ENOMEM;
399 		goto out_free_vidh;
400 	}
401 
402 	err = ubi_io_read_data(ubi, buf, pnum, 0, len);
403 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
404 		goto out_free_buf;
405 
406 	data_crc = be32_to_cpu(vid_hdr->data_crc);
407 	crc = crc32(UBI_CRC32_INIT, buf, len);
408 	if (crc != data_crc) {
409 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
410 			pnum, crc, data_crc);
411 		corrupted = 1;
412 		bitflips = 0;
413 		second_is_newer = !second_is_newer;
414 	} else {
415 		dbg_bld("PEB %d CRC is OK", pnum);
416 		bitflips = !!err;
417 	}
418 
419 	vfree(buf);
420 	ubi_free_vid_hdr(ubi, vh);
421 
422 	if (second_is_newer)
423 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
424 	else
425 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
426 
427 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
428 
429 out_free_buf:
430 	vfree(buf);
431 out_free_vidh:
432 	ubi_free_vid_hdr(ubi, vh);
433 	return err;
434 }
435 
436 /**
437  * ubi_add_to_av - add used physical eraseblock to the attaching information.
438  * @ubi: UBI device description object
439  * @ai: attaching information
440  * @pnum: the physical eraseblock number
441  * @ec: erase counter
442  * @vid_hdr: the volume identifier header
443  * @bitflips: if bit-flips were detected when this physical eraseblock was read
444  *
445  * This function adds information about a used physical eraseblock to the
446  * 'used' tree of the corresponding volume. The function is rather complex
447  * because it has to handle cases when this is not the first physical
448  * eraseblock belonging to the same logical eraseblock, and the newer one has
449  * to be picked, while the older one has to be dropped. This function returns
450  * zero in case of success and a negative error code in case of failure.
451  */
452 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
453 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
454 {
455 	int err, vol_id, lnum;
456 	unsigned long long sqnum;
457 	struct ubi_ainf_volume *av;
458 	struct ubi_ainf_peb *aeb;
459 	struct rb_node **p, *parent = NULL;
460 
461 	vol_id = be32_to_cpu(vid_hdr->vol_id);
462 	lnum = be32_to_cpu(vid_hdr->lnum);
463 	sqnum = be64_to_cpu(vid_hdr->sqnum);
464 
465 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
466 		pnum, vol_id, lnum, ec, sqnum, bitflips);
467 
468 	av = add_volume(ai, vol_id, pnum, vid_hdr);
469 	if (IS_ERR(av))
470 		return PTR_ERR(av);
471 
472 	if (ai->max_sqnum < sqnum)
473 		ai->max_sqnum = sqnum;
474 
475 	/*
476 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
477 	 * if this is the first instance of this logical eraseblock or not.
478 	 */
479 	p = &av->root.rb_node;
480 	while (*p) {
481 		int cmp_res;
482 
483 		parent = *p;
484 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
485 		if (lnum != aeb->lnum) {
486 			if (lnum < aeb->lnum)
487 				p = &(*p)->rb_left;
488 			else
489 				p = &(*p)->rb_right;
490 			continue;
491 		}
492 
493 		/*
494 		 * There is already a physical eraseblock describing the same
495 		 * logical eraseblock present.
496 		 */
497 
498 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
499 			aeb->pnum, aeb->sqnum, aeb->ec);
500 
501 		/*
502 		 * Make sure that the logical eraseblocks have different
503 		 * sequence numbers. Otherwise the image is bad.
504 		 *
505 		 * However, if the sequence number is zero, we assume it must
506 		 * be an ancient UBI image from the era when UBI did not have
507 		 * sequence numbers. We still can attach these images, unless
508 		 * there is a need to distinguish between old and new
509 		 * eraseblocks, in which case we'll refuse the image in
510 		 * 'compare_lebs()'. In other words, we attach old clean
511 		 * images, but refuse attaching old images with duplicated
512 		 * logical eraseblocks because there was an unclean reboot.
513 		 */
514 		if (aeb->sqnum == sqnum && sqnum != 0) {
515 			ubi_err("two LEBs with same sequence number %llu",
516 				sqnum);
517 			ubi_dump_aeb(aeb, 0);
518 			ubi_dump_vid_hdr(vid_hdr);
519 			return -EINVAL;
520 		}
521 
522 		/*
523 		 * Now we have to drop the older one and preserve the newer
524 		 * one.
525 		 */
526 		cmp_res = compare_lebs(ubi, aeb, pnum, vid_hdr);
527 		if (cmp_res < 0)
528 			return cmp_res;
529 
530 		if (cmp_res & 1) {
531 			/*
532 			 * This logical eraseblock is newer than the one
533 			 * found earlier.
534 			 */
535 			err = validate_vid_hdr(vid_hdr, av, pnum);
536 			if (err)
537 				return err;
538 
539 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
540 					  aeb->lnum, aeb->ec, cmp_res & 4,
541 					  &ai->erase);
542 			if (err)
543 				return err;
544 
545 			aeb->ec = ec;
546 			aeb->pnum = pnum;
547 			aeb->vol_id = vol_id;
548 			aeb->lnum = lnum;
549 			aeb->scrub = ((cmp_res & 2) || bitflips);
550 			aeb->copy_flag = vid_hdr->copy_flag;
551 			aeb->sqnum = sqnum;
552 
553 			if (av->highest_lnum == lnum)
554 				av->last_data_size =
555 					be32_to_cpu(vid_hdr->data_size);
556 
557 			return 0;
558 		} else {
559 			/*
560 			 * This logical eraseblock is older than the one found
561 			 * previously.
562 			 */
563 			return add_to_list(ai, pnum, vol_id, lnum, ec,
564 					   cmp_res & 4, &ai->erase);
565 		}
566 	}
567 
568 	/*
569 	 * We've met this logical eraseblock for the first time, add it to the
570 	 * attaching information.
571 	 */
572 
573 	err = validate_vid_hdr(vid_hdr, av, pnum);
574 	if (err)
575 		return err;
576 
577 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
578 	if (!aeb)
579 		return -ENOMEM;
580 
581 	aeb->ec = ec;
582 	aeb->pnum = pnum;
583 	aeb->vol_id = vol_id;
584 	aeb->lnum = lnum;
585 	aeb->scrub = bitflips;
586 	aeb->copy_flag = vid_hdr->copy_flag;
587 	aeb->sqnum = sqnum;
588 
589 	if (av->highest_lnum <= lnum) {
590 		av->highest_lnum = lnum;
591 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
592 	}
593 
594 	av->leb_count += 1;
595 	rb_link_node(&aeb->u.rb, parent, p);
596 	rb_insert_color(&aeb->u.rb, &av->root);
597 	return 0;
598 }
599 
600 /**
601  * ubi_find_av - find volume in the attaching information.
602  * @ai: attaching information
603  * @vol_id: the requested volume ID
604  *
605  * This function returns a pointer to the volume description or %NULL if there
606  * are no data about this volume in the attaching information.
607  */
608 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
609 				    int vol_id)
610 {
611 	struct ubi_ainf_volume *av;
612 	struct rb_node *p = ai->volumes.rb_node;
613 
614 	while (p) {
615 		av = rb_entry(p, struct ubi_ainf_volume, rb);
616 
617 		if (vol_id == av->vol_id)
618 			return av;
619 
620 		if (vol_id > av->vol_id)
621 			p = p->rb_left;
622 		else
623 			p = p->rb_right;
624 	}
625 
626 	return NULL;
627 }
628 
629 /**
630  * ubi_remove_av - delete attaching information about a volume.
631  * @ai: attaching information
632  * @av: the volume attaching information to delete
633  */
634 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
635 {
636 	struct rb_node *rb;
637 	struct ubi_ainf_peb *aeb;
638 
639 	dbg_bld("remove attaching information about volume %d", av->vol_id);
640 
641 	while ((rb = rb_first(&av->root))) {
642 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
643 		rb_erase(&aeb->u.rb, &av->root);
644 		list_add_tail(&aeb->u.list, &ai->erase);
645 	}
646 
647 	rb_erase(&av->rb, &ai->volumes);
648 	kfree(av);
649 	ai->vols_found -= 1;
650 }
651 
652 /**
653  * early_erase_peb - erase a physical eraseblock.
654  * @ubi: UBI device description object
655  * @ai: attaching information
656  * @pnum: physical eraseblock number to erase;
657  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
658  *
659  * This function erases physical eraseblock 'pnum', and writes the erase
660  * counter header to it. This function should only be used on UBI device
661  * initialization stages, when the EBA sub-system had not been yet initialized.
662  * This function returns zero in case of success and a negative error code in
663  * case of failure.
664  */
665 static int early_erase_peb(struct ubi_device *ubi,
666 			   const struct ubi_attach_info *ai, int pnum, int ec)
667 {
668 	int err;
669 	struct ubi_ec_hdr *ec_hdr;
670 
671 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
672 		/*
673 		 * Erase counter overflow. Upgrade UBI and use 64-bit
674 		 * erase counters internally.
675 		 */
676 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
677 		return -EINVAL;
678 	}
679 
680 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
681 	if (!ec_hdr)
682 		return -ENOMEM;
683 
684 	ec_hdr->ec = cpu_to_be64(ec);
685 
686 	err = ubi_io_sync_erase(ubi, pnum, 0);
687 	if (err < 0)
688 		goto out_free;
689 
690 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
691 
692 out_free:
693 	kfree(ec_hdr);
694 	return err;
695 }
696 
697 /**
698  * ubi_early_get_peb - get a free physical eraseblock.
699  * @ubi: UBI device description object
700  * @ai: attaching information
701  *
702  * This function returns a free physical eraseblock. It is supposed to be
703  * called on the UBI initialization stages when the wear-leveling sub-system is
704  * not initialized yet. This function picks a physical eraseblocks from one of
705  * the lists, writes the EC header if it is needed, and removes it from the
706  * list.
707  *
708  * This function returns a pointer to the "aeb" of the found free PEB in case
709  * of success and an error code in case of failure.
710  */
711 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
712 				       struct ubi_attach_info *ai)
713 {
714 	int err = 0;
715 	struct ubi_ainf_peb *aeb, *tmp_aeb;
716 
717 	if (!list_empty(&ai->free)) {
718 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
719 		list_del(&aeb->u.list);
720 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
721 		return aeb;
722 	}
723 
724 	/*
725 	 * We try to erase the first physical eraseblock from the erase list
726 	 * and pick it if we succeed, or try to erase the next one if not. And
727 	 * so forth. We don't want to take care about bad eraseblocks here -
728 	 * they'll be handled later.
729 	 */
730 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
731 		if (aeb->ec == UBI_UNKNOWN)
732 			aeb->ec = ai->mean_ec;
733 
734 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
735 		if (err)
736 			continue;
737 
738 		aeb->ec += 1;
739 		list_del(&aeb->u.list);
740 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
741 		return aeb;
742 	}
743 
744 	ubi_err("no free eraseblocks");
745 	return ERR_PTR(-ENOSPC);
746 }
747 
748 /**
749  * check_corruption - check the data area of PEB.
750  * @ubi: UBI device description object
751  * @vid_hrd: the (corrupted) VID header of this PEB
752  * @pnum: the physical eraseblock number to check
753  *
754  * This is a helper function which is used to distinguish between VID header
755  * corruptions caused by power cuts and other reasons. If the PEB contains only
756  * 0xFF bytes in the data area, the VID header is most probably corrupted
757  * because of a power cut (%0 is returned in this case). Otherwise, it was
758  * probably corrupted for some other reasons (%1 is returned in this case). A
759  * negative error code is returned if a read error occurred.
760  *
761  * If the corruption reason was a power cut, UBI can safely erase this PEB.
762  * Otherwise, it should preserve it to avoid possibly destroying important
763  * information.
764  */
765 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
766 			    int pnum)
767 {
768 	int err;
769 
770 	mutex_lock(&ubi->buf_mutex);
771 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
772 
773 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
774 			  ubi->leb_size);
775 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
776 		/*
777 		 * Bit-flips or integrity errors while reading the data area.
778 		 * It is difficult to say for sure what type of corruption is
779 		 * this, but presumably a power cut happened while this PEB was
780 		 * erased, so it became unstable and corrupted, and should be
781 		 * erased.
782 		 */
783 		err = 0;
784 		goto out_unlock;
785 	}
786 
787 	if (err)
788 		goto out_unlock;
789 
790 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
791 		goto out_unlock;
792 
793 	ubi_err("PEB %d contains corrupted VID header, and the data does not "
794 		"contain all 0xFF, this may be a non-UBI PEB or a severe VID "
795 		"header corruption which requires manual inspection", pnum);
796 	ubi_dump_vid_hdr(vid_hdr);
797 	dbg_msg("hexdump of PEB %d offset %d, length %d",
798 		pnum, ubi->leb_start, ubi->leb_size);
799 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
800 			       ubi->peb_buf, ubi->leb_size, 1);
801 	err = 1;
802 
803 out_unlock:
804 	mutex_unlock(&ubi->buf_mutex);
805 	return err;
806 }
807 
808 /**
809  * scan_peb - scan and process UBI headers of a PEB.
810  * @ubi: UBI device description object
811  * @ai: attaching information
812  * @pnum: the physical eraseblock number
813  *
814  * This function reads UBI headers of PEB @pnum, checks them, and adds
815  * information about this PEB to the corresponding list or RB-tree in the
816  * "attaching info" structure. Returns zero if the physical eraseblock was
817  * successfully handled and a negative error code in case of failure.
818  */
819 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
820 		    int pnum)
821 {
822 	long long uninitialized_var(ec);
823 	int err, bitflips = 0, vol_id, ec_err = 0;
824 
825 	dbg_bld("scan PEB %d", pnum);
826 
827 	/* Skip bad physical eraseblocks */
828 	err = ubi_io_is_bad(ubi, pnum);
829 	if (err < 0)
830 		return err;
831 	else if (err) {
832 		ai->bad_peb_count += 1;
833 		return 0;
834 	}
835 
836 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
837 	if (err < 0)
838 		return err;
839 	switch (err) {
840 	case 0:
841 		break;
842 	case UBI_IO_BITFLIPS:
843 		bitflips = 1;
844 		break;
845 	case UBI_IO_FF:
846 		ai->empty_peb_count += 1;
847 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
848 				   UBI_UNKNOWN, 0, &ai->erase);
849 	case UBI_IO_FF_BITFLIPS:
850 		ai->empty_peb_count += 1;
851 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
852 				   UBI_UNKNOWN, 1, &ai->erase);
853 	case UBI_IO_BAD_HDR_EBADMSG:
854 	case UBI_IO_BAD_HDR:
855 		/*
856 		 * We have to also look at the VID header, possibly it is not
857 		 * corrupted. Set %bitflips flag in order to make this PEB be
858 		 * moved and EC be re-created.
859 		 */
860 		ec_err = err;
861 		ec = UBI_UNKNOWN;
862 		bitflips = 1;
863 		break;
864 	default:
865 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
866 		return -EINVAL;
867 	}
868 
869 	if (!ec_err) {
870 		int image_seq;
871 
872 		/* Make sure UBI version is OK */
873 		if (ech->version != UBI_VERSION) {
874 			ubi_err("this UBI version is %d, image version is %d",
875 				UBI_VERSION, (int)ech->version);
876 			return -EINVAL;
877 		}
878 
879 		ec = be64_to_cpu(ech->ec);
880 		if (ec > UBI_MAX_ERASECOUNTER) {
881 			/*
882 			 * Erase counter overflow. The EC headers have 64 bits
883 			 * reserved, but we anyway make use of only 31 bit
884 			 * values, as this seems to be enough for any existing
885 			 * flash. Upgrade UBI and use 64-bit erase counters
886 			 * internally.
887 			 */
888 			ubi_err("erase counter overflow, max is %d",
889 				UBI_MAX_ERASECOUNTER);
890 			ubi_dump_ec_hdr(ech);
891 			return -EINVAL;
892 		}
893 
894 		/*
895 		 * Make sure that all PEBs have the same image sequence number.
896 		 * This allows us to detect situations when users flash UBI
897 		 * images incorrectly, so that the flash has the new UBI image
898 		 * and leftovers from the old one. This feature was added
899 		 * relatively recently, and the sequence number was always
900 		 * zero, because old UBI implementations always set it to zero.
901 		 * For this reasons, we do not panic if some PEBs have zero
902 		 * sequence number, while other PEBs have non-zero sequence
903 		 * number.
904 		 */
905 		image_seq = be32_to_cpu(ech->image_seq);
906 		if (!ubi->image_seq && image_seq)
907 			ubi->image_seq = image_seq;
908 		if (ubi->image_seq && image_seq &&
909 		    ubi->image_seq != image_seq) {
910 			ubi_err("bad image sequence number %d in PEB %d, "
911 				"expected %d", image_seq, pnum, ubi->image_seq);
912 			ubi_dump_ec_hdr(ech);
913 			return -EINVAL;
914 		}
915 	}
916 
917 	/* OK, we've done with the EC header, let's look at the VID header */
918 
919 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
920 	if (err < 0)
921 		return err;
922 	switch (err) {
923 	case 0:
924 		break;
925 	case UBI_IO_BITFLIPS:
926 		bitflips = 1;
927 		break;
928 	case UBI_IO_BAD_HDR_EBADMSG:
929 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
930 			/*
931 			 * Both EC and VID headers are corrupted and were read
932 			 * with data integrity error, probably this is a bad
933 			 * PEB, bit it is not marked as bad yet. This may also
934 			 * be a result of power cut during erasure.
935 			 */
936 			ai->maybe_bad_peb_count += 1;
937 	case UBI_IO_BAD_HDR:
938 		if (ec_err)
939 			/*
940 			 * Both headers are corrupted. There is a possibility
941 			 * that this a valid UBI PEB which has corresponding
942 			 * LEB, but the headers are corrupted. However, it is
943 			 * impossible to distinguish it from a PEB which just
944 			 * contains garbage because of a power cut during erase
945 			 * operation. So we just schedule this PEB for erasure.
946 			 *
947 			 * Besides, in case of NOR flash, we deliberately
948 			 * corrupt both headers because NOR flash erasure is
949 			 * slow and can start from the end.
950 			 */
951 			err = 0;
952 		else
953 			/*
954 			 * The EC was OK, but the VID header is corrupted. We
955 			 * have to check what is in the data area.
956 			 */
957 			err = check_corruption(ubi, vidh, pnum);
958 
959 		if (err < 0)
960 			return err;
961 		else if (!err)
962 			/* This corruption is caused by a power cut */
963 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
964 					  UBI_UNKNOWN, ec, 1, &ai->erase);
965 		else
966 			/* This is an unexpected corruption */
967 			err = add_corrupted(ai, pnum, ec);
968 		if (err)
969 			return err;
970 		goto adjust_mean_ec;
971 	case UBI_IO_FF_BITFLIPS:
972 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
973 				  ec, 1, &ai->erase);
974 		if (err)
975 			return err;
976 		goto adjust_mean_ec;
977 	case UBI_IO_FF:
978 		if (ec_err)
979 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
980 					  UBI_UNKNOWN, ec, 1, &ai->erase);
981 		else
982 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
983 					  UBI_UNKNOWN, ec, 0, &ai->free);
984 		if (err)
985 			return err;
986 		goto adjust_mean_ec;
987 	default:
988 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
989 			err);
990 		return -EINVAL;
991 	}
992 
993 	vol_id = be32_to_cpu(vidh->vol_id);
994 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
995 		int lnum = be32_to_cpu(vidh->lnum);
996 
997 		/* Unsupported internal volume */
998 		switch (vidh->compat) {
999 		case UBI_COMPAT_DELETE:
1000 			ubi_msg("\"delete\" compatible internal volume %d:%d"
1001 				" found, will remove it", vol_id, lnum);
1002 			err = add_to_list(ai, pnum, vol_id, lnum,
1003 					  ec, 1, &ai->erase);
1004 			if (err)
1005 				return err;
1006 			return 0;
1007 
1008 		case UBI_COMPAT_RO:
1009 			ubi_msg("read-only compatible internal volume %d:%d"
1010 				" found, switch to read-only mode",
1011 				vol_id, lnum);
1012 			ubi->ro_mode = 1;
1013 			break;
1014 
1015 		case UBI_COMPAT_PRESERVE:
1016 			ubi_msg("\"preserve\" compatible internal volume %d:%d"
1017 				" found", vol_id, lnum);
1018 			err = add_to_list(ai, pnum, vol_id, lnum,
1019 					  ec, 0, &ai->alien);
1020 			if (err)
1021 				return err;
1022 			return 0;
1023 
1024 		case UBI_COMPAT_REJECT:
1025 			ubi_err("incompatible internal volume %d:%d found",
1026 				vol_id, lnum);
1027 			return -EINVAL;
1028 		}
1029 	}
1030 
1031 	if (ec_err)
1032 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1033 			 pnum);
1034 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1035 	if (err)
1036 		return err;
1037 
1038 adjust_mean_ec:
1039 	if (!ec_err) {
1040 		ai->ec_sum += ec;
1041 		ai->ec_count += 1;
1042 		if (ec > ai->max_ec)
1043 			ai->max_ec = ec;
1044 		if (ec < ai->min_ec)
1045 			ai->min_ec = ec;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * late_analysis - analyze the overall situation with PEB.
1053  * @ubi: UBI device description object
1054  * @ai: attaching information
1055  *
1056  * This is a helper function which takes a look what PEBs we have after we
1057  * gather information about all of them ("ai" is compete). It decides whether
1058  * the flash is empty and should be formatted of whether there are too many
1059  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1060  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1061  */
1062 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1063 {
1064 	struct ubi_ainf_peb *aeb;
1065 	int max_corr, peb_count;
1066 
1067 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1068 	max_corr = peb_count / 20 ?: 8;
1069 
1070 	/*
1071 	 * Few corrupted PEBs is not a problem and may be just a result of
1072 	 * unclean reboots. However, many of them may indicate some problems
1073 	 * with the flash HW or driver.
1074 	 */
1075 	if (ai->corr_peb_count) {
1076 		ubi_err("%d PEBs are corrupted and preserved",
1077 			ai->corr_peb_count);
1078 		printk(KERN_ERR "Corrupted PEBs are:");
1079 		list_for_each_entry(aeb, &ai->corr, u.list)
1080 			printk(KERN_CONT " %d", aeb->pnum);
1081 		printk(KERN_CONT "\n");
1082 
1083 		/*
1084 		 * If too many PEBs are corrupted, we refuse attaching,
1085 		 * otherwise, only print a warning.
1086 		 */
1087 		if (ai->corr_peb_count >= max_corr) {
1088 			ubi_err("too many corrupted PEBs, refusing");
1089 			return -EINVAL;
1090 		}
1091 	}
1092 
1093 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1094 		/*
1095 		 * All PEBs are empty, or almost all - a couple PEBs look like
1096 		 * they may be bad PEBs which were not marked as bad yet.
1097 		 *
1098 		 * This piece of code basically tries to distinguish between
1099 		 * the following situations:
1100 		 *
1101 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1102 		 *    marked as bad so far, and which were read with error. We
1103 		 *    want to go ahead and format this flash. While formatting,
1104 		 *    the faulty PEBs will probably be marked as bad.
1105 		 *
1106 		 * 2. Flash contains non-UBI data and we do not want to format
1107 		 *    it and destroy possibly important information.
1108 		 */
1109 		if (ai->maybe_bad_peb_count <= 2) {
1110 			ai->is_empty = 1;
1111 			ubi_msg("empty MTD device detected");
1112 			get_random_bytes(&ubi->image_seq,
1113 					 sizeof(ubi->image_seq));
1114 		} else {
1115 			ubi_err("MTD device is not UBI-formatted and possibly "
1116 				"contains non-UBI data - refusing it");
1117 			return -EINVAL;
1118 		}
1119 
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 /**
1126  * scan_all - scan entire MTD device.
1127  * @ubi: UBI device description object
1128  *
1129  * This function does full scanning of an MTD device and returns complete
1130  * information about it in form of a "struct ubi_attach_info" object. In case
1131  * of failure, an error code is returned.
1132  */
1133 static struct ubi_attach_info *scan_all(struct ubi_device *ubi)
1134 {
1135 	int err, pnum;
1136 	struct rb_node *rb1, *rb2;
1137 	struct ubi_ainf_volume *av;
1138 	struct ubi_ainf_peb *aeb;
1139 	struct ubi_attach_info *ai;
1140 
1141 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1142 	if (!ai)
1143 		return ERR_PTR(-ENOMEM);
1144 
1145 	INIT_LIST_HEAD(&ai->corr);
1146 	INIT_LIST_HEAD(&ai->free);
1147 	INIT_LIST_HEAD(&ai->erase);
1148 	INIT_LIST_HEAD(&ai->alien);
1149 	ai->volumes = RB_ROOT;
1150 
1151 	err = -ENOMEM;
1152 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1153 					       sizeof(struct ubi_ainf_peb),
1154 					       0, 0, NULL);
1155 	if (!ai->aeb_slab_cache)
1156 		goto out_ai;
1157 
1158 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1159 	if (!ech)
1160 		goto out_ai;
1161 
1162 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1163 	if (!vidh)
1164 		goto out_ech;
1165 
1166 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1167 		cond_resched();
1168 
1169 		dbg_gen("process PEB %d", pnum);
1170 		err = scan_peb(ubi, ai, pnum);
1171 		if (err < 0)
1172 			goto out_vidh;
1173 	}
1174 
1175 	dbg_msg("scanning is finished");
1176 
1177 	/* Calculate mean erase counter */
1178 	if (ai->ec_count)
1179 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1180 
1181 	err = late_analysis(ubi, ai);
1182 	if (err)
1183 		goto out_vidh;
1184 
1185 	/*
1186 	 * In case of unknown erase counter we use the mean erase counter
1187 	 * value.
1188 	 */
1189 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1190 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1191 			if (aeb->ec == UBI_UNKNOWN)
1192 				aeb->ec = ai->mean_ec;
1193 	}
1194 
1195 	list_for_each_entry(aeb, &ai->free, u.list) {
1196 		if (aeb->ec == UBI_UNKNOWN)
1197 			aeb->ec = ai->mean_ec;
1198 	}
1199 
1200 	list_for_each_entry(aeb, &ai->corr, u.list)
1201 		if (aeb->ec == UBI_UNKNOWN)
1202 			aeb->ec = ai->mean_ec;
1203 
1204 	list_for_each_entry(aeb, &ai->erase, u.list)
1205 		if (aeb->ec == UBI_UNKNOWN)
1206 			aeb->ec = ai->mean_ec;
1207 
1208 	err = self_check_ai(ubi, ai);
1209 	if (err)
1210 		goto out_vidh;
1211 
1212 	ubi_free_vid_hdr(ubi, vidh);
1213 	kfree(ech);
1214 
1215 	return ai;
1216 
1217 out_vidh:
1218 	ubi_free_vid_hdr(ubi, vidh);
1219 out_ech:
1220 	kfree(ech);
1221 out_ai:
1222 	ubi_destroy_ai(ai);
1223 	return ERR_PTR(err);
1224 }
1225 
1226 /**
1227  * ubi_attach - attach an MTD device.
1228  * @ubi: UBI device descriptor
1229  *
1230  * This function returns zero in case of success and a negative error code in
1231  * case of failure.
1232  */
1233 int ubi_attach(struct ubi_device *ubi)
1234 {
1235 	int err;
1236 	struct ubi_attach_info *ai;
1237 
1238 	ai = scan_all(ubi);
1239 	if (IS_ERR(ai))
1240 		return PTR_ERR(ai);
1241 
1242 	ubi->bad_peb_count = ai->bad_peb_count;
1243 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1244 	ubi->corr_peb_count = ai->corr_peb_count;
1245 	ubi->max_ec = ai->max_ec;
1246 	ubi->mean_ec = ai->mean_ec;
1247 	ubi_msg("max. sequence number:       %llu", ai->max_sqnum);
1248 
1249 	err = ubi_read_volume_table(ubi, ai);
1250 	if (err)
1251 		goto out_ai;
1252 
1253 	err = ubi_wl_init(ubi, ai);
1254 	if (err)
1255 		goto out_vtbl;
1256 
1257 	err = ubi_eba_init(ubi, ai);
1258 	if (err)
1259 		goto out_wl;
1260 
1261 	ubi_destroy_ai(ai);
1262 	return 0;
1263 
1264 out_wl:
1265 	ubi_wl_close(ubi);
1266 out_vtbl:
1267 	ubi_free_internal_volumes(ubi);
1268 	vfree(ubi->vtbl);
1269 out_ai:
1270 	ubi_destroy_ai(ai);
1271 	return err;
1272 }
1273 
1274 /**
1275  * destroy_av - free volume attaching information.
1276  * @av: volume attaching information
1277  * @ai: attaching information
1278  *
1279  * This function destroys the volume attaching information.
1280  */
1281 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1282 {
1283 	struct ubi_ainf_peb *aeb;
1284 	struct rb_node *this = av->root.rb_node;
1285 
1286 	while (this) {
1287 		if (this->rb_left)
1288 			this = this->rb_left;
1289 		else if (this->rb_right)
1290 			this = this->rb_right;
1291 		else {
1292 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1293 			this = rb_parent(this);
1294 			if (this) {
1295 				if (this->rb_left == &aeb->u.rb)
1296 					this->rb_left = NULL;
1297 				else
1298 					this->rb_right = NULL;
1299 			}
1300 
1301 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1302 		}
1303 	}
1304 	kfree(av);
1305 }
1306 
1307 /**
1308  * ubi_destroy_ai - destroy attaching information.
1309  * @ai: attaching information
1310  */
1311 void ubi_destroy_ai(struct ubi_attach_info *ai)
1312 {
1313 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1314 	struct ubi_ainf_volume *av;
1315 	struct rb_node *rb;
1316 
1317 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1318 		list_del(&aeb->u.list);
1319 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1320 	}
1321 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1322 		list_del(&aeb->u.list);
1323 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1324 	}
1325 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1326 		list_del(&aeb->u.list);
1327 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1328 	}
1329 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1330 		list_del(&aeb->u.list);
1331 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1332 	}
1333 
1334 	/* Destroy the volume RB-tree */
1335 	rb = ai->volumes.rb_node;
1336 	while (rb) {
1337 		if (rb->rb_left)
1338 			rb = rb->rb_left;
1339 		else if (rb->rb_right)
1340 			rb = rb->rb_right;
1341 		else {
1342 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1343 
1344 			rb = rb_parent(rb);
1345 			if (rb) {
1346 				if (rb->rb_left == &av->rb)
1347 					rb->rb_left = NULL;
1348 				else
1349 					rb->rb_right = NULL;
1350 			}
1351 
1352 			destroy_av(ai, av);
1353 		}
1354 	}
1355 
1356 	if (ai->aeb_slab_cache)
1357 		kmem_cache_destroy(ai->aeb_slab_cache);
1358 
1359 	kfree(ai);
1360 }
1361 
1362 /**
1363  * self_check_ai - check the attaching information.
1364  * @ubi: UBI device description object
1365  * @ai: attaching information
1366  *
1367  * This function returns zero if the attaching information is all right, and a
1368  * negative error code if not or if an error occurred.
1369  */
1370 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1371 {
1372 	int pnum, err, vols_found = 0;
1373 	struct rb_node *rb1, *rb2;
1374 	struct ubi_ainf_volume *av;
1375 	struct ubi_ainf_peb *aeb, *last_aeb;
1376 	uint8_t *buf;
1377 
1378 	if (!ubi->dbg->chk_gen)
1379 		return 0;
1380 
1381 	/*
1382 	 * At first, check that attaching information is OK.
1383 	 */
1384 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1385 		int leb_count = 0;
1386 
1387 		cond_resched();
1388 
1389 		vols_found += 1;
1390 
1391 		if (ai->is_empty) {
1392 			ubi_err("bad is_empty flag");
1393 			goto bad_av;
1394 		}
1395 
1396 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1397 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1398 		    av->data_pad < 0 || av->last_data_size < 0) {
1399 			ubi_err("negative values");
1400 			goto bad_av;
1401 		}
1402 
1403 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1404 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1405 			ubi_err("bad vol_id");
1406 			goto bad_av;
1407 		}
1408 
1409 		if (av->vol_id > ai->highest_vol_id) {
1410 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1411 				ai->highest_vol_id, av->vol_id);
1412 			goto out;
1413 		}
1414 
1415 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1416 		    av->vol_type != UBI_STATIC_VOLUME) {
1417 			ubi_err("bad vol_type");
1418 			goto bad_av;
1419 		}
1420 
1421 		if (av->data_pad > ubi->leb_size / 2) {
1422 			ubi_err("bad data_pad");
1423 			goto bad_av;
1424 		}
1425 
1426 		last_aeb = NULL;
1427 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1428 			cond_resched();
1429 
1430 			last_aeb = aeb;
1431 			leb_count += 1;
1432 
1433 			if (aeb->pnum < 0 || aeb->ec < 0) {
1434 				ubi_err("negative values");
1435 				goto bad_aeb;
1436 			}
1437 
1438 			if (aeb->ec < ai->min_ec) {
1439 				ubi_err("bad ai->min_ec (%d), %d found",
1440 					ai->min_ec, aeb->ec);
1441 				goto bad_aeb;
1442 			}
1443 
1444 			if (aeb->ec > ai->max_ec) {
1445 				ubi_err("bad ai->max_ec (%d), %d found",
1446 					ai->max_ec, aeb->ec);
1447 				goto bad_aeb;
1448 			}
1449 
1450 			if (aeb->pnum >= ubi->peb_count) {
1451 				ubi_err("too high PEB number %d, total PEBs %d",
1452 					aeb->pnum, ubi->peb_count);
1453 				goto bad_aeb;
1454 			}
1455 
1456 			if (av->vol_type == UBI_STATIC_VOLUME) {
1457 				if (aeb->lnum >= av->used_ebs) {
1458 					ubi_err("bad lnum or used_ebs");
1459 					goto bad_aeb;
1460 				}
1461 			} else {
1462 				if (av->used_ebs != 0) {
1463 					ubi_err("non-zero used_ebs");
1464 					goto bad_aeb;
1465 				}
1466 			}
1467 
1468 			if (aeb->lnum > av->highest_lnum) {
1469 				ubi_err("incorrect highest_lnum or lnum");
1470 				goto bad_aeb;
1471 			}
1472 		}
1473 
1474 		if (av->leb_count != leb_count) {
1475 			ubi_err("bad leb_count, %d objects in the tree",
1476 				leb_count);
1477 			goto bad_av;
1478 		}
1479 
1480 		if (!last_aeb)
1481 			continue;
1482 
1483 		aeb = last_aeb;
1484 
1485 		if (aeb->lnum != av->highest_lnum) {
1486 			ubi_err("bad highest_lnum");
1487 			goto bad_aeb;
1488 		}
1489 	}
1490 
1491 	if (vols_found != ai->vols_found) {
1492 		ubi_err("bad ai->vols_found %d, should be %d",
1493 			ai->vols_found, vols_found);
1494 		goto out;
1495 	}
1496 
1497 	/* Check that attaching information is correct */
1498 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1499 		last_aeb = NULL;
1500 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1501 			int vol_type;
1502 
1503 			cond_resched();
1504 
1505 			last_aeb = aeb;
1506 
1507 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1508 			if (err && err != UBI_IO_BITFLIPS) {
1509 				ubi_err("VID header is not OK (%d)", err);
1510 				if (err > 0)
1511 					err = -EIO;
1512 				return err;
1513 			}
1514 
1515 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1516 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1517 			if (av->vol_type != vol_type) {
1518 				ubi_err("bad vol_type");
1519 				goto bad_vid_hdr;
1520 			}
1521 
1522 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1523 				ubi_err("bad sqnum %llu", aeb->sqnum);
1524 				goto bad_vid_hdr;
1525 			}
1526 
1527 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1528 				ubi_err("bad vol_id %d", av->vol_id);
1529 				goto bad_vid_hdr;
1530 			}
1531 
1532 			if (av->compat != vidh->compat) {
1533 				ubi_err("bad compat %d", vidh->compat);
1534 				goto bad_vid_hdr;
1535 			}
1536 
1537 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1538 				ubi_err("bad lnum %d", aeb->lnum);
1539 				goto bad_vid_hdr;
1540 			}
1541 
1542 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1543 				ubi_err("bad used_ebs %d", av->used_ebs);
1544 				goto bad_vid_hdr;
1545 			}
1546 
1547 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1548 				ubi_err("bad data_pad %d", av->data_pad);
1549 				goto bad_vid_hdr;
1550 			}
1551 		}
1552 
1553 		if (!last_aeb)
1554 			continue;
1555 
1556 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1557 			ubi_err("bad highest_lnum %d", av->highest_lnum);
1558 			goto bad_vid_hdr;
1559 		}
1560 
1561 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1562 			ubi_err("bad last_data_size %d", av->last_data_size);
1563 			goto bad_vid_hdr;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * Make sure that all the physical eraseblocks are in one of the lists
1569 	 * or trees.
1570 	 */
1571 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1572 	if (!buf)
1573 		return -ENOMEM;
1574 
1575 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1576 		err = ubi_io_is_bad(ubi, pnum);
1577 		if (err < 0) {
1578 			kfree(buf);
1579 			return err;
1580 		} else if (err)
1581 			buf[pnum] = 1;
1582 	}
1583 
1584 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1585 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1586 			buf[aeb->pnum] = 1;
1587 
1588 	list_for_each_entry(aeb, &ai->free, u.list)
1589 		buf[aeb->pnum] = 1;
1590 
1591 	list_for_each_entry(aeb, &ai->corr, u.list)
1592 		buf[aeb->pnum] = 1;
1593 
1594 	list_for_each_entry(aeb, &ai->erase, u.list)
1595 		buf[aeb->pnum] = 1;
1596 
1597 	list_for_each_entry(aeb, &ai->alien, u.list)
1598 		buf[aeb->pnum] = 1;
1599 
1600 	err = 0;
1601 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1602 		if (!buf[pnum]) {
1603 			ubi_err("PEB %d is not referred", pnum);
1604 			err = 1;
1605 		}
1606 
1607 	kfree(buf);
1608 	if (err)
1609 		goto out;
1610 	return 0;
1611 
1612 bad_aeb:
1613 	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1614 	ubi_dump_aeb(aeb, 0);
1615 	ubi_dump_av(av);
1616 	goto out;
1617 
1618 bad_av:
1619 	ubi_err("bad attaching information about volume %d", av->vol_id);
1620 	ubi_dump_av(av);
1621 	goto out;
1622 
1623 bad_vid_hdr:
1624 	ubi_err("bad attaching information about volume %d", av->vol_id);
1625 	ubi_dump_av(av);
1626 	ubi_dump_vid_hdr(vidh);
1627 
1628 out:
1629 	dump_stack();
1630 	return -EINVAL;
1631 }
1632