xref: /openbmc/linux/drivers/mtd/ubi/attach.c (revision 0d456bad)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * UBI attaching sub-system.
23  *
24  * This sub-system is responsible for attaching MTD devices and it also
25  * implements flash media scanning.
26  *
27  * The attaching information is represented by a &struct ubi_attach_info'
28  * object. Information about volumes is represented by &struct ubi_ainf_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
33  * objects are kept in per-volume RB-trees with the root at the corresponding
34  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
35  * per-volume objects and each of these objects is the root of RB-tree of
36  * per-LEB objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  *
42  * About corruptions
43  * ~~~~~~~~~~~~~~~~~
44  *
45  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
46  * whether the headers are corrupted or not. Sometimes UBI also protects the
47  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
48  * when it moves the contents of a PEB for wear-leveling purposes.
49  *
50  * UBI tries to distinguish between 2 types of corruptions.
51  *
52  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
53  * tries to handle them gracefully, without printing too many warnings and
54  * error messages. The idea is that we do not lose important data in these
55  * cases - we may lose only the data which were being written to the media just
56  * before the power cut happened, and the upper layers (e.g., UBIFS) are
57  * supposed to handle such data losses (e.g., by using the FS journal).
58  *
59  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
60  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
61  * PEBs in the @erase list are scheduled for erasure later.
62  *
63  * 2. Unexpected corruptions which are not caused by power cuts. During
64  * attaching, such PEBs are put to the @corr list and UBI preserves them.
65  * Obviously, this lessens the amount of available PEBs, and if at some  point
66  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
67  * about such PEBs every time the MTD device is attached.
68  *
69  * However, it is difficult to reliably distinguish between these types of
70  * corruptions and UBI's strategy is as follows (in case of attaching by
71  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
72  * the data area does not contain all 0xFFs, and there were no bit-flips or
73  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
74  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
75  * are as follows.
76  *   o If the data area contains only 0xFFs, there are no data, and it is safe
77  *     to just erase this PEB - this is corruption type 1.
78  *   o If the data area has bit-flips or data integrity errors (ECC errors on
79  *     NAND), it is probably a PEB which was being erased when power cut
80  *     happened, so this is corruption type 1. However, this is just a guess,
81  *     which might be wrong.
82  *   o Otherwise this is corruption type 2.
83  */
84 
85 #include <linux/err.h>
86 #include <linux/slab.h>
87 #include <linux/crc32.h>
88 #include <linux/math64.h>
89 #include <linux/random.h>
90 #include "ubi.h"
91 
92 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
93 
94 /* Temporary variables used during scanning */
95 static struct ubi_ec_hdr *ech;
96 static struct ubi_vid_hdr *vidh;
97 
98 /**
99  * add_to_list - add physical eraseblock to a list.
100  * @ai: attaching information
101  * @pnum: physical eraseblock number to add
102  * @vol_id: the last used volume id for the PEB
103  * @lnum: the last used LEB number for the PEB
104  * @ec: erase counter of the physical eraseblock
105  * @to_head: if not zero, add to the head of the list
106  * @list: the list to add to
107  *
108  * This function allocates a 'struct ubi_ainf_peb' object for physical
109  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
110  * It stores the @lnum and @vol_id alongside, which can both be
111  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
112  * If @to_head is not zero, PEB will be added to the head of the list, which
113  * basically means it will be processed first later. E.g., we add corrupted
114  * PEBs (corrupted due to power cuts) to the head of the erase list to make
115  * sure we erase them first and get rid of corruptions ASAP. This function
116  * returns zero in case of success and a negative error code in case of
117  * failure.
118  */
119 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
120 		       int lnum, int ec, int to_head, struct list_head *list)
121 {
122 	struct ubi_ainf_peb *aeb;
123 
124 	if (list == &ai->free) {
125 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
126 	} else if (list == &ai->erase) {
127 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
128 	} else if (list == &ai->alien) {
129 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
130 		ai->alien_peb_count += 1;
131 	} else
132 		BUG();
133 
134 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
135 	if (!aeb)
136 		return -ENOMEM;
137 
138 	aeb->pnum = pnum;
139 	aeb->vol_id = vol_id;
140 	aeb->lnum = lnum;
141 	aeb->ec = ec;
142 	if (to_head)
143 		list_add(&aeb->u.list, list);
144 	else
145 		list_add_tail(&aeb->u.list, list);
146 	return 0;
147 }
148 
149 /**
150  * add_corrupted - add a corrupted physical eraseblock.
151  * @ai: attaching information
152  * @pnum: physical eraseblock number to add
153  * @ec: erase counter of the physical eraseblock
154  *
155  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
156  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
157  * was presumably not caused by a power cut. Returns zero in case of success
158  * and a negative error code in case of failure.
159  */
160 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
161 {
162 	struct ubi_ainf_peb *aeb;
163 
164 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
165 
166 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
167 	if (!aeb)
168 		return -ENOMEM;
169 
170 	ai->corr_peb_count += 1;
171 	aeb->pnum = pnum;
172 	aeb->ec = ec;
173 	list_add(&aeb->u.list, &ai->corr);
174 	return 0;
175 }
176 
177 /**
178  * validate_vid_hdr - check volume identifier header.
179  * @vid_hdr: the volume identifier header to check
180  * @av: information about the volume this logical eraseblock belongs to
181  * @pnum: physical eraseblock number the VID header came from
182  *
183  * This function checks that data stored in @vid_hdr is consistent. Returns
184  * non-zero if an inconsistency was found and zero if not.
185  *
186  * Note, UBI does sanity check of everything it reads from the flash media.
187  * Most of the checks are done in the I/O sub-system. Here we check that the
188  * information in the VID header is consistent to the information in other VID
189  * headers of the same volume.
190  */
191 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
192 			    const struct ubi_ainf_volume *av, int pnum)
193 {
194 	int vol_type = vid_hdr->vol_type;
195 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
196 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
197 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
198 
199 	if (av->leb_count != 0) {
200 		int av_vol_type;
201 
202 		/*
203 		 * This is not the first logical eraseblock belonging to this
204 		 * volume. Ensure that the data in its VID header is consistent
205 		 * to the data in previous logical eraseblock headers.
206 		 */
207 
208 		if (vol_id != av->vol_id) {
209 			ubi_err("inconsistent vol_id");
210 			goto bad;
211 		}
212 
213 		if (av->vol_type == UBI_STATIC_VOLUME)
214 			av_vol_type = UBI_VID_STATIC;
215 		else
216 			av_vol_type = UBI_VID_DYNAMIC;
217 
218 		if (vol_type != av_vol_type) {
219 			ubi_err("inconsistent vol_type");
220 			goto bad;
221 		}
222 
223 		if (used_ebs != av->used_ebs) {
224 			ubi_err("inconsistent used_ebs");
225 			goto bad;
226 		}
227 
228 		if (data_pad != av->data_pad) {
229 			ubi_err("inconsistent data_pad");
230 			goto bad;
231 		}
232 	}
233 
234 	return 0;
235 
236 bad:
237 	ubi_err("inconsistent VID header at PEB %d", pnum);
238 	ubi_dump_vid_hdr(vid_hdr);
239 	ubi_dump_av(av);
240 	return -EINVAL;
241 }
242 
243 /**
244  * add_volume - add volume to the attaching information.
245  * @ai: attaching information
246  * @vol_id: ID of the volume to add
247  * @pnum: physical eraseblock number
248  * @vid_hdr: volume identifier header
249  *
250  * If the volume corresponding to the @vid_hdr logical eraseblock is already
251  * present in the attaching information, this function does nothing. Otherwise
252  * it adds corresponding volume to the attaching information. Returns a pointer
253  * to the allocated "av" object in case of success and a negative error code in
254  * case of failure.
255  */
256 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
257 					  int vol_id, int pnum,
258 					  const struct ubi_vid_hdr *vid_hdr)
259 {
260 	struct ubi_ainf_volume *av;
261 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
262 
263 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
264 
265 	/* Walk the volume RB-tree to look if this volume is already present */
266 	while (*p) {
267 		parent = *p;
268 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
269 
270 		if (vol_id == av->vol_id)
271 			return av;
272 
273 		if (vol_id > av->vol_id)
274 			p = &(*p)->rb_left;
275 		else
276 			p = &(*p)->rb_right;
277 	}
278 
279 	/* The volume is absent - add it */
280 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
281 	if (!av)
282 		return ERR_PTR(-ENOMEM);
283 
284 	av->highest_lnum = av->leb_count = 0;
285 	av->vol_id = vol_id;
286 	av->root = RB_ROOT;
287 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
288 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
289 	av->compat = vid_hdr->compat;
290 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
291 							    : UBI_STATIC_VOLUME;
292 	if (vol_id > ai->highest_vol_id)
293 		ai->highest_vol_id = vol_id;
294 
295 	rb_link_node(&av->rb, parent, p);
296 	rb_insert_color(&av->rb, &ai->volumes);
297 	ai->vols_found += 1;
298 	dbg_bld("added volume %d", vol_id);
299 	return av;
300 }
301 
302 /**
303  * ubi_compare_lebs - find out which logical eraseblock is newer.
304  * @ubi: UBI device description object
305  * @aeb: first logical eraseblock to compare
306  * @pnum: physical eraseblock number of the second logical eraseblock to
307  * compare
308  * @vid_hdr: volume identifier header of the second logical eraseblock
309  *
310  * This function compares 2 copies of a LEB and informs which one is newer. In
311  * case of success this function returns a positive value, in case of failure, a
312  * negative error code is returned. The success return codes use the following
313  * bits:
314  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
315  *       second PEB (described by @pnum and @vid_hdr);
316  *     o bit 0 is set: the second PEB is newer;
317  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
318  *     o bit 1 is set: bit-flips were detected in the newer LEB;
319  *     o bit 2 is cleared: the older LEB is not corrupted;
320  *     o bit 2 is set: the older LEB is corrupted.
321  */
322 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
323 			int pnum, const struct ubi_vid_hdr *vid_hdr)
324 {
325 	void *buf;
326 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 	uint32_t data_crc, crc;
328 	struct ubi_vid_hdr *vh = NULL;
329 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
330 
331 	if (sqnum2 == aeb->sqnum) {
332 		/*
333 		 * This must be a really ancient UBI image which has been
334 		 * created before sequence numbers support has been added. At
335 		 * that times we used 32-bit LEB versions stored in logical
336 		 * eraseblocks. That was before UBI got into mainline. We do not
337 		 * support these images anymore. Well, those images still work,
338 		 * but only if no unclean reboots happened.
339 		 */
340 		ubi_err("unsupported on-flash UBI format");
341 		return -EINVAL;
342 	}
343 
344 	/* Obviously the LEB with lower sequence counter is older */
345 	second_is_newer = (sqnum2 > aeb->sqnum);
346 
347 	/*
348 	 * Now we know which copy is newer. If the copy flag of the PEB with
349 	 * newer version is not set, then we just return, otherwise we have to
350 	 * check data CRC. For the second PEB we already have the VID header,
351 	 * for the first one - we'll need to re-read it from flash.
352 	 *
353 	 * Note: this may be optimized so that we wouldn't read twice.
354 	 */
355 
356 	if (second_is_newer) {
357 		if (!vid_hdr->copy_flag) {
358 			/* It is not a copy, so it is newer */
359 			dbg_bld("second PEB %d is newer, copy_flag is unset",
360 				pnum);
361 			return 1;
362 		}
363 	} else {
364 		if (!aeb->copy_flag) {
365 			/* It is not a copy, so it is newer */
366 			dbg_bld("first PEB %d is newer, copy_flag is unset",
367 				pnum);
368 			return bitflips << 1;
369 		}
370 
371 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
372 		if (!vh)
373 			return -ENOMEM;
374 
375 		pnum = aeb->pnum;
376 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
377 		if (err) {
378 			if (err == UBI_IO_BITFLIPS)
379 				bitflips = 1;
380 			else {
381 				ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
382 					pnum, err);
383 				if (err > 0)
384 					err = -EIO;
385 
386 				goto out_free_vidh;
387 			}
388 		}
389 
390 		vid_hdr = vh;
391 	}
392 
393 	/* Read the data of the copy and check the CRC */
394 
395 	len = be32_to_cpu(vid_hdr->data_size);
396 	buf = vmalloc(len);
397 	if (!buf) {
398 		err = -ENOMEM;
399 		goto out_free_vidh;
400 	}
401 
402 	err = ubi_io_read_data(ubi, buf, pnum, 0, len);
403 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
404 		goto out_free_buf;
405 
406 	data_crc = be32_to_cpu(vid_hdr->data_crc);
407 	crc = crc32(UBI_CRC32_INIT, buf, len);
408 	if (crc != data_crc) {
409 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
410 			pnum, crc, data_crc);
411 		corrupted = 1;
412 		bitflips = 0;
413 		second_is_newer = !second_is_newer;
414 	} else {
415 		dbg_bld("PEB %d CRC is OK", pnum);
416 		bitflips = !!err;
417 	}
418 
419 	vfree(buf);
420 	ubi_free_vid_hdr(ubi, vh);
421 
422 	if (second_is_newer)
423 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
424 	else
425 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
426 
427 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
428 
429 out_free_buf:
430 	vfree(buf);
431 out_free_vidh:
432 	ubi_free_vid_hdr(ubi, vh);
433 	return err;
434 }
435 
436 /**
437  * ubi_add_to_av - add used physical eraseblock to the attaching information.
438  * @ubi: UBI device description object
439  * @ai: attaching information
440  * @pnum: the physical eraseblock number
441  * @ec: erase counter
442  * @vid_hdr: the volume identifier header
443  * @bitflips: if bit-flips were detected when this physical eraseblock was read
444  *
445  * This function adds information about a used physical eraseblock to the
446  * 'used' tree of the corresponding volume. The function is rather complex
447  * because it has to handle cases when this is not the first physical
448  * eraseblock belonging to the same logical eraseblock, and the newer one has
449  * to be picked, while the older one has to be dropped. This function returns
450  * zero in case of success and a negative error code in case of failure.
451  */
452 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
453 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
454 {
455 	int err, vol_id, lnum;
456 	unsigned long long sqnum;
457 	struct ubi_ainf_volume *av;
458 	struct ubi_ainf_peb *aeb;
459 	struct rb_node **p, *parent = NULL;
460 
461 	vol_id = be32_to_cpu(vid_hdr->vol_id);
462 	lnum = be32_to_cpu(vid_hdr->lnum);
463 	sqnum = be64_to_cpu(vid_hdr->sqnum);
464 
465 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
466 		pnum, vol_id, lnum, ec, sqnum, bitflips);
467 
468 	av = add_volume(ai, vol_id, pnum, vid_hdr);
469 	if (IS_ERR(av))
470 		return PTR_ERR(av);
471 
472 	if (ai->max_sqnum < sqnum)
473 		ai->max_sqnum = sqnum;
474 
475 	/*
476 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
477 	 * if this is the first instance of this logical eraseblock or not.
478 	 */
479 	p = &av->root.rb_node;
480 	while (*p) {
481 		int cmp_res;
482 
483 		parent = *p;
484 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
485 		if (lnum != aeb->lnum) {
486 			if (lnum < aeb->lnum)
487 				p = &(*p)->rb_left;
488 			else
489 				p = &(*p)->rb_right;
490 			continue;
491 		}
492 
493 		/*
494 		 * There is already a physical eraseblock describing the same
495 		 * logical eraseblock present.
496 		 */
497 
498 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
499 			aeb->pnum, aeb->sqnum, aeb->ec);
500 
501 		/*
502 		 * Make sure that the logical eraseblocks have different
503 		 * sequence numbers. Otherwise the image is bad.
504 		 *
505 		 * However, if the sequence number is zero, we assume it must
506 		 * be an ancient UBI image from the era when UBI did not have
507 		 * sequence numbers. We still can attach these images, unless
508 		 * there is a need to distinguish between old and new
509 		 * eraseblocks, in which case we'll refuse the image in
510 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
511 		 * images, but refuse attaching old images with duplicated
512 		 * logical eraseblocks because there was an unclean reboot.
513 		 */
514 		if (aeb->sqnum == sqnum && sqnum != 0) {
515 			ubi_err("two LEBs with same sequence number %llu",
516 				sqnum);
517 			ubi_dump_aeb(aeb, 0);
518 			ubi_dump_vid_hdr(vid_hdr);
519 			return -EINVAL;
520 		}
521 
522 		/*
523 		 * Now we have to drop the older one and preserve the newer
524 		 * one.
525 		 */
526 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
527 		if (cmp_res < 0)
528 			return cmp_res;
529 
530 		if (cmp_res & 1) {
531 			/*
532 			 * This logical eraseblock is newer than the one
533 			 * found earlier.
534 			 */
535 			err = validate_vid_hdr(vid_hdr, av, pnum);
536 			if (err)
537 				return err;
538 
539 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
540 					  aeb->lnum, aeb->ec, cmp_res & 4,
541 					  &ai->erase);
542 			if (err)
543 				return err;
544 
545 			aeb->ec = ec;
546 			aeb->pnum = pnum;
547 			aeb->vol_id = vol_id;
548 			aeb->lnum = lnum;
549 			aeb->scrub = ((cmp_res & 2) || bitflips);
550 			aeb->copy_flag = vid_hdr->copy_flag;
551 			aeb->sqnum = sqnum;
552 
553 			if (av->highest_lnum == lnum)
554 				av->last_data_size =
555 					be32_to_cpu(vid_hdr->data_size);
556 
557 			return 0;
558 		} else {
559 			/*
560 			 * This logical eraseblock is older than the one found
561 			 * previously.
562 			 */
563 			return add_to_list(ai, pnum, vol_id, lnum, ec,
564 					   cmp_res & 4, &ai->erase);
565 		}
566 	}
567 
568 	/*
569 	 * We've met this logical eraseblock for the first time, add it to the
570 	 * attaching information.
571 	 */
572 
573 	err = validate_vid_hdr(vid_hdr, av, pnum);
574 	if (err)
575 		return err;
576 
577 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
578 	if (!aeb)
579 		return -ENOMEM;
580 
581 	aeb->ec = ec;
582 	aeb->pnum = pnum;
583 	aeb->vol_id = vol_id;
584 	aeb->lnum = lnum;
585 	aeb->scrub = bitflips;
586 	aeb->copy_flag = vid_hdr->copy_flag;
587 	aeb->sqnum = sqnum;
588 
589 	if (av->highest_lnum <= lnum) {
590 		av->highest_lnum = lnum;
591 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
592 	}
593 
594 	av->leb_count += 1;
595 	rb_link_node(&aeb->u.rb, parent, p);
596 	rb_insert_color(&aeb->u.rb, &av->root);
597 	return 0;
598 }
599 
600 /**
601  * ubi_find_av - find volume in the attaching information.
602  * @ai: attaching information
603  * @vol_id: the requested volume ID
604  *
605  * This function returns a pointer to the volume description or %NULL if there
606  * are no data about this volume in the attaching information.
607  */
608 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
609 				    int vol_id)
610 {
611 	struct ubi_ainf_volume *av;
612 	struct rb_node *p = ai->volumes.rb_node;
613 
614 	while (p) {
615 		av = rb_entry(p, struct ubi_ainf_volume, rb);
616 
617 		if (vol_id == av->vol_id)
618 			return av;
619 
620 		if (vol_id > av->vol_id)
621 			p = p->rb_left;
622 		else
623 			p = p->rb_right;
624 	}
625 
626 	return NULL;
627 }
628 
629 /**
630  * ubi_remove_av - delete attaching information about a volume.
631  * @ai: attaching information
632  * @av: the volume attaching information to delete
633  */
634 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
635 {
636 	struct rb_node *rb;
637 	struct ubi_ainf_peb *aeb;
638 
639 	dbg_bld("remove attaching information about volume %d", av->vol_id);
640 
641 	while ((rb = rb_first(&av->root))) {
642 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
643 		rb_erase(&aeb->u.rb, &av->root);
644 		list_add_tail(&aeb->u.list, &ai->erase);
645 	}
646 
647 	rb_erase(&av->rb, &ai->volumes);
648 	kfree(av);
649 	ai->vols_found -= 1;
650 }
651 
652 /**
653  * early_erase_peb - erase a physical eraseblock.
654  * @ubi: UBI device description object
655  * @ai: attaching information
656  * @pnum: physical eraseblock number to erase;
657  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
658  *
659  * This function erases physical eraseblock 'pnum', and writes the erase
660  * counter header to it. This function should only be used on UBI device
661  * initialization stages, when the EBA sub-system had not been yet initialized.
662  * This function returns zero in case of success and a negative error code in
663  * case of failure.
664  */
665 static int early_erase_peb(struct ubi_device *ubi,
666 			   const struct ubi_attach_info *ai, int pnum, int ec)
667 {
668 	int err;
669 	struct ubi_ec_hdr *ec_hdr;
670 
671 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
672 		/*
673 		 * Erase counter overflow. Upgrade UBI and use 64-bit
674 		 * erase counters internally.
675 		 */
676 		ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
677 		return -EINVAL;
678 	}
679 
680 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
681 	if (!ec_hdr)
682 		return -ENOMEM;
683 
684 	ec_hdr->ec = cpu_to_be64(ec);
685 
686 	err = ubi_io_sync_erase(ubi, pnum, 0);
687 	if (err < 0)
688 		goto out_free;
689 
690 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
691 
692 out_free:
693 	kfree(ec_hdr);
694 	return err;
695 }
696 
697 /**
698  * ubi_early_get_peb - get a free physical eraseblock.
699  * @ubi: UBI device description object
700  * @ai: attaching information
701  *
702  * This function returns a free physical eraseblock. It is supposed to be
703  * called on the UBI initialization stages when the wear-leveling sub-system is
704  * not initialized yet. This function picks a physical eraseblocks from one of
705  * the lists, writes the EC header if it is needed, and removes it from the
706  * list.
707  *
708  * This function returns a pointer to the "aeb" of the found free PEB in case
709  * of success and an error code in case of failure.
710  */
711 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
712 				       struct ubi_attach_info *ai)
713 {
714 	int err = 0;
715 	struct ubi_ainf_peb *aeb, *tmp_aeb;
716 
717 	if (!list_empty(&ai->free)) {
718 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
719 		list_del(&aeb->u.list);
720 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
721 		return aeb;
722 	}
723 
724 	/*
725 	 * We try to erase the first physical eraseblock from the erase list
726 	 * and pick it if we succeed, or try to erase the next one if not. And
727 	 * so forth. We don't want to take care about bad eraseblocks here -
728 	 * they'll be handled later.
729 	 */
730 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
731 		if (aeb->ec == UBI_UNKNOWN)
732 			aeb->ec = ai->mean_ec;
733 
734 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
735 		if (err)
736 			continue;
737 
738 		aeb->ec += 1;
739 		list_del(&aeb->u.list);
740 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
741 		return aeb;
742 	}
743 
744 	ubi_err("no free eraseblocks");
745 	return ERR_PTR(-ENOSPC);
746 }
747 
748 /**
749  * check_corruption - check the data area of PEB.
750  * @ubi: UBI device description object
751  * @vid_hdr: the (corrupted) VID header of this PEB
752  * @pnum: the physical eraseblock number to check
753  *
754  * This is a helper function which is used to distinguish between VID header
755  * corruptions caused by power cuts and other reasons. If the PEB contains only
756  * 0xFF bytes in the data area, the VID header is most probably corrupted
757  * because of a power cut (%0 is returned in this case). Otherwise, it was
758  * probably corrupted for some other reasons (%1 is returned in this case). A
759  * negative error code is returned if a read error occurred.
760  *
761  * If the corruption reason was a power cut, UBI can safely erase this PEB.
762  * Otherwise, it should preserve it to avoid possibly destroying important
763  * information.
764  */
765 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
766 			    int pnum)
767 {
768 	int err;
769 
770 	mutex_lock(&ubi->buf_mutex);
771 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
772 
773 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
774 			  ubi->leb_size);
775 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
776 		/*
777 		 * Bit-flips or integrity errors while reading the data area.
778 		 * It is difficult to say for sure what type of corruption is
779 		 * this, but presumably a power cut happened while this PEB was
780 		 * erased, so it became unstable and corrupted, and should be
781 		 * erased.
782 		 */
783 		err = 0;
784 		goto out_unlock;
785 	}
786 
787 	if (err)
788 		goto out_unlock;
789 
790 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
791 		goto out_unlock;
792 
793 	ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
794 		pnum);
795 	ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
796 	ubi_dump_vid_hdr(vid_hdr);
797 	pr_err("hexdump of PEB %d offset %d, length %d",
798 	       pnum, ubi->leb_start, ubi->leb_size);
799 	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
800 			       ubi->peb_buf, ubi->leb_size, 1);
801 	err = 1;
802 
803 out_unlock:
804 	mutex_unlock(&ubi->buf_mutex);
805 	return err;
806 }
807 
808 /**
809  * scan_peb - scan and process UBI headers of a PEB.
810  * @ubi: UBI device description object
811  * @ai: attaching information
812  * @pnum: the physical eraseblock number
813  * @vid: The volume ID of the found volume will be stored in this pointer
814  * @sqnum: The sqnum of the found volume will be stored in this pointer
815  *
816  * This function reads UBI headers of PEB @pnum, checks them, and adds
817  * information about this PEB to the corresponding list or RB-tree in the
818  * "attaching info" structure. Returns zero if the physical eraseblock was
819  * successfully handled and a negative error code in case of failure.
820  */
821 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
822 		    int pnum, int *vid, unsigned long long *sqnum)
823 {
824 	long long uninitialized_var(ec);
825 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
826 
827 	dbg_bld("scan PEB %d", pnum);
828 
829 	/* Skip bad physical eraseblocks */
830 	err = ubi_io_is_bad(ubi, pnum);
831 	if (err < 0)
832 		return err;
833 	else if (err) {
834 		ai->bad_peb_count += 1;
835 		return 0;
836 	}
837 
838 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
839 	if (err < 0)
840 		return err;
841 	switch (err) {
842 	case 0:
843 		break;
844 	case UBI_IO_BITFLIPS:
845 		bitflips = 1;
846 		break;
847 	case UBI_IO_FF:
848 		ai->empty_peb_count += 1;
849 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
850 				   UBI_UNKNOWN, 0, &ai->erase);
851 	case UBI_IO_FF_BITFLIPS:
852 		ai->empty_peb_count += 1;
853 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
854 				   UBI_UNKNOWN, 1, &ai->erase);
855 	case UBI_IO_BAD_HDR_EBADMSG:
856 	case UBI_IO_BAD_HDR:
857 		/*
858 		 * We have to also look at the VID header, possibly it is not
859 		 * corrupted. Set %bitflips flag in order to make this PEB be
860 		 * moved and EC be re-created.
861 		 */
862 		ec_err = err;
863 		ec = UBI_UNKNOWN;
864 		bitflips = 1;
865 		break;
866 	default:
867 		ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
868 		return -EINVAL;
869 	}
870 
871 	if (!ec_err) {
872 		int image_seq;
873 
874 		/* Make sure UBI version is OK */
875 		if (ech->version != UBI_VERSION) {
876 			ubi_err("this UBI version is %d, image version is %d",
877 				UBI_VERSION, (int)ech->version);
878 			return -EINVAL;
879 		}
880 
881 		ec = be64_to_cpu(ech->ec);
882 		if (ec > UBI_MAX_ERASECOUNTER) {
883 			/*
884 			 * Erase counter overflow. The EC headers have 64 bits
885 			 * reserved, but we anyway make use of only 31 bit
886 			 * values, as this seems to be enough for any existing
887 			 * flash. Upgrade UBI and use 64-bit erase counters
888 			 * internally.
889 			 */
890 			ubi_err("erase counter overflow, max is %d",
891 				UBI_MAX_ERASECOUNTER);
892 			ubi_dump_ec_hdr(ech);
893 			return -EINVAL;
894 		}
895 
896 		/*
897 		 * Make sure that all PEBs have the same image sequence number.
898 		 * This allows us to detect situations when users flash UBI
899 		 * images incorrectly, so that the flash has the new UBI image
900 		 * and leftovers from the old one. This feature was added
901 		 * relatively recently, and the sequence number was always
902 		 * zero, because old UBI implementations always set it to zero.
903 		 * For this reasons, we do not panic if some PEBs have zero
904 		 * sequence number, while other PEBs have non-zero sequence
905 		 * number.
906 		 */
907 		image_seq = be32_to_cpu(ech->image_seq);
908 		if (!ubi->image_seq && image_seq)
909 			ubi->image_seq = image_seq;
910 		if (ubi->image_seq && image_seq &&
911 		    ubi->image_seq != image_seq) {
912 			ubi_err("bad image sequence number %d in PEB %d, expected %d",
913 				image_seq, pnum, ubi->image_seq);
914 			ubi_dump_ec_hdr(ech);
915 			return -EINVAL;
916 		}
917 	}
918 
919 	/* OK, we've done with the EC header, let's look at the VID header */
920 
921 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
922 	if (err < 0)
923 		return err;
924 	switch (err) {
925 	case 0:
926 		break;
927 	case UBI_IO_BITFLIPS:
928 		bitflips = 1;
929 		break;
930 	case UBI_IO_BAD_HDR_EBADMSG:
931 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
932 			/*
933 			 * Both EC and VID headers are corrupted and were read
934 			 * with data integrity error, probably this is a bad
935 			 * PEB, bit it is not marked as bad yet. This may also
936 			 * be a result of power cut during erasure.
937 			 */
938 			ai->maybe_bad_peb_count += 1;
939 	case UBI_IO_BAD_HDR:
940 		if (ec_err)
941 			/*
942 			 * Both headers are corrupted. There is a possibility
943 			 * that this a valid UBI PEB which has corresponding
944 			 * LEB, but the headers are corrupted. However, it is
945 			 * impossible to distinguish it from a PEB which just
946 			 * contains garbage because of a power cut during erase
947 			 * operation. So we just schedule this PEB for erasure.
948 			 *
949 			 * Besides, in case of NOR flash, we deliberately
950 			 * corrupt both headers because NOR flash erasure is
951 			 * slow and can start from the end.
952 			 */
953 			err = 0;
954 		else
955 			/*
956 			 * The EC was OK, but the VID header is corrupted. We
957 			 * have to check what is in the data area.
958 			 */
959 			err = check_corruption(ubi, vidh, pnum);
960 
961 		if (err < 0)
962 			return err;
963 		else if (!err)
964 			/* This corruption is caused by a power cut */
965 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
966 					  UBI_UNKNOWN, ec, 1, &ai->erase);
967 		else
968 			/* This is an unexpected corruption */
969 			err = add_corrupted(ai, pnum, ec);
970 		if (err)
971 			return err;
972 		goto adjust_mean_ec;
973 	case UBI_IO_FF_BITFLIPS:
974 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
975 				  ec, 1, &ai->erase);
976 		if (err)
977 			return err;
978 		goto adjust_mean_ec;
979 	case UBI_IO_FF:
980 		if (ec_err || bitflips)
981 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
982 					  UBI_UNKNOWN, ec, 1, &ai->erase);
983 		else
984 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
985 					  UBI_UNKNOWN, ec, 0, &ai->free);
986 		if (err)
987 			return err;
988 		goto adjust_mean_ec;
989 	default:
990 		ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
991 			err);
992 		return -EINVAL;
993 	}
994 
995 	vol_id = be32_to_cpu(vidh->vol_id);
996 	if (vid)
997 		*vid = vol_id;
998 	if (sqnum)
999 		*sqnum = be64_to_cpu(vidh->sqnum);
1000 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
1001 		int lnum = be32_to_cpu(vidh->lnum);
1002 
1003 		/* Unsupported internal volume */
1004 		switch (vidh->compat) {
1005 		case UBI_COMPAT_DELETE:
1006 			if (vol_id != UBI_FM_SB_VOLUME_ID
1007 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1008 				ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1009 					vol_id, lnum);
1010 			}
1011 			err = add_to_list(ai, pnum, vol_id, lnum,
1012 					  ec, 1, &ai->erase);
1013 			if (err)
1014 				return err;
1015 			return 0;
1016 
1017 		case UBI_COMPAT_RO:
1018 			ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1019 				vol_id, lnum);
1020 			ubi->ro_mode = 1;
1021 			break;
1022 
1023 		case UBI_COMPAT_PRESERVE:
1024 			ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1025 				vol_id, lnum);
1026 			err = add_to_list(ai, pnum, vol_id, lnum,
1027 					  ec, 0, &ai->alien);
1028 			if (err)
1029 				return err;
1030 			return 0;
1031 
1032 		case UBI_COMPAT_REJECT:
1033 			ubi_err("incompatible internal volume %d:%d found",
1034 				vol_id, lnum);
1035 			return -EINVAL;
1036 		}
1037 	}
1038 
1039 	if (ec_err)
1040 		ubi_warn("valid VID header but corrupted EC header at PEB %d",
1041 			 pnum);
1042 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1043 	if (err)
1044 		return err;
1045 
1046 adjust_mean_ec:
1047 	if (!ec_err) {
1048 		ai->ec_sum += ec;
1049 		ai->ec_count += 1;
1050 		if (ec > ai->max_ec)
1051 			ai->max_ec = ec;
1052 		if (ec < ai->min_ec)
1053 			ai->min_ec = ec;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  * late_analysis - analyze the overall situation with PEB.
1061  * @ubi: UBI device description object
1062  * @ai: attaching information
1063  *
1064  * This is a helper function which takes a look what PEBs we have after we
1065  * gather information about all of them ("ai" is compete). It decides whether
1066  * the flash is empty and should be formatted of whether there are too many
1067  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1068  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1069  */
1070 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1071 {
1072 	struct ubi_ainf_peb *aeb;
1073 	int max_corr, peb_count;
1074 
1075 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1076 	max_corr = peb_count / 20 ?: 8;
1077 
1078 	/*
1079 	 * Few corrupted PEBs is not a problem and may be just a result of
1080 	 * unclean reboots. However, many of them may indicate some problems
1081 	 * with the flash HW or driver.
1082 	 */
1083 	if (ai->corr_peb_count) {
1084 		ubi_err("%d PEBs are corrupted and preserved",
1085 			ai->corr_peb_count);
1086 		pr_err("Corrupted PEBs are:");
1087 		list_for_each_entry(aeb, &ai->corr, u.list)
1088 			pr_cont(" %d", aeb->pnum);
1089 		pr_cont("\n");
1090 
1091 		/*
1092 		 * If too many PEBs are corrupted, we refuse attaching,
1093 		 * otherwise, only print a warning.
1094 		 */
1095 		if (ai->corr_peb_count >= max_corr) {
1096 			ubi_err("too many corrupted PEBs, refusing");
1097 			return -EINVAL;
1098 		}
1099 	}
1100 
1101 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1102 		/*
1103 		 * All PEBs are empty, or almost all - a couple PEBs look like
1104 		 * they may be bad PEBs which were not marked as bad yet.
1105 		 *
1106 		 * This piece of code basically tries to distinguish between
1107 		 * the following situations:
1108 		 *
1109 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1110 		 *    marked as bad so far, and which were read with error. We
1111 		 *    want to go ahead and format this flash. While formatting,
1112 		 *    the faulty PEBs will probably be marked as bad.
1113 		 *
1114 		 * 2. Flash contains non-UBI data and we do not want to format
1115 		 *    it and destroy possibly important information.
1116 		 */
1117 		if (ai->maybe_bad_peb_count <= 2) {
1118 			ai->is_empty = 1;
1119 			ubi_msg("empty MTD device detected");
1120 			get_random_bytes(&ubi->image_seq,
1121 					 sizeof(ubi->image_seq));
1122 		} else {
1123 			ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1124 			return -EINVAL;
1125 		}
1126 
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 /**
1133  * destroy_av - free volume attaching information.
1134  * @av: volume attaching information
1135  * @ai: attaching information
1136  *
1137  * This function destroys the volume attaching information.
1138  */
1139 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1140 {
1141 	struct ubi_ainf_peb *aeb;
1142 	struct rb_node *this = av->root.rb_node;
1143 
1144 	while (this) {
1145 		if (this->rb_left)
1146 			this = this->rb_left;
1147 		else if (this->rb_right)
1148 			this = this->rb_right;
1149 		else {
1150 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1151 			this = rb_parent(this);
1152 			if (this) {
1153 				if (this->rb_left == &aeb->u.rb)
1154 					this->rb_left = NULL;
1155 				else
1156 					this->rb_right = NULL;
1157 			}
1158 
1159 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1160 		}
1161 	}
1162 	kfree(av);
1163 }
1164 
1165 /**
1166  * destroy_ai - destroy attaching information.
1167  * @ai: attaching information
1168  */
1169 static void destroy_ai(struct ubi_attach_info *ai)
1170 {
1171 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1172 	struct ubi_ainf_volume *av;
1173 	struct rb_node *rb;
1174 
1175 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1176 		list_del(&aeb->u.list);
1177 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1178 	}
1179 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1180 		list_del(&aeb->u.list);
1181 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1182 	}
1183 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1184 		list_del(&aeb->u.list);
1185 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1186 	}
1187 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1188 		list_del(&aeb->u.list);
1189 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1190 	}
1191 
1192 	/* Destroy the volume RB-tree */
1193 	rb = ai->volumes.rb_node;
1194 	while (rb) {
1195 		if (rb->rb_left)
1196 			rb = rb->rb_left;
1197 		else if (rb->rb_right)
1198 			rb = rb->rb_right;
1199 		else {
1200 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1201 
1202 			rb = rb_parent(rb);
1203 			if (rb) {
1204 				if (rb->rb_left == &av->rb)
1205 					rb->rb_left = NULL;
1206 				else
1207 					rb->rb_right = NULL;
1208 			}
1209 
1210 			destroy_av(ai, av);
1211 		}
1212 	}
1213 
1214 	if (ai->aeb_slab_cache)
1215 		kmem_cache_destroy(ai->aeb_slab_cache);
1216 
1217 	kfree(ai);
1218 }
1219 
1220 /**
1221  * scan_all - scan entire MTD device.
1222  * @ubi: UBI device description object
1223  * @ai: attach info object
1224  * @start: start scanning at this PEB
1225  *
1226  * This function does full scanning of an MTD device and returns complete
1227  * information about it in form of a "struct ubi_attach_info" object. In case
1228  * of failure, an error code is returned.
1229  */
1230 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1231 		    int start)
1232 {
1233 	int err, pnum;
1234 	struct rb_node *rb1, *rb2;
1235 	struct ubi_ainf_volume *av;
1236 	struct ubi_ainf_peb *aeb;
1237 
1238 	err = -ENOMEM;
1239 
1240 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1241 	if (!ech)
1242 		return err;
1243 
1244 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1245 	if (!vidh)
1246 		goto out_ech;
1247 
1248 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1249 		cond_resched();
1250 
1251 		dbg_gen("process PEB %d", pnum);
1252 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1253 		if (err < 0)
1254 			goto out_vidh;
1255 	}
1256 
1257 	ubi_msg("scanning is finished");
1258 
1259 	/* Calculate mean erase counter */
1260 	if (ai->ec_count)
1261 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1262 
1263 	err = late_analysis(ubi, ai);
1264 	if (err)
1265 		goto out_vidh;
1266 
1267 	/*
1268 	 * In case of unknown erase counter we use the mean erase counter
1269 	 * value.
1270 	 */
1271 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1272 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1273 			if (aeb->ec == UBI_UNKNOWN)
1274 				aeb->ec = ai->mean_ec;
1275 	}
1276 
1277 	list_for_each_entry(aeb, &ai->free, u.list) {
1278 		if (aeb->ec == UBI_UNKNOWN)
1279 			aeb->ec = ai->mean_ec;
1280 	}
1281 
1282 	list_for_each_entry(aeb, &ai->corr, u.list)
1283 		if (aeb->ec == UBI_UNKNOWN)
1284 			aeb->ec = ai->mean_ec;
1285 
1286 	list_for_each_entry(aeb, &ai->erase, u.list)
1287 		if (aeb->ec == UBI_UNKNOWN)
1288 			aeb->ec = ai->mean_ec;
1289 
1290 	err = self_check_ai(ubi, ai);
1291 	if (err)
1292 		goto out_vidh;
1293 
1294 	ubi_free_vid_hdr(ubi, vidh);
1295 	kfree(ech);
1296 
1297 	return 0;
1298 
1299 out_vidh:
1300 	ubi_free_vid_hdr(ubi, vidh);
1301 out_ech:
1302 	kfree(ech);
1303 	return err;
1304 }
1305 
1306 #ifdef CONFIG_MTD_UBI_FASTMAP
1307 
1308 /**
1309  * scan_fastmap - try to find a fastmap and attach from it.
1310  * @ubi: UBI device description object
1311  * @ai: attach info object
1312  *
1313  * Returns 0 on success, negative return values indicate an internal
1314  * error.
1315  * UBI_NO_FASTMAP denotes that no fastmap was found.
1316  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1317  */
1318 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1319 {
1320 	int err, pnum, fm_anchor = -1;
1321 	unsigned long long max_sqnum = 0;
1322 
1323 	err = -ENOMEM;
1324 
1325 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1326 	if (!ech)
1327 		goto out;
1328 
1329 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1330 	if (!vidh)
1331 		goto out_ech;
1332 
1333 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1334 		int vol_id = -1;
1335 		unsigned long long sqnum = -1;
1336 		cond_resched();
1337 
1338 		dbg_gen("process PEB %d", pnum);
1339 		err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1340 		if (err < 0)
1341 			goto out_vidh;
1342 
1343 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1344 			max_sqnum = sqnum;
1345 			fm_anchor = pnum;
1346 		}
1347 	}
1348 
1349 	ubi_free_vid_hdr(ubi, vidh);
1350 	kfree(ech);
1351 
1352 	if (fm_anchor < 0)
1353 		return UBI_NO_FASTMAP;
1354 
1355 	return ubi_scan_fastmap(ubi, ai, fm_anchor);
1356 
1357 out_vidh:
1358 	ubi_free_vid_hdr(ubi, vidh);
1359 out_ech:
1360 	kfree(ech);
1361 out:
1362 	return err;
1363 }
1364 
1365 #endif
1366 
1367 static struct ubi_attach_info *alloc_ai(const char *slab_name)
1368 {
1369 	struct ubi_attach_info *ai;
1370 
1371 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1372 	if (!ai)
1373 		return ai;
1374 
1375 	INIT_LIST_HEAD(&ai->corr);
1376 	INIT_LIST_HEAD(&ai->free);
1377 	INIT_LIST_HEAD(&ai->erase);
1378 	INIT_LIST_HEAD(&ai->alien);
1379 	ai->volumes = RB_ROOT;
1380 	ai->aeb_slab_cache = kmem_cache_create(slab_name,
1381 					       sizeof(struct ubi_ainf_peb),
1382 					       0, 0, NULL);
1383 	if (!ai->aeb_slab_cache) {
1384 		kfree(ai);
1385 		ai = NULL;
1386 	}
1387 
1388 	return ai;
1389 }
1390 
1391 /**
1392  * ubi_attach - attach an MTD device.
1393  * @ubi: UBI device descriptor
1394  * @force_scan: if set to non-zero attach by scanning
1395  *
1396  * This function returns zero in case of success and a negative error code in
1397  * case of failure.
1398  */
1399 int ubi_attach(struct ubi_device *ubi, int force_scan)
1400 {
1401 	int err;
1402 	struct ubi_attach_info *ai;
1403 
1404 	ai = alloc_ai("ubi_aeb_slab_cache");
1405 	if (!ai)
1406 		return -ENOMEM;
1407 
1408 #ifdef CONFIG_MTD_UBI_FASTMAP
1409 	/* On small flash devices we disable fastmap in any case. */
1410 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1411 		ubi->fm_disabled = 1;
1412 		force_scan = 1;
1413 	}
1414 
1415 	if (force_scan)
1416 		err = scan_all(ubi, ai, 0);
1417 	else {
1418 		err = scan_fast(ubi, ai);
1419 		if (err > 0) {
1420 			if (err != UBI_NO_FASTMAP) {
1421 				destroy_ai(ai);
1422 				ai = alloc_ai("ubi_aeb_slab_cache2");
1423 				if (!ai)
1424 					return -ENOMEM;
1425 			}
1426 
1427 			err = scan_all(ubi, ai, UBI_FM_MAX_START);
1428 		}
1429 	}
1430 #else
1431 	err = scan_all(ubi, ai, 0);
1432 #endif
1433 	if (err)
1434 		goto out_ai;
1435 
1436 	ubi->bad_peb_count = ai->bad_peb_count;
1437 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1438 	ubi->corr_peb_count = ai->corr_peb_count;
1439 	ubi->max_ec = ai->max_ec;
1440 	ubi->mean_ec = ai->mean_ec;
1441 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1442 
1443 	err = ubi_read_volume_table(ubi, ai);
1444 	if (err)
1445 		goto out_ai;
1446 
1447 	err = ubi_wl_init(ubi, ai);
1448 	if (err)
1449 		goto out_vtbl;
1450 
1451 	err = ubi_eba_init(ubi, ai);
1452 	if (err)
1453 		goto out_wl;
1454 
1455 #ifdef CONFIG_MTD_UBI_FASTMAP
1456 	if (ubi->fm && ubi->dbg->chk_gen) {
1457 		struct ubi_attach_info *scan_ai;
1458 
1459 		scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1460 		if (!scan_ai)
1461 			goto out_wl;
1462 
1463 		err = scan_all(ubi, scan_ai, 0);
1464 		if (err) {
1465 			destroy_ai(scan_ai);
1466 			goto out_wl;
1467 		}
1468 
1469 		err = self_check_eba(ubi, ai, scan_ai);
1470 		destroy_ai(scan_ai);
1471 
1472 		if (err)
1473 			goto out_wl;
1474 	}
1475 #endif
1476 
1477 	destroy_ai(ai);
1478 	return 0;
1479 
1480 out_wl:
1481 	ubi_wl_close(ubi);
1482 out_vtbl:
1483 	ubi_free_internal_volumes(ubi);
1484 	vfree(ubi->vtbl);
1485 out_ai:
1486 	destroy_ai(ai);
1487 	return err;
1488 }
1489 
1490 /**
1491  * self_check_ai - check the attaching information.
1492  * @ubi: UBI device description object
1493  * @ai: attaching information
1494  *
1495  * This function returns zero if the attaching information is all right, and a
1496  * negative error code if not or if an error occurred.
1497  */
1498 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1499 {
1500 	int pnum, err, vols_found = 0;
1501 	struct rb_node *rb1, *rb2;
1502 	struct ubi_ainf_volume *av;
1503 	struct ubi_ainf_peb *aeb, *last_aeb;
1504 	uint8_t *buf;
1505 
1506 	if (!ubi->dbg->chk_gen)
1507 		return 0;
1508 
1509 	/*
1510 	 * At first, check that attaching information is OK.
1511 	 */
1512 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1513 		int leb_count = 0;
1514 
1515 		cond_resched();
1516 
1517 		vols_found += 1;
1518 
1519 		if (ai->is_empty) {
1520 			ubi_err("bad is_empty flag");
1521 			goto bad_av;
1522 		}
1523 
1524 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1525 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1526 		    av->data_pad < 0 || av->last_data_size < 0) {
1527 			ubi_err("negative values");
1528 			goto bad_av;
1529 		}
1530 
1531 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1532 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1533 			ubi_err("bad vol_id");
1534 			goto bad_av;
1535 		}
1536 
1537 		if (av->vol_id > ai->highest_vol_id) {
1538 			ubi_err("highest_vol_id is %d, but vol_id %d is there",
1539 				ai->highest_vol_id, av->vol_id);
1540 			goto out;
1541 		}
1542 
1543 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1544 		    av->vol_type != UBI_STATIC_VOLUME) {
1545 			ubi_err("bad vol_type");
1546 			goto bad_av;
1547 		}
1548 
1549 		if (av->data_pad > ubi->leb_size / 2) {
1550 			ubi_err("bad data_pad");
1551 			goto bad_av;
1552 		}
1553 
1554 		last_aeb = NULL;
1555 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1556 			cond_resched();
1557 
1558 			last_aeb = aeb;
1559 			leb_count += 1;
1560 
1561 			if (aeb->pnum < 0 || aeb->ec < 0) {
1562 				ubi_err("negative values");
1563 				goto bad_aeb;
1564 			}
1565 
1566 			if (aeb->ec < ai->min_ec) {
1567 				ubi_err("bad ai->min_ec (%d), %d found",
1568 					ai->min_ec, aeb->ec);
1569 				goto bad_aeb;
1570 			}
1571 
1572 			if (aeb->ec > ai->max_ec) {
1573 				ubi_err("bad ai->max_ec (%d), %d found",
1574 					ai->max_ec, aeb->ec);
1575 				goto bad_aeb;
1576 			}
1577 
1578 			if (aeb->pnum >= ubi->peb_count) {
1579 				ubi_err("too high PEB number %d, total PEBs %d",
1580 					aeb->pnum, ubi->peb_count);
1581 				goto bad_aeb;
1582 			}
1583 
1584 			if (av->vol_type == UBI_STATIC_VOLUME) {
1585 				if (aeb->lnum >= av->used_ebs) {
1586 					ubi_err("bad lnum or used_ebs");
1587 					goto bad_aeb;
1588 				}
1589 			} else {
1590 				if (av->used_ebs != 0) {
1591 					ubi_err("non-zero used_ebs");
1592 					goto bad_aeb;
1593 				}
1594 			}
1595 
1596 			if (aeb->lnum > av->highest_lnum) {
1597 				ubi_err("incorrect highest_lnum or lnum");
1598 				goto bad_aeb;
1599 			}
1600 		}
1601 
1602 		if (av->leb_count != leb_count) {
1603 			ubi_err("bad leb_count, %d objects in the tree",
1604 				leb_count);
1605 			goto bad_av;
1606 		}
1607 
1608 		if (!last_aeb)
1609 			continue;
1610 
1611 		aeb = last_aeb;
1612 
1613 		if (aeb->lnum != av->highest_lnum) {
1614 			ubi_err("bad highest_lnum");
1615 			goto bad_aeb;
1616 		}
1617 	}
1618 
1619 	if (vols_found != ai->vols_found) {
1620 		ubi_err("bad ai->vols_found %d, should be %d",
1621 			ai->vols_found, vols_found);
1622 		goto out;
1623 	}
1624 
1625 	/* Check that attaching information is correct */
1626 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1627 		last_aeb = NULL;
1628 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1629 			int vol_type;
1630 
1631 			cond_resched();
1632 
1633 			last_aeb = aeb;
1634 
1635 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1636 			if (err && err != UBI_IO_BITFLIPS) {
1637 				ubi_err("VID header is not OK (%d)", err);
1638 				if (err > 0)
1639 					err = -EIO;
1640 				return err;
1641 			}
1642 
1643 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1644 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1645 			if (av->vol_type != vol_type) {
1646 				ubi_err("bad vol_type");
1647 				goto bad_vid_hdr;
1648 			}
1649 
1650 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1651 				ubi_err("bad sqnum %llu", aeb->sqnum);
1652 				goto bad_vid_hdr;
1653 			}
1654 
1655 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1656 				ubi_err("bad vol_id %d", av->vol_id);
1657 				goto bad_vid_hdr;
1658 			}
1659 
1660 			if (av->compat != vidh->compat) {
1661 				ubi_err("bad compat %d", vidh->compat);
1662 				goto bad_vid_hdr;
1663 			}
1664 
1665 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1666 				ubi_err("bad lnum %d", aeb->lnum);
1667 				goto bad_vid_hdr;
1668 			}
1669 
1670 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1671 				ubi_err("bad used_ebs %d", av->used_ebs);
1672 				goto bad_vid_hdr;
1673 			}
1674 
1675 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1676 				ubi_err("bad data_pad %d", av->data_pad);
1677 				goto bad_vid_hdr;
1678 			}
1679 		}
1680 
1681 		if (!last_aeb)
1682 			continue;
1683 
1684 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1685 			ubi_err("bad highest_lnum %d", av->highest_lnum);
1686 			goto bad_vid_hdr;
1687 		}
1688 
1689 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1690 			ubi_err("bad last_data_size %d", av->last_data_size);
1691 			goto bad_vid_hdr;
1692 		}
1693 	}
1694 
1695 	/*
1696 	 * Make sure that all the physical eraseblocks are in one of the lists
1697 	 * or trees.
1698 	 */
1699 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1700 	if (!buf)
1701 		return -ENOMEM;
1702 
1703 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1704 		err = ubi_io_is_bad(ubi, pnum);
1705 		if (err < 0) {
1706 			kfree(buf);
1707 			return err;
1708 		} else if (err)
1709 			buf[pnum] = 1;
1710 	}
1711 
1712 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1713 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1714 			buf[aeb->pnum] = 1;
1715 
1716 	list_for_each_entry(aeb, &ai->free, u.list)
1717 		buf[aeb->pnum] = 1;
1718 
1719 	list_for_each_entry(aeb, &ai->corr, u.list)
1720 		buf[aeb->pnum] = 1;
1721 
1722 	list_for_each_entry(aeb, &ai->erase, u.list)
1723 		buf[aeb->pnum] = 1;
1724 
1725 	list_for_each_entry(aeb, &ai->alien, u.list)
1726 		buf[aeb->pnum] = 1;
1727 
1728 	err = 0;
1729 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1730 		if (!buf[pnum]) {
1731 			ubi_err("PEB %d is not referred", pnum);
1732 			err = 1;
1733 		}
1734 
1735 	kfree(buf);
1736 	if (err)
1737 		goto out;
1738 	return 0;
1739 
1740 bad_aeb:
1741 	ubi_err("bad attaching information about LEB %d", aeb->lnum);
1742 	ubi_dump_aeb(aeb, 0);
1743 	ubi_dump_av(av);
1744 	goto out;
1745 
1746 bad_av:
1747 	ubi_err("bad attaching information about volume %d", av->vol_id);
1748 	ubi_dump_av(av);
1749 	goto out;
1750 
1751 bad_vid_hdr:
1752 	ubi_err("bad attaching information about volume %d", av->vol_id);
1753 	ubi_dump_av(av);
1754 	ubi_dump_vid_hdr(vidh);
1755 
1756 out:
1757 	dump_stack();
1758 	return -EINVAL;
1759 }
1760