xref: /openbmc/linux/drivers/mtd/ubi/attach.c (revision 23c2b932)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI attaching sub-system.
23  *
24  * This sub-system is responsible for attaching MTD devices and it also
25  * implements flash media scanning.
26  *
27  * The attaching information is represented by a &struct ubi_attach_info'
28  * object. Information about volumes is represented by &struct ubi_ainf_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33  * objects are kept in per-volume RB-trees with the root at the corresponding
34  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35  * per-volume objects and each of these objects is the root of RB-tree of
36  * per-LEB objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these
55  * cases - we may lose only the data which were being written to the media just
56  * before the power cut happened, and the upper layers (e.g., UBIFS) are
57  * supposed to handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * attaching, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows (in case of attaching by
71  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72  * the data area does not contain all 0xFFs, and there were no bit-flips or
73  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75  * are as follows.
76  *   o If the data area contains only 0xFFs, there are no data, and it is safe
77  *     to just erase this PEB - this is corruption type 1.
78  *   o If the data area has bit-flips or data integrity errors (ECC errors on
79  *     NAND), it is probably a PEB which was being erased when power cut
80  *     happened, so this is corruption type 1. However, this is just a guess,
81  *     which might be wrong.
82  *   o Otherwise this is corruption type 2.
83  */
84 
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91 
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
97 
98 /**
99  * add_to_list - add physical eraseblock to a list.
100  * @ai: attaching information
101  * @pnum: physical eraseblock number to add
102  * @vol_id: the last used volume id for the PEB
103  * @lnum: the last used LEB number for the PEB
104  * @ec: erase counter of the physical eraseblock
105  * @to_head: if not zero, add to the head of the list
106  * @list: the list to add to
107  *
108  * This function allocates a 'struct ubi_ainf_peb' object for physical
109  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110  * It stores the @lnum and @vol_id alongside, which can both be
111  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112  * If @to_head is not zero, PEB will be added to the head of the list, which
113  * basically means it will be processed first later. E.g., we add corrupted
114  * PEBs (corrupted due to power cuts) to the head of the erase list to make
115  * sure we erase them first and get rid of corruptions ASAP. This function
116  * returns zero in case of success and a negative error code in case of
117  * failure.
118  */
119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 		       int lnum, int ec, int to_head, struct list_head *list)
121 {
122 	struct ubi_ainf_peb *aeb;
123 
124 	if (list == &ai->free) {
125 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 	} else if (list == &ai->erase) {
127 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 	} else if (list == &ai->alien) {
129 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 		ai->alien_peb_count += 1;
131 	} else
132 		BUG();
133 
134 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 	if (!aeb)
136 		return -ENOMEM;
137 
138 	aeb->pnum = pnum;
139 	aeb->vol_id = vol_id;
140 	aeb->lnum = lnum;
141 	aeb->ec = ec;
142 	if (to_head)
143 		list_add(&aeb->u.list, list);
144 	else
145 		list_add_tail(&aeb->u.list, list);
146 	return 0;
147 }
148 
149 /**
150  * add_corrupted - add a corrupted physical eraseblock.
151  * @ai: attaching information
152  * @pnum: physical eraseblock number to add
153  * @ec: erase counter of the physical eraseblock
154  *
155  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157  * was presumably not caused by a power cut. Returns zero in case of success
158  * and a negative error code in case of failure.
159  */
160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161 {
162 	struct ubi_ainf_peb *aeb;
163 
164 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165 
166 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 	if (!aeb)
168 		return -ENOMEM;
169 
170 	ai->corr_peb_count += 1;
171 	aeb->pnum = pnum;
172 	aeb->ec = ec;
173 	list_add(&aeb->u.list, &ai->corr);
174 	return 0;
175 }
176 
177 /**
178  * validate_vid_hdr - check volume identifier header.
179  * @ubi: UBI device description object
180  * @vid_hdr: the volume identifier header to check
181  * @av: information about the volume this logical eraseblock belongs to
182  * @pnum: physical eraseblock number the VID header came from
183  *
184  * This function checks that data stored in @vid_hdr is consistent. Returns
185  * non-zero if an inconsistency was found and zero if not.
186  *
187  * Note, UBI does sanity check of everything it reads from the flash media.
188  * Most of the checks are done in the I/O sub-system. Here we check that the
189  * information in the VID header is consistent to the information in other VID
190  * headers of the same volume.
191  */
192 static int validate_vid_hdr(const struct ubi_device *ubi,
193 			    const struct ubi_vid_hdr *vid_hdr,
194 			    const struct ubi_ainf_volume *av, int pnum)
195 {
196 	int vol_type = vid_hdr->vol_type;
197 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
198 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
199 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
200 
201 	if (av->leb_count != 0) {
202 		int av_vol_type;
203 
204 		/*
205 		 * This is not the first logical eraseblock belonging to this
206 		 * volume. Ensure that the data in its VID header is consistent
207 		 * to the data in previous logical eraseblock headers.
208 		 */
209 
210 		if (vol_id != av->vol_id) {
211 			ubi_err(ubi, "inconsistent vol_id");
212 			goto bad;
213 		}
214 
215 		if (av->vol_type == UBI_STATIC_VOLUME)
216 			av_vol_type = UBI_VID_STATIC;
217 		else
218 			av_vol_type = UBI_VID_DYNAMIC;
219 
220 		if (vol_type != av_vol_type) {
221 			ubi_err(ubi, "inconsistent vol_type");
222 			goto bad;
223 		}
224 
225 		if (used_ebs != av->used_ebs) {
226 			ubi_err(ubi, "inconsistent used_ebs");
227 			goto bad;
228 		}
229 
230 		if (data_pad != av->data_pad) {
231 			ubi_err(ubi, "inconsistent data_pad");
232 			goto bad;
233 		}
234 	}
235 
236 	return 0;
237 
238 bad:
239 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
240 	ubi_dump_vid_hdr(vid_hdr);
241 	ubi_dump_av(av);
242 	return -EINVAL;
243 }
244 
245 /**
246  * add_volume - add volume to the attaching information.
247  * @ai: attaching information
248  * @vol_id: ID of the volume to add
249  * @pnum: physical eraseblock number
250  * @vid_hdr: volume identifier header
251  *
252  * If the volume corresponding to the @vid_hdr logical eraseblock is already
253  * present in the attaching information, this function does nothing. Otherwise
254  * it adds corresponding volume to the attaching information. Returns a pointer
255  * to the allocated "av" object in case of success and a negative error code in
256  * case of failure.
257  */
258 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
259 					  int vol_id, int pnum,
260 					  const struct ubi_vid_hdr *vid_hdr)
261 {
262 	struct ubi_ainf_volume *av;
263 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
264 
265 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
266 
267 	/* Walk the volume RB-tree to look if this volume is already present */
268 	while (*p) {
269 		parent = *p;
270 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
271 
272 		if (vol_id == av->vol_id)
273 			return av;
274 
275 		if (vol_id > av->vol_id)
276 			p = &(*p)->rb_left;
277 		else
278 			p = &(*p)->rb_right;
279 	}
280 
281 	/* The volume is absent - add it */
282 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
283 	if (!av)
284 		return ERR_PTR(-ENOMEM);
285 
286 	av->highest_lnum = av->leb_count = 0;
287 	av->vol_id = vol_id;
288 	av->root = RB_ROOT;
289 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
290 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
291 	av->compat = vid_hdr->compat;
292 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
293 							    : UBI_STATIC_VOLUME;
294 	if (vol_id > ai->highest_vol_id)
295 		ai->highest_vol_id = vol_id;
296 
297 	rb_link_node(&av->rb, parent, p);
298 	rb_insert_color(&av->rb, &ai->volumes);
299 	ai->vols_found += 1;
300 	dbg_bld("added volume %d", vol_id);
301 	return av;
302 }
303 
304 /**
305  * ubi_compare_lebs - find out which logical eraseblock is newer.
306  * @ubi: UBI device description object
307  * @aeb: first logical eraseblock to compare
308  * @pnum: physical eraseblock number of the second logical eraseblock to
309  * compare
310  * @vid_hdr: volume identifier header of the second logical eraseblock
311  *
312  * This function compares 2 copies of a LEB and informs which one is newer. In
313  * case of success this function returns a positive value, in case of failure, a
314  * negative error code is returned. The success return codes use the following
315  * bits:
316  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
317  *       second PEB (described by @pnum and @vid_hdr);
318  *     o bit 0 is set: the second PEB is newer;
319  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
320  *     o bit 1 is set: bit-flips were detected in the newer LEB;
321  *     o bit 2 is cleared: the older LEB is not corrupted;
322  *     o bit 2 is set: the older LEB is corrupted.
323  */
324 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
325 			int pnum, const struct ubi_vid_hdr *vid_hdr)
326 {
327 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
328 	uint32_t data_crc, crc;
329 	struct ubi_vid_hdr *vh = NULL;
330 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
331 
332 	if (sqnum2 == aeb->sqnum) {
333 		/*
334 		 * This must be a really ancient UBI image which has been
335 		 * created before sequence numbers support has been added. At
336 		 * that times we used 32-bit LEB versions stored in logical
337 		 * eraseblocks. That was before UBI got into mainline. We do not
338 		 * support these images anymore. Well, those images still work,
339 		 * but only if no unclean reboots happened.
340 		 */
341 		ubi_err(ubi, "unsupported on-flash UBI format");
342 		return -EINVAL;
343 	}
344 
345 	/* Obviously the LEB with lower sequence counter is older */
346 	second_is_newer = (sqnum2 > aeb->sqnum);
347 
348 	/*
349 	 * Now we know which copy is newer. If the copy flag of the PEB with
350 	 * newer version is not set, then we just return, otherwise we have to
351 	 * check data CRC. For the second PEB we already have the VID header,
352 	 * for the first one - we'll need to re-read it from flash.
353 	 *
354 	 * Note: this may be optimized so that we wouldn't read twice.
355 	 */
356 
357 	if (second_is_newer) {
358 		if (!vid_hdr->copy_flag) {
359 			/* It is not a copy, so it is newer */
360 			dbg_bld("second PEB %d is newer, copy_flag is unset",
361 				pnum);
362 			return 1;
363 		}
364 	} else {
365 		if (!aeb->copy_flag) {
366 			/* It is not a copy, so it is newer */
367 			dbg_bld("first PEB %d is newer, copy_flag is unset",
368 				pnum);
369 			return bitflips << 1;
370 		}
371 
372 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
373 		if (!vh)
374 			return -ENOMEM;
375 
376 		pnum = aeb->pnum;
377 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
378 		if (err) {
379 			if (err == UBI_IO_BITFLIPS)
380 				bitflips = 1;
381 			else {
382 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
383 					pnum, err);
384 				if (err > 0)
385 					err = -EIO;
386 
387 				goto out_free_vidh;
388 			}
389 		}
390 
391 		vid_hdr = vh;
392 	}
393 
394 	/* Read the data of the copy and check the CRC */
395 
396 	len = be32_to_cpu(vid_hdr->data_size);
397 
398 	mutex_lock(&ubi->buf_mutex);
399 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
400 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
401 		goto out_unlock;
402 
403 	data_crc = be32_to_cpu(vid_hdr->data_crc);
404 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
405 	if (crc != data_crc) {
406 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
407 			pnum, crc, data_crc);
408 		corrupted = 1;
409 		bitflips = 0;
410 		second_is_newer = !second_is_newer;
411 	} else {
412 		dbg_bld("PEB %d CRC is OK", pnum);
413 		bitflips |= !!err;
414 	}
415 	mutex_unlock(&ubi->buf_mutex);
416 
417 	ubi_free_vid_hdr(ubi, vh);
418 
419 	if (second_is_newer)
420 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
421 	else
422 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
423 
424 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
425 
426 out_unlock:
427 	mutex_unlock(&ubi->buf_mutex);
428 out_free_vidh:
429 	ubi_free_vid_hdr(ubi, vh);
430 	return err;
431 }
432 
433 /**
434  * ubi_add_to_av - add used physical eraseblock to the attaching information.
435  * @ubi: UBI device description object
436  * @ai: attaching information
437  * @pnum: the physical eraseblock number
438  * @ec: erase counter
439  * @vid_hdr: the volume identifier header
440  * @bitflips: if bit-flips were detected when this physical eraseblock was read
441  *
442  * This function adds information about a used physical eraseblock to the
443  * 'used' tree of the corresponding volume. The function is rather complex
444  * because it has to handle cases when this is not the first physical
445  * eraseblock belonging to the same logical eraseblock, and the newer one has
446  * to be picked, while the older one has to be dropped. This function returns
447  * zero in case of success and a negative error code in case of failure.
448  */
449 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
450 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
451 {
452 	int err, vol_id, lnum;
453 	unsigned long long sqnum;
454 	struct ubi_ainf_volume *av;
455 	struct ubi_ainf_peb *aeb;
456 	struct rb_node **p, *parent = NULL;
457 
458 	vol_id = be32_to_cpu(vid_hdr->vol_id);
459 	lnum = be32_to_cpu(vid_hdr->lnum);
460 	sqnum = be64_to_cpu(vid_hdr->sqnum);
461 
462 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
463 		pnum, vol_id, lnum, ec, sqnum, bitflips);
464 
465 	av = add_volume(ai, vol_id, pnum, vid_hdr);
466 	if (IS_ERR(av))
467 		return PTR_ERR(av);
468 
469 	if (ai->max_sqnum < sqnum)
470 		ai->max_sqnum = sqnum;
471 
472 	/*
473 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
474 	 * if this is the first instance of this logical eraseblock or not.
475 	 */
476 	p = &av->root.rb_node;
477 	while (*p) {
478 		int cmp_res;
479 
480 		parent = *p;
481 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
482 		if (lnum != aeb->lnum) {
483 			if (lnum < aeb->lnum)
484 				p = &(*p)->rb_left;
485 			else
486 				p = &(*p)->rb_right;
487 			continue;
488 		}
489 
490 		/*
491 		 * There is already a physical eraseblock describing the same
492 		 * logical eraseblock present.
493 		 */
494 
495 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
496 			aeb->pnum, aeb->sqnum, aeb->ec);
497 
498 		/*
499 		 * Make sure that the logical eraseblocks have different
500 		 * sequence numbers. Otherwise the image is bad.
501 		 *
502 		 * However, if the sequence number is zero, we assume it must
503 		 * be an ancient UBI image from the era when UBI did not have
504 		 * sequence numbers. We still can attach these images, unless
505 		 * there is a need to distinguish between old and new
506 		 * eraseblocks, in which case we'll refuse the image in
507 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
508 		 * images, but refuse attaching old images with duplicated
509 		 * logical eraseblocks because there was an unclean reboot.
510 		 */
511 		if (aeb->sqnum == sqnum && sqnum != 0) {
512 			ubi_err(ubi, "two LEBs with same sequence number %llu",
513 				sqnum);
514 			ubi_dump_aeb(aeb, 0);
515 			ubi_dump_vid_hdr(vid_hdr);
516 			return -EINVAL;
517 		}
518 
519 		/*
520 		 * Now we have to drop the older one and preserve the newer
521 		 * one.
522 		 */
523 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
524 		if (cmp_res < 0)
525 			return cmp_res;
526 
527 		if (cmp_res & 1) {
528 			/*
529 			 * This logical eraseblock is newer than the one
530 			 * found earlier.
531 			 */
532 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
533 			if (err)
534 				return err;
535 
536 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
537 					  aeb->lnum, aeb->ec, cmp_res & 4,
538 					  &ai->erase);
539 			if (err)
540 				return err;
541 
542 			aeb->ec = ec;
543 			aeb->pnum = pnum;
544 			aeb->vol_id = vol_id;
545 			aeb->lnum = lnum;
546 			aeb->scrub = ((cmp_res & 2) || bitflips);
547 			aeb->copy_flag = vid_hdr->copy_flag;
548 			aeb->sqnum = sqnum;
549 
550 			if (av->highest_lnum == lnum)
551 				av->last_data_size =
552 					be32_to_cpu(vid_hdr->data_size);
553 
554 			return 0;
555 		} else {
556 			/*
557 			 * This logical eraseblock is older than the one found
558 			 * previously.
559 			 */
560 			return add_to_list(ai, pnum, vol_id, lnum, ec,
561 					   cmp_res & 4, &ai->erase);
562 		}
563 	}
564 
565 	/*
566 	 * We've met this logical eraseblock for the first time, add it to the
567 	 * attaching information.
568 	 */
569 
570 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
571 	if (err)
572 		return err;
573 
574 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
575 	if (!aeb)
576 		return -ENOMEM;
577 
578 	aeb->ec = ec;
579 	aeb->pnum = pnum;
580 	aeb->vol_id = vol_id;
581 	aeb->lnum = lnum;
582 	aeb->scrub = bitflips;
583 	aeb->copy_flag = vid_hdr->copy_flag;
584 	aeb->sqnum = sqnum;
585 
586 	if (av->highest_lnum <= lnum) {
587 		av->highest_lnum = lnum;
588 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
589 	}
590 
591 	av->leb_count += 1;
592 	rb_link_node(&aeb->u.rb, parent, p);
593 	rb_insert_color(&aeb->u.rb, &av->root);
594 	return 0;
595 }
596 
597 /**
598  * ubi_find_av - find volume in the attaching information.
599  * @ai: attaching information
600  * @vol_id: the requested volume ID
601  *
602  * This function returns a pointer to the volume description or %NULL if there
603  * are no data about this volume in the attaching information.
604  */
605 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
606 				    int vol_id)
607 {
608 	struct ubi_ainf_volume *av;
609 	struct rb_node *p = ai->volumes.rb_node;
610 
611 	while (p) {
612 		av = rb_entry(p, struct ubi_ainf_volume, rb);
613 
614 		if (vol_id == av->vol_id)
615 			return av;
616 
617 		if (vol_id > av->vol_id)
618 			p = p->rb_left;
619 		else
620 			p = p->rb_right;
621 	}
622 
623 	return NULL;
624 }
625 
626 /**
627  * ubi_remove_av - delete attaching information about a volume.
628  * @ai: attaching information
629  * @av: the volume attaching information to delete
630  */
631 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
632 {
633 	struct rb_node *rb;
634 	struct ubi_ainf_peb *aeb;
635 
636 	dbg_bld("remove attaching information about volume %d", av->vol_id);
637 
638 	while ((rb = rb_first(&av->root))) {
639 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
640 		rb_erase(&aeb->u.rb, &av->root);
641 		list_add_tail(&aeb->u.list, &ai->erase);
642 	}
643 
644 	rb_erase(&av->rb, &ai->volumes);
645 	kfree(av);
646 	ai->vols_found -= 1;
647 }
648 
649 /**
650  * early_erase_peb - erase a physical eraseblock.
651  * @ubi: UBI device description object
652  * @ai: attaching information
653  * @pnum: physical eraseblock number to erase;
654  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
655  *
656  * This function erases physical eraseblock 'pnum', and writes the erase
657  * counter header to it. This function should only be used on UBI device
658  * initialization stages, when the EBA sub-system had not been yet initialized.
659  * This function returns zero in case of success and a negative error code in
660  * case of failure.
661  */
662 static int early_erase_peb(struct ubi_device *ubi,
663 			   const struct ubi_attach_info *ai, int pnum, int ec)
664 {
665 	int err;
666 	struct ubi_ec_hdr *ec_hdr;
667 
668 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
669 		/*
670 		 * Erase counter overflow. Upgrade UBI and use 64-bit
671 		 * erase counters internally.
672 		 */
673 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
674 			pnum, ec);
675 		return -EINVAL;
676 	}
677 
678 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
679 	if (!ec_hdr)
680 		return -ENOMEM;
681 
682 	ec_hdr->ec = cpu_to_be64(ec);
683 
684 	err = ubi_io_sync_erase(ubi, pnum, 0);
685 	if (err < 0)
686 		goto out_free;
687 
688 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
689 
690 out_free:
691 	kfree(ec_hdr);
692 	return err;
693 }
694 
695 /**
696  * ubi_early_get_peb - get a free physical eraseblock.
697  * @ubi: UBI device description object
698  * @ai: attaching information
699  *
700  * This function returns a free physical eraseblock. It is supposed to be
701  * called on the UBI initialization stages when the wear-leveling sub-system is
702  * not initialized yet. This function picks a physical eraseblocks from one of
703  * the lists, writes the EC header if it is needed, and removes it from the
704  * list.
705  *
706  * This function returns a pointer to the "aeb" of the found free PEB in case
707  * of success and an error code in case of failure.
708  */
709 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
710 				       struct ubi_attach_info *ai)
711 {
712 	int err = 0;
713 	struct ubi_ainf_peb *aeb, *tmp_aeb;
714 
715 	if (!list_empty(&ai->free)) {
716 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
717 		list_del(&aeb->u.list);
718 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
719 		return aeb;
720 	}
721 
722 	/*
723 	 * We try to erase the first physical eraseblock from the erase list
724 	 * and pick it if we succeed, or try to erase the next one if not. And
725 	 * so forth. We don't want to take care about bad eraseblocks here -
726 	 * they'll be handled later.
727 	 */
728 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
729 		if (aeb->ec == UBI_UNKNOWN)
730 			aeb->ec = ai->mean_ec;
731 
732 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
733 		if (err)
734 			continue;
735 
736 		aeb->ec += 1;
737 		list_del(&aeb->u.list);
738 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
739 		return aeb;
740 	}
741 
742 	ubi_err(ubi, "no free eraseblocks");
743 	return ERR_PTR(-ENOSPC);
744 }
745 
746 /**
747  * check_corruption - check the data area of PEB.
748  * @ubi: UBI device description object
749  * @vid_hdr: the (corrupted) VID header of this PEB
750  * @pnum: the physical eraseblock number to check
751  *
752  * This is a helper function which is used to distinguish between VID header
753  * corruptions caused by power cuts and other reasons. If the PEB contains only
754  * 0xFF bytes in the data area, the VID header is most probably corrupted
755  * because of a power cut (%0 is returned in this case). Otherwise, it was
756  * probably corrupted for some other reasons (%1 is returned in this case). A
757  * negative error code is returned if a read error occurred.
758  *
759  * If the corruption reason was a power cut, UBI can safely erase this PEB.
760  * Otherwise, it should preserve it to avoid possibly destroying important
761  * information.
762  */
763 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
764 			    int pnum)
765 {
766 	int err;
767 
768 	mutex_lock(&ubi->buf_mutex);
769 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
770 
771 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
772 			  ubi->leb_size);
773 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
774 		/*
775 		 * Bit-flips or integrity errors while reading the data area.
776 		 * It is difficult to say for sure what type of corruption is
777 		 * this, but presumably a power cut happened while this PEB was
778 		 * erased, so it became unstable and corrupted, and should be
779 		 * erased.
780 		 */
781 		err = 0;
782 		goto out_unlock;
783 	}
784 
785 	if (err)
786 		goto out_unlock;
787 
788 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
789 		goto out_unlock;
790 
791 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
792 		pnum);
793 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
794 	ubi_dump_vid_hdr(vid_hdr);
795 	pr_err("hexdump of PEB %d offset %d, length %d",
796 	       pnum, ubi->leb_start, ubi->leb_size);
797 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
798 			       ubi->peb_buf, ubi->leb_size, 1);
799 	err = 1;
800 
801 out_unlock:
802 	mutex_unlock(&ubi->buf_mutex);
803 	return err;
804 }
805 
806 /**
807  * scan_peb - scan and process UBI headers of a PEB.
808  * @ubi: UBI device description object
809  * @ai: attaching information
810  * @pnum: the physical eraseblock number
811  * @vid: The volume ID of the found volume will be stored in this pointer
812  * @sqnum: The sqnum of the found volume will be stored in this pointer
813  *
814  * This function reads UBI headers of PEB @pnum, checks them, and adds
815  * information about this PEB to the corresponding list or RB-tree in the
816  * "attaching info" structure. Returns zero if the physical eraseblock was
817  * successfully handled and a negative error code in case of failure.
818  */
819 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
820 		    int pnum, int *vid, unsigned long long *sqnum)
821 {
822 	long long uninitialized_var(ec);
823 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
824 
825 	dbg_bld("scan PEB %d", pnum);
826 
827 	/* Skip bad physical eraseblocks */
828 	err = ubi_io_is_bad(ubi, pnum);
829 	if (err < 0)
830 		return err;
831 	else if (err) {
832 		ai->bad_peb_count += 1;
833 		return 0;
834 	}
835 
836 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
837 	if (err < 0)
838 		return err;
839 	switch (err) {
840 	case 0:
841 		break;
842 	case UBI_IO_BITFLIPS:
843 		bitflips = 1;
844 		break;
845 	case UBI_IO_FF:
846 		ai->empty_peb_count += 1;
847 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
848 				   UBI_UNKNOWN, 0, &ai->erase);
849 	case UBI_IO_FF_BITFLIPS:
850 		ai->empty_peb_count += 1;
851 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
852 				   UBI_UNKNOWN, 1, &ai->erase);
853 	case UBI_IO_BAD_HDR_EBADMSG:
854 	case UBI_IO_BAD_HDR:
855 		/*
856 		 * We have to also look at the VID header, possibly it is not
857 		 * corrupted. Set %bitflips flag in order to make this PEB be
858 		 * moved and EC be re-created.
859 		 */
860 		ec_err = err;
861 		ec = UBI_UNKNOWN;
862 		bitflips = 1;
863 		break;
864 	default:
865 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
866 			err);
867 		return -EINVAL;
868 	}
869 
870 	if (!ec_err) {
871 		int image_seq;
872 
873 		/* Make sure UBI version is OK */
874 		if (ech->version != UBI_VERSION) {
875 			ubi_err(ubi, "this UBI version is %d, image version is %d",
876 				UBI_VERSION, (int)ech->version);
877 			return -EINVAL;
878 		}
879 
880 		ec = be64_to_cpu(ech->ec);
881 		if (ec > UBI_MAX_ERASECOUNTER) {
882 			/*
883 			 * Erase counter overflow. The EC headers have 64 bits
884 			 * reserved, but we anyway make use of only 31 bit
885 			 * values, as this seems to be enough for any existing
886 			 * flash. Upgrade UBI and use 64-bit erase counters
887 			 * internally.
888 			 */
889 			ubi_err(ubi, "erase counter overflow, max is %d",
890 				UBI_MAX_ERASECOUNTER);
891 			ubi_dump_ec_hdr(ech);
892 			return -EINVAL;
893 		}
894 
895 		/*
896 		 * Make sure that all PEBs have the same image sequence number.
897 		 * This allows us to detect situations when users flash UBI
898 		 * images incorrectly, so that the flash has the new UBI image
899 		 * and leftovers from the old one. This feature was added
900 		 * relatively recently, and the sequence number was always
901 		 * zero, because old UBI implementations always set it to zero.
902 		 * For this reasons, we do not panic if some PEBs have zero
903 		 * sequence number, while other PEBs have non-zero sequence
904 		 * number.
905 		 */
906 		image_seq = be32_to_cpu(ech->image_seq);
907 		if (!ubi->image_seq)
908 			ubi->image_seq = image_seq;
909 		if (image_seq && ubi->image_seq != image_seq) {
910 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
911 				image_seq, pnum, ubi->image_seq);
912 			ubi_dump_ec_hdr(ech);
913 			return -EINVAL;
914 		}
915 	}
916 
917 	/* OK, we've done with the EC header, let's look at the VID header */
918 
919 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
920 	if (err < 0)
921 		return err;
922 	switch (err) {
923 	case 0:
924 		break;
925 	case UBI_IO_BITFLIPS:
926 		bitflips = 1;
927 		break;
928 	case UBI_IO_BAD_HDR_EBADMSG:
929 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
930 			/*
931 			 * Both EC and VID headers are corrupted and were read
932 			 * with data integrity error, probably this is a bad
933 			 * PEB, bit it is not marked as bad yet. This may also
934 			 * be a result of power cut during erasure.
935 			 */
936 			ai->maybe_bad_peb_count += 1;
937 	case UBI_IO_BAD_HDR:
938 		if (ec_err)
939 			/*
940 			 * Both headers are corrupted. There is a possibility
941 			 * that this a valid UBI PEB which has corresponding
942 			 * LEB, but the headers are corrupted. However, it is
943 			 * impossible to distinguish it from a PEB which just
944 			 * contains garbage because of a power cut during erase
945 			 * operation. So we just schedule this PEB for erasure.
946 			 *
947 			 * Besides, in case of NOR flash, we deliberately
948 			 * corrupt both headers because NOR flash erasure is
949 			 * slow and can start from the end.
950 			 */
951 			err = 0;
952 		else
953 			/*
954 			 * The EC was OK, but the VID header is corrupted. We
955 			 * have to check what is in the data area.
956 			 */
957 			err = check_corruption(ubi, vidh, pnum);
958 
959 		if (err < 0)
960 			return err;
961 		else if (!err)
962 			/* This corruption is caused by a power cut */
963 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
964 					  UBI_UNKNOWN, ec, 1, &ai->erase);
965 		else
966 			/* This is an unexpected corruption */
967 			err = add_corrupted(ai, pnum, ec);
968 		if (err)
969 			return err;
970 		goto adjust_mean_ec;
971 	case UBI_IO_FF_BITFLIPS:
972 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
973 				  ec, 1, &ai->erase);
974 		if (err)
975 			return err;
976 		goto adjust_mean_ec;
977 	case UBI_IO_FF:
978 		if (ec_err || bitflips)
979 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
980 					  UBI_UNKNOWN, ec, 1, &ai->erase);
981 		else
982 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
983 					  UBI_UNKNOWN, ec, 0, &ai->free);
984 		if (err)
985 			return err;
986 		goto adjust_mean_ec;
987 	default:
988 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
989 			err);
990 		return -EINVAL;
991 	}
992 
993 	vol_id = be32_to_cpu(vidh->vol_id);
994 	if (vid)
995 		*vid = vol_id;
996 	if (sqnum)
997 		*sqnum = be64_to_cpu(vidh->sqnum);
998 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
999 		int lnum = be32_to_cpu(vidh->lnum);
1000 
1001 		/* Unsupported internal volume */
1002 		switch (vidh->compat) {
1003 		case UBI_COMPAT_DELETE:
1004 			if (vol_id != UBI_FM_SB_VOLUME_ID
1005 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1006 				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1007 					vol_id, lnum);
1008 			}
1009 			err = add_to_list(ai, pnum, vol_id, lnum,
1010 					  ec, 1, &ai->erase);
1011 			if (err)
1012 				return err;
1013 			return 0;
1014 
1015 		case UBI_COMPAT_RO:
1016 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1017 				vol_id, lnum);
1018 			ubi->ro_mode = 1;
1019 			break;
1020 
1021 		case UBI_COMPAT_PRESERVE:
1022 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1023 				vol_id, lnum);
1024 			err = add_to_list(ai, pnum, vol_id, lnum,
1025 					  ec, 0, &ai->alien);
1026 			if (err)
1027 				return err;
1028 			return 0;
1029 
1030 		case UBI_COMPAT_REJECT:
1031 			ubi_err(ubi, "incompatible internal volume %d:%d found",
1032 				vol_id, lnum);
1033 			return -EINVAL;
1034 		}
1035 	}
1036 
1037 	if (ec_err)
1038 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1039 			 pnum);
1040 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1041 	if (err)
1042 		return err;
1043 
1044 adjust_mean_ec:
1045 	if (!ec_err) {
1046 		ai->ec_sum += ec;
1047 		ai->ec_count += 1;
1048 		if (ec > ai->max_ec)
1049 			ai->max_ec = ec;
1050 		if (ec < ai->min_ec)
1051 			ai->min_ec = ec;
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * late_analysis - analyze the overall situation with PEB.
1059  * @ubi: UBI device description object
1060  * @ai: attaching information
1061  *
1062  * This is a helper function which takes a look what PEBs we have after we
1063  * gather information about all of them ("ai" is compete). It decides whether
1064  * the flash is empty and should be formatted of whether there are too many
1065  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1066  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1067  */
1068 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1069 {
1070 	struct ubi_ainf_peb *aeb;
1071 	int max_corr, peb_count;
1072 
1073 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1074 	max_corr = peb_count / 20 ?: 8;
1075 
1076 	/*
1077 	 * Few corrupted PEBs is not a problem and may be just a result of
1078 	 * unclean reboots. However, many of them may indicate some problems
1079 	 * with the flash HW or driver.
1080 	 */
1081 	if (ai->corr_peb_count) {
1082 		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1083 			ai->corr_peb_count);
1084 		pr_err("Corrupted PEBs are:");
1085 		list_for_each_entry(aeb, &ai->corr, u.list)
1086 			pr_cont(" %d", aeb->pnum);
1087 		pr_cont("\n");
1088 
1089 		/*
1090 		 * If too many PEBs are corrupted, we refuse attaching,
1091 		 * otherwise, only print a warning.
1092 		 */
1093 		if (ai->corr_peb_count >= max_corr) {
1094 			ubi_err(ubi, "too many corrupted PEBs, refusing");
1095 			return -EINVAL;
1096 		}
1097 	}
1098 
1099 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1100 		/*
1101 		 * All PEBs are empty, or almost all - a couple PEBs look like
1102 		 * they may be bad PEBs which were not marked as bad yet.
1103 		 *
1104 		 * This piece of code basically tries to distinguish between
1105 		 * the following situations:
1106 		 *
1107 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1108 		 *    marked as bad so far, and which were read with error. We
1109 		 *    want to go ahead and format this flash. While formatting,
1110 		 *    the faulty PEBs will probably be marked as bad.
1111 		 *
1112 		 * 2. Flash contains non-UBI data and we do not want to format
1113 		 *    it and destroy possibly important information.
1114 		 */
1115 		if (ai->maybe_bad_peb_count <= 2) {
1116 			ai->is_empty = 1;
1117 			ubi_msg(ubi, "empty MTD device detected");
1118 			get_random_bytes(&ubi->image_seq,
1119 					 sizeof(ubi->image_seq));
1120 		} else {
1121 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1122 			return -EINVAL;
1123 		}
1124 
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  * destroy_av - free volume attaching information.
1132  * @av: volume attaching information
1133  * @ai: attaching information
1134  *
1135  * This function destroys the volume attaching information.
1136  */
1137 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1138 {
1139 	struct ubi_ainf_peb *aeb;
1140 	struct rb_node *this = av->root.rb_node;
1141 
1142 	while (this) {
1143 		if (this->rb_left)
1144 			this = this->rb_left;
1145 		else if (this->rb_right)
1146 			this = this->rb_right;
1147 		else {
1148 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1149 			this = rb_parent(this);
1150 			if (this) {
1151 				if (this->rb_left == &aeb->u.rb)
1152 					this->rb_left = NULL;
1153 				else
1154 					this->rb_right = NULL;
1155 			}
1156 
1157 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1158 		}
1159 	}
1160 	kfree(av);
1161 }
1162 
1163 /**
1164  * destroy_ai - destroy attaching information.
1165  * @ai: attaching information
1166  */
1167 static void destroy_ai(struct ubi_attach_info *ai)
1168 {
1169 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1170 	struct ubi_ainf_volume *av;
1171 	struct rb_node *rb;
1172 
1173 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1174 		list_del(&aeb->u.list);
1175 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176 	}
1177 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1178 		list_del(&aeb->u.list);
1179 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180 	}
1181 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1182 		list_del(&aeb->u.list);
1183 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184 	}
1185 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1186 		list_del(&aeb->u.list);
1187 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1188 	}
1189 
1190 	/* Destroy the volume RB-tree */
1191 	rb = ai->volumes.rb_node;
1192 	while (rb) {
1193 		if (rb->rb_left)
1194 			rb = rb->rb_left;
1195 		else if (rb->rb_right)
1196 			rb = rb->rb_right;
1197 		else {
1198 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1199 
1200 			rb = rb_parent(rb);
1201 			if (rb) {
1202 				if (rb->rb_left == &av->rb)
1203 					rb->rb_left = NULL;
1204 				else
1205 					rb->rb_right = NULL;
1206 			}
1207 
1208 			destroy_av(ai, av);
1209 		}
1210 	}
1211 
1212 	kmem_cache_destroy(ai->aeb_slab_cache);
1213 	kfree(ai);
1214 }
1215 
1216 /**
1217  * scan_all - scan entire MTD device.
1218  * @ubi: UBI device description object
1219  * @ai: attach info object
1220  * @start: start scanning at this PEB
1221  *
1222  * This function does full scanning of an MTD device and returns complete
1223  * information about it in form of a "struct ubi_attach_info" object. In case
1224  * of failure, an error code is returned.
1225  */
1226 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1227 		    int start)
1228 {
1229 	int err, pnum;
1230 	struct rb_node *rb1, *rb2;
1231 	struct ubi_ainf_volume *av;
1232 	struct ubi_ainf_peb *aeb;
1233 
1234 	err = -ENOMEM;
1235 
1236 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1237 	if (!ech)
1238 		return err;
1239 
1240 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1241 	if (!vidh)
1242 		goto out_ech;
1243 
1244 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1245 		cond_resched();
1246 
1247 		dbg_gen("process PEB %d", pnum);
1248 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1249 		if (err < 0)
1250 			goto out_vidh;
1251 	}
1252 
1253 	ubi_msg(ubi, "scanning is finished");
1254 
1255 	/* Calculate mean erase counter */
1256 	if (ai->ec_count)
1257 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1258 
1259 	err = late_analysis(ubi, ai);
1260 	if (err)
1261 		goto out_vidh;
1262 
1263 	/*
1264 	 * In case of unknown erase counter we use the mean erase counter
1265 	 * value.
1266 	 */
1267 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1268 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1269 			if (aeb->ec == UBI_UNKNOWN)
1270 				aeb->ec = ai->mean_ec;
1271 	}
1272 
1273 	list_for_each_entry(aeb, &ai->free, u.list) {
1274 		if (aeb->ec == UBI_UNKNOWN)
1275 			aeb->ec = ai->mean_ec;
1276 	}
1277 
1278 	list_for_each_entry(aeb, &ai->corr, u.list)
1279 		if (aeb->ec == UBI_UNKNOWN)
1280 			aeb->ec = ai->mean_ec;
1281 
1282 	list_for_each_entry(aeb, &ai->erase, u.list)
1283 		if (aeb->ec == UBI_UNKNOWN)
1284 			aeb->ec = ai->mean_ec;
1285 
1286 	err = self_check_ai(ubi, ai);
1287 	if (err)
1288 		goto out_vidh;
1289 
1290 	ubi_free_vid_hdr(ubi, vidh);
1291 	kfree(ech);
1292 
1293 	return 0;
1294 
1295 out_vidh:
1296 	ubi_free_vid_hdr(ubi, vidh);
1297 out_ech:
1298 	kfree(ech);
1299 	return err;
1300 }
1301 
1302 static struct ubi_attach_info *alloc_ai(void)
1303 {
1304 	struct ubi_attach_info *ai;
1305 
1306 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1307 	if (!ai)
1308 		return ai;
1309 
1310 	INIT_LIST_HEAD(&ai->corr);
1311 	INIT_LIST_HEAD(&ai->free);
1312 	INIT_LIST_HEAD(&ai->erase);
1313 	INIT_LIST_HEAD(&ai->alien);
1314 	ai->volumes = RB_ROOT;
1315 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1316 					       sizeof(struct ubi_ainf_peb),
1317 					       0, 0, NULL);
1318 	if (!ai->aeb_slab_cache) {
1319 		kfree(ai);
1320 		ai = NULL;
1321 	}
1322 
1323 	return ai;
1324 }
1325 
1326 #ifdef CONFIG_MTD_UBI_FASTMAP
1327 
1328 /**
1329  * scan_fastmap - try to find a fastmap and attach from it.
1330  * @ubi: UBI device description object
1331  * @ai: attach info object
1332  *
1333  * Returns 0 on success, negative return values indicate an internal
1334  * error.
1335  * UBI_NO_FASTMAP denotes that no fastmap was found.
1336  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1337  */
1338 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1339 {
1340 	int err, pnum, fm_anchor = -1;
1341 	unsigned long long max_sqnum = 0;
1342 
1343 	err = -ENOMEM;
1344 
1345 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1346 	if (!ech)
1347 		goto out;
1348 
1349 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1350 	if (!vidh)
1351 		goto out_ech;
1352 
1353 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1354 		int vol_id = -1;
1355 		unsigned long long sqnum = -1;
1356 		cond_resched();
1357 
1358 		dbg_gen("process PEB %d", pnum);
1359 		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1360 		if (err < 0)
1361 			goto out_vidh;
1362 
1363 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1364 			max_sqnum = sqnum;
1365 			fm_anchor = pnum;
1366 		}
1367 	}
1368 
1369 	ubi_free_vid_hdr(ubi, vidh);
1370 	kfree(ech);
1371 
1372 	if (fm_anchor < 0)
1373 		return UBI_NO_FASTMAP;
1374 
1375 	destroy_ai(*ai);
1376 	*ai = alloc_ai();
1377 	if (!*ai)
1378 		return -ENOMEM;
1379 
1380 	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1381 
1382 out_vidh:
1383 	ubi_free_vid_hdr(ubi, vidh);
1384 out_ech:
1385 	kfree(ech);
1386 out:
1387 	return err;
1388 }
1389 
1390 #endif
1391 
1392 /**
1393  * ubi_attach - attach an MTD device.
1394  * @ubi: UBI device descriptor
1395  * @force_scan: if set to non-zero attach by scanning
1396  *
1397  * This function returns zero in case of success and a negative error code in
1398  * case of failure.
1399  */
1400 int ubi_attach(struct ubi_device *ubi, int force_scan)
1401 {
1402 	int err;
1403 	struct ubi_attach_info *ai;
1404 
1405 	ai = alloc_ai();
1406 	if (!ai)
1407 		return -ENOMEM;
1408 
1409 #ifdef CONFIG_MTD_UBI_FASTMAP
1410 	/* On small flash devices we disable fastmap in any case. */
1411 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1412 		ubi->fm_disabled = 1;
1413 		force_scan = 1;
1414 	}
1415 
1416 	if (force_scan)
1417 		err = scan_all(ubi, ai, 0);
1418 	else {
1419 		err = scan_fast(ubi, &ai);
1420 		if (err > 0 || mtd_is_eccerr(err)) {
1421 			if (err != UBI_NO_FASTMAP) {
1422 				destroy_ai(ai);
1423 				ai = alloc_ai();
1424 				if (!ai)
1425 					return -ENOMEM;
1426 
1427 				err = scan_all(ubi, ai, 0);
1428 			} else {
1429 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1430 			}
1431 		}
1432 	}
1433 #else
1434 	err = scan_all(ubi, ai, 0);
1435 #endif
1436 	if (err)
1437 		goto out_ai;
1438 
1439 	ubi->bad_peb_count = ai->bad_peb_count;
1440 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1441 	ubi->corr_peb_count = ai->corr_peb_count;
1442 	ubi->max_ec = ai->max_ec;
1443 	ubi->mean_ec = ai->mean_ec;
1444 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1445 
1446 	err = ubi_read_volume_table(ubi, ai);
1447 	if (err)
1448 		goto out_ai;
1449 
1450 	err = ubi_wl_init(ubi, ai);
1451 	if (err)
1452 		goto out_vtbl;
1453 
1454 	err = ubi_eba_init(ubi, ai);
1455 	if (err)
1456 		goto out_wl;
1457 
1458 #ifdef CONFIG_MTD_UBI_FASTMAP
1459 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1460 		struct ubi_attach_info *scan_ai;
1461 
1462 		scan_ai = alloc_ai();
1463 		if (!scan_ai) {
1464 			err = -ENOMEM;
1465 			goto out_wl;
1466 		}
1467 
1468 		err = scan_all(ubi, scan_ai, 0);
1469 		if (err) {
1470 			destroy_ai(scan_ai);
1471 			goto out_wl;
1472 		}
1473 
1474 		err = self_check_eba(ubi, ai, scan_ai);
1475 		destroy_ai(scan_ai);
1476 
1477 		if (err)
1478 			goto out_wl;
1479 	}
1480 #endif
1481 
1482 	destroy_ai(ai);
1483 	return 0;
1484 
1485 out_wl:
1486 	ubi_wl_close(ubi);
1487 out_vtbl:
1488 	ubi_free_internal_volumes(ubi);
1489 	vfree(ubi->vtbl);
1490 out_ai:
1491 	destroy_ai(ai);
1492 	return err;
1493 }
1494 
1495 /**
1496  * self_check_ai - check the attaching information.
1497  * @ubi: UBI device description object
1498  * @ai: attaching information
1499  *
1500  * This function returns zero if the attaching information is all right, and a
1501  * negative error code if not or if an error occurred.
1502  */
1503 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1504 {
1505 	int pnum, err, vols_found = 0;
1506 	struct rb_node *rb1, *rb2;
1507 	struct ubi_ainf_volume *av;
1508 	struct ubi_ainf_peb *aeb, *last_aeb;
1509 	uint8_t *buf;
1510 
1511 	if (!ubi_dbg_chk_gen(ubi))
1512 		return 0;
1513 
1514 	/*
1515 	 * At first, check that attaching information is OK.
1516 	 */
1517 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1518 		int leb_count = 0;
1519 
1520 		cond_resched();
1521 
1522 		vols_found += 1;
1523 
1524 		if (ai->is_empty) {
1525 			ubi_err(ubi, "bad is_empty flag");
1526 			goto bad_av;
1527 		}
1528 
1529 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1530 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1531 		    av->data_pad < 0 || av->last_data_size < 0) {
1532 			ubi_err(ubi, "negative values");
1533 			goto bad_av;
1534 		}
1535 
1536 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1537 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1538 			ubi_err(ubi, "bad vol_id");
1539 			goto bad_av;
1540 		}
1541 
1542 		if (av->vol_id > ai->highest_vol_id) {
1543 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1544 				ai->highest_vol_id, av->vol_id);
1545 			goto out;
1546 		}
1547 
1548 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1549 		    av->vol_type != UBI_STATIC_VOLUME) {
1550 			ubi_err(ubi, "bad vol_type");
1551 			goto bad_av;
1552 		}
1553 
1554 		if (av->data_pad > ubi->leb_size / 2) {
1555 			ubi_err(ubi, "bad data_pad");
1556 			goto bad_av;
1557 		}
1558 
1559 		last_aeb = NULL;
1560 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1561 			cond_resched();
1562 
1563 			last_aeb = aeb;
1564 			leb_count += 1;
1565 
1566 			if (aeb->pnum < 0 || aeb->ec < 0) {
1567 				ubi_err(ubi, "negative values");
1568 				goto bad_aeb;
1569 			}
1570 
1571 			if (aeb->ec < ai->min_ec) {
1572 				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1573 					ai->min_ec, aeb->ec);
1574 				goto bad_aeb;
1575 			}
1576 
1577 			if (aeb->ec > ai->max_ec) {
1578 				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1579 					ai->max_ec, aeb->ec);
1580 				goto bad_aeb;
1581 			}
1582 
1583 			if (aeb->pnum >= ubi->peb_count) {
1584 				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1585 					aeb->pnum, ubi->peb_count);
1586 				goto bad_aeb;
1587 			}
1588 
1589 			if (av->vol_type == UBI_STATIC_VOLUME) {
1590 				if (aeb->lnum >= av->used_ebs) {
1591 					ubi_err(ubi, "bad lnum or used_ebs");
1592 					goto bad_aeb;
1593 				}
1594 			} else {
1595 				if (av->used_ebs != 0) {
1596 					ubi_err(ubi, "non-zero used_ebs");
1597 					goto bad_aeb;
1598 				}
1599 			}
1600 
1601 			if (aeb->lnum > av->highest_lnum) {
1602 				ubi_err(ubi, "incorrect highest_lnum or lnum");
1603 				goto bad_aeb;
1604 			}
1605 		}
1606 
1607 		if (av->leb_count != leb_count) {
1608 			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1609 				leb_count);
1610 			goto bad_av;
1611 		}
1612 
1613 		if (!last_aeb)
1614 			continue;
1615 
1616 		aeb = last_aeb;
1617 
1618 		if (aeb->lnum != av->highest_lnum) {
1619 			ubi_err(ubi, "bad highest_lnum");
1620 			goto bad_aeb;
1621 		}
1622 	}
1623 
1624 	if (vols_found != ai->vols_found) {
1625 		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1626 			ai->vols_found, vols_found);
1627 		goto out;
1628 	}
1629 
1630 	/* Check that attaching information is correct */
1631 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1632 		last_aeb = NULL;
1633 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1634 			int vol_type;
1635 
1636 			cond_resched();
1637 
1638 			last_aeb = aeb;
1639 
1640 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1641 			if (err && err != UBI_IO_BITFLIPS) {
1642 				ubi_err(ubi, "VID header is not OK (%d)",
1643 					err);
1644 				if (err > 0)
1645 					err = -EIO;
1646 				return err;
1647 			}
1648 
1649 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1650 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1651 			if (av->vol_type != vol_type) {
1652 				ubi_err(ubi, "bad vol_type");
1653 				goto bad_vid_hdr;
1654 			}
1655 
1656 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1657 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1658 				goto bad_vid_hdr;
1659 			}
1660 
1661 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1662 				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1663 				goto bad_vid_hdr;
1664 			}
1665 
1666 			if (av->compat != vidh->compat) {
1667 				ubi_err(ubi, "bad compat %d", vidh->compat);
1668 				goto bad_vid_hdr;
1669 			}
1670 
1671 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1672 				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1673 				goto bad_vid_hdr;
1674 			}
1675 
1676 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1677 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1678 				goto bad_vid_hdr;
1679 			}
1680 
1681 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1682 				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1683 				goto bad_vid_hdr;
1684 			}
1685 		}
1686 
1687 		if (!last_aeb)
1688 			continue;
1689 
1690 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1691 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1692 			goto bad_vid_hdr;
1693 		}
1694 
1695 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1696 			ubi_err(ubi, "bad last_data_size %d",
1697 				av->last_data_size);
1698 			goto bad_vid_hdr;
1699 		}
1700 	}
1701 
1702 	/*
1703 	 * Make sure that all the physical eraseblocks are in one of the lists
1704 	 * or trees.
1705 	 */
1706 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1707 	if (!buf)
1708 		return -ENOMEM;
1709 
1710 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1711 		err = ubi_io_is_bad(ubi, pnum);
1712 		if (err < 0) {
1713 			kfree(buf);
1714 			return err;
1715 		} else if (err)
1716 			buf[pnum] = 1;
1717 	}
1718 
1719 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1720 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1721 			buf[aeb->pnum] = 1;
1722 
1723 	list_for_each_entry(aeb, &ai->free, u.list)
1724 		buf[aeb->pnum] = 1;
1725 
1726 	list_for_each_entry(aeb, &ai->corr, u.list)
1727 		buf[aeb->pnum] = 1;
1728 
1729 	list_for_each_entry(aeb, &ai->erase, u.list)
1730 		buf[aeb->pnum] = 1;
1731 
1732 	list_for_each_entry(aeb, &ai->alien, u.list)
1733 		buf[aeb->pnum] = 1;
1734 
1735 	err = 0;
1736 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1737 		if (!buf[pnum]) {
1738 			ubi_err(ubi, "PEB %d is not referred", pnum);
1739 			err = 1;
1740 		}
1741 
1742 	kfree(buf);
1743 	if (err)
1744 		goto out;
1745 	return 0;
1746 
1747 bad_aeb:
1748 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1749 	ubi_dump_aeb(aeb, 0);
1750 	ubi_dump_av(av);
1751 	goto out;
1752 
1753 bad_av:
1754 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1755 	ubi_dump_av(av);
1756 	goto out;
1757 
1758 bad_vid_hdr:
1759 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1760 	ubi_dump_av(av);
1761 	ubi_dump_vid_hdr(vidh);
1762 
1763 out:
1764 	dump_stack();
1765 	return -EINVAL;
1766 }
1767