1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/list.h>
4 #include <linux/random.h>
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/slab.h>
8 #include <linux/mtd/nand_ecc.h>
9 
10 /*
11  * Test the implementation for software ECC
12  *
13  * No actual MTD device is needed, So we don't need to warry about losing
14  * important data by human error.
15  *
16  * This covers possible patterns of corruption which can be reliably corrected
17  * or detected.
18  */
19 
20 #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)
21 
22 struct nand_ecc_test {
23 	const char *name;
24 	void (*prepare)(void *, void *, void *, void *, const size_t);
25 	int (*verify)(void *, void *, void *, const size_t);
26 };
27 
28 /*
29  * The reason for this __change_bit_le() instead of __change_bit() is to inject
30  * bit error properly within the region which is not a multiple of
31  * sizeof(unsigned long) on big-endian systems
32  */
33 #ifdef __LITTLE_ENDIAN
34 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
35 #elif defined(__BIG_ENDIAN)
36 #define __change_bit_le(nr, addr) \
37 		__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
38 #else
39 #error "Unknown byte order"
40 #endif
41 
42 static void single_bit_error_data(void *error_data, void *correct_data,
43 				size_t size)
44 {
45 	unsigned int offset = random32() % (size * BITS_PER_BYTE);
46 
47 	memcpy(error_data, correct_data, size);
48 	__change_bit_le(offset, error_data);
49 }
50 
51 static void no_bit_error(void *error_data, void *error_ecc,
52 		void *correct_data, void *correct_ecc, const size_t size)
53 {
54 	memcpy(error_data, correct_data, size);
55 	memcpy(error_ecc, correct_ecc, 3);
56 }
57 
58 static int no_bit_error_verify(void *error_data, void *error_ecc,
59 				void *correct_data, const size_t size)
60 {
61 	unsigned char calc_ecc[3];
62 	int ret;
63 
64 	__nand_calculate_ecc(error_data, size, calc_ecc);
65 	ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
66 	if (ret == 0 && !memcmp(correct_data, error_data, size))
67 		return 0;
68 
69 	return -EINVAL;
70 }
71 
72 static void single_bit_error_in_data(void *error_data, void *error_ecc,
73 		void *correct_data, void *correct_ecc, const size_t size)
74 {
75 	single_bit_error_data(error_data, correct_data, size);
76 	memcpy(error_ecc, correct_ecc, 3);
77 }
78 
79 static int single_bit_error_correct(void *error_data, void *error_ecc,
80 				void *correct_data, const size_t size)
81 {
82 	unsigned char calc_ecc[3];
83 	int ret;
84 
85 	__nand_calculate_ecc(error_data, size, calc_ecc);
86 	ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
87 	if (ret == 1 && !memcmp(correct_data, error_data, size))
88 		return 0;
89 
90 	return -EINVAL;
91 }
92 
93 static const struct nand_ecc_test nand_ecc_test[] = {
94 	{
95 		.name = "no-bit-error",
96 		.prepare = no_bit_error,
97 		.verify = no_bit_error_verify,
98 	},
99 	{
100 		.name = "single-bit-error-in-data-correct",
101 		.prepare = single_bit_error_in_data,
102 		.verify = single_bit_error_correct,
103 	},
104 };
105 
106 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
107 			void *correct_ecc, const size_t size)
108 {
109 	pr_info("hexdump of error data:\n");
110 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
111 			error_data, size, false);
112 	print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
113 			DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
114 
115 	pr_info("hexdump of correct data:\n");
116 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
117 			correct_data, size, false);
118 	print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
119 			DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
120 }
121 
122 static int nand_ecc_test_run(const size_t size)
123 {
124 	int i;
125 	int err = 0;
126 	void *error_data;
127 	void *error_ecc;
128 	void *correct_data;
129 	void *correct_ecc;
130 
131 	error_data = kmalloc(size, GFP_KERNEL);
132 	error_ecc = kmalloc(3, GFP_KERNEL);
133 	correct_data = kmalloc(size, GFP_KERNEL);
134 	correct_ecc = kmalloc(3, GFP_KERNEL);
135 
136 	if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
137 		err = -ENOMEM;
138 		goto error;
139 	}
140 
141 	get_random_bytes(correct_data, size);
142 	__nand_calculate_ecc(correct_data, size, correct_ecc);
143 
144 	for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
145 		nand_ecc_test[i].prepare(error_data, error_ecc,
146 				correct_data, correct_ecc, size);
147 		err = nand_ecc_test[i].verify(error_data, error_ecc,
148 						correct_data, size);
149 
150 		if (err) {
151 			pr_err("mtd_nandecctest: not ok - %s-%zd\n",
152 				nand_ecc_test[i].name, size);
153 			dump_data_ecc(error_data, error_ecc,
154 				correct_data, correct_ecc, size);
155 			break;
156 		}
157 		pr_info("mtd_nandecctest: ok - %s-%zd\n",
158 			nand_ecc_test[i].name, size);
159 	}
160 error:
161 	kfree(error_data);
162 	kfree(error_ecc);
163 	kfree(correct_data);
164 	kfree(correct_ecc);
165 
166 	return err;
167 }
168 
169 #else
170 
171 static int nand_ecc_test_run(const size_t size)
172 {
173 	return 0;
174 }
175 
176 #endif
177 
178 static int __init ecc_test_init(void)
179 {
180 	int err;
181 
182 	err = nand_ecc_test_run(256);
183 	if (err)
184 		return err;
185 
186 	return nand_ecc_test_run(512);
187 }
188 
189 static void __exit ecc_test_exit(void)
190 {
191 }
192 
193 module_init(ecc_test_init);
194 module_exit(ecc_test_exit);
195 
196 MODULE_DESCRIPTION("NAND ECC function test module");
197 MODULE_AUTHOR("Akinobu Mita");
198 MODULE_LICENSE("GPL");
199