xref: /openbmc/linux/drivers/mtd/tests/mtd_nandecctest.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/list.h>
7 #include <linux/random.h>
8 #include <linux/string.h>
9 #include <linux/bitops.h>
10 #include <linux/slab.h>
11 #include <linux/mtd/nand-ecc-sw-hamming.h>
12 
13 #include "mtd_test.h"
14 
15 /*
16  * Test the implementation for software ECC
17  *
18  * No actual MTD device is needed, So we don't need to warry about losing
19  * important data by human error.
20  *
21  * This covers possible patterns of corruption which can be reliably corrected
22  * or detected.
23  */
24 
25 #if IS_ENABLED(CONFIG_MTD_RAW_NAND)
26 
27 struct nand_ecc_test {
28 	const char *name;
29 	void (*prepare)(void *, void *, void *, void *, const size_t);
30 	int (*verify)(void *, void *, void *, const size_t);
31 };
32 
33 /*
34  * The reason for this __change_bit_le() instead of __change_bit() is to inject
35  * bit error properly within the region which is not a multiple of
36  * sizeof(unsigned long) on big-endian systems
37  */
38 #ifdef __LITTLE_ENDIAN
39 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
40 #elif defined(__BIG_ENDIAN)
41 #define __change_bit_le(nr, addr) \
42 		__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
43 #else
44 #error "Unknown byte order"
45 #endif
46 
47 static void single_bit_error_data(void *error_data, void *correct_data,
48 				size_t size)
49 {
50 	unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
51 
52 	memcpy(error_data, correct_data, size);
53 	__change_bit_le(offset, error_data);
54 }
55 
56 static void double_bit_error_data(void *error_data, void *correct_data,
57 				size_t size)
58 {
59 	unsigned int offset[2];
60 
61 	offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
62 	do {
63 		offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
64 	} while (offset[0] == offset[1]);
65 
66 	memcpy(error_data, correct_data, size);
67 
68 	__change_bit_le(offset[0], error_data);
69 	__change_bit_le(offset[1], error_data);
70 }
71 
72 static unsigned int random_ecc_bit(size_t size)
73 {
74 	unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
75 
76 	if (size == 256) {
77 		/*
78 		 * Don't inject a bit error into the insignificant bits (16th
79 		 * and 17th bit) in ECC code for 256 byte data block
80 		 */
81 		while (offset == 16 || offset == 17)
82 			offset = prandom_u32() % (3 * BITS_PER_BYTE);
83 	}
84 
85 	return offset;
86 }
87 
88 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
89 				size_t size)
90 {
91 	unsigned int offset = random_ecc_bit(size);
92 
93 	memcpy(error_ecc, correct_ecc, 3);
94 	__change_bit_le(offset, error_ecc);
95 }
96 
97 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
98 				size_t size)
99 {
100 	unsigned int offset[2];
101 
102 	offset[0] = random_ecc_bit(size);
103 	do {
104 		offset[1] = random_ecc_bit(size);
105 	} while (offset[0] == offset[1]);
106 
107 	memcpy(error_ecc, correct_ecc, 3);
108 	__change_bit_le(offset[0], error_ecc);
109 	__change_bit_le(offset[1], error_ecc);
110 }
111 
112 static void no_bit_error(void *error_data, void *error_ecc,
113 		void *correct_data, void *correct_ecc, const size_t size)
114 {
115 	memcpy(error_data, correct_data, size);
116 	memcpy(error_ecc, correct_ecc, 3);
117 }
118 
119 static int no_bit_error_verify(void *error_data, void *error_ecc,
120 				void *correct_data, const size_t size)
121 {
122 	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
123 	unsigned char calc_ecc[3];
124 	int ret;
125 
126 	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
127 	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
128 				     sm_order);
129 	if (ret == 0 && !memcmp(correct_data, error_data, size))
130 		return 0;
131 
132 	return -EINVAL;
133 }
134 
135 static void single_bit_error_in_data(void *error_data, void *error_ecc,
136 		void *correct_data, void *correct_ecc, const size_t size)
137 {
138 	single_bit_error_data(error_data, correct_data, size);
139 	memcpy(error_ecc, correct_ecc, 3);
140 }
141 
142 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
143 		void *correct_data, void *correct_ecc, const size_t size)
144 {
145 	memcpy(error_data, correct_data, size);
146 	single_bit_error_ecc(error_ecc, correct_ecc, size);
147 }
148 
149 static int single_bit_error_correct(void *error_data, void *error_ecc,
150 				void *correct_data, const size_t size)
151 {
152 	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
153 	unsigned char calc_ecc[3];
154 	int ret;
155 
156 	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
157 	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
158 				     sm_order);
159 	if (ret == 1 && !memcmp(correct_data, error_data, size))
160 		return 0;
161 
162 	return -EINVAL;
163 }
164 
165 static void double_bit_error_in_data(void *error_data, void *error_ecc,
166 		void *correct_data, void *correct_ecc, const size_t size)
167 {
168 	double_bit_error_data(error_data, correct_data, size);
169 	memcpy(error_ecc, correct_ecc, 3);
170 }
171 
172 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
173 		void *correct_data, void *correct_ecc, const size_t size)
174 {
175 	single_bit_error_data(error_data, correct_data, size);
176 	single_bit_error_ecc(error_ecc, correct_ecc, size);
177 }
178 
179 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
180 		void *correct_data, void *correct_ecc, const size_t size)
181 {
182 	memcpy(error_data, correct_data, size);
183 	double_bit_error_ecc(error_ecc, correct_ecc, size);
184 }
185 
186 static int double_bit_error_detect(void *error_data, void *error_ecc,
187 				void *correct_data, const size_t size)
188 {
189 	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
190 	unsigned char calc_ecc[3];
191 	int ret;
192 
193 	ecc_sw_hamming_calculate(error_data, size, calc_ecc, sm_order);
194 	ret = ecc_sw_hamming_correct(error_data, error_ecc, calc_ecc, size,
195 				     sm_order);
196 
197 	return (ret == -EBADMSG) ? 0 : -EINVAL;
198 }
199 
200 static const struct nand_ecc_test nand_ecc_test[] = {
201 	{
202 		.name = "no-bit-error",
203 		.prepare = no_bit_error,
204 		.verify = no_bit_error_verify,
205 	},
206 	{
207 		.name = "single-bit-error-in-data-correct",
208 		.prepare = single_bit_error_in_data,
209 		.verify = single_bit_error_correct,
210 	},
211 	{
212 		.name = "single-bit-error-in-ecc-correct",
213 		.prepare = single_bit_error_in_ecc,
214 		.verify = single_bit_error_correct,
215 	},
216 	{
217 		.name = "double-bit-error-in-data-detect",
218 		.prepare = double_bit_error_in_data,
219 		.verify = double_bit_error_detect,
220 	},
221 	{
222 		.name = "single-bit-error-in-data-and-ecc-detect",
223 		.prepare = single_bit_error_in_data_and_ecc,
224 		.verify = double_bit_error_detect,
225 	},
226 	{
227 		.name = "double-bit-error-in-ecc-detect",
228 		.prepare = double_bit_error_in_ecc,
229 		.verify = double_bit_error_detect,
230 	},
231 };
232 
233 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
234 			void *correct_ecc, const size_t size)
235 {
236 	pr_info("hexdump of error data:\n");
237 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
238 			error_data, size, false);
239 	print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
240 			DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
241 
242 	pr_info("hexdump of correct data:\n");
243 	print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
244 			correct_data, size, false);
245 	print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
246 			DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
247 }
248 
249 static int nand_ecc_test_run(const size_t size)
250 {
251 	bool sm_order = IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC);
252 	int i;
253 	int err = 0;
254 	void *error_data;
255 	void *error_ecc;
256 	void *correct_data;
257 	void *correct_ecc;
258 
259 	error_data = kmalloc(size, GFP_KERNEL);
260 	error_ecc = kmalloc(3, GFP_KERNEL);
261 	correct_data = kmalloc(size, GFP_KERNEL);
262 	correct_ecc = kmalloc(3, GFP_KERNEL);
263 
264 	if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
265 		err = -ENOMEM;
266 		goto error;
267 	}
268 
269 	prandom_bytes(correct_data, size);
270 	ecc_sw_hamming_calculate(correct_data, size, correct_ecc, sm_order);
271 	for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
272 		nand_ecc_test[i].prepare(error_data, error_ecc,
273 				correct_data, correct_ecc, size);
274 		err = nand_ecc_test[i].verify(error_data, error_ecc,
275 						correct_data, size);
276 
277 		if (err) {
278 			pr_err("not ok - %s-%zd\n",
279 				nand_ecc_test[i].name, size);
280 			dump_data_ecc(error_data, error_ecc,
281 				correct_data, correct_ecc, size);
282 			break;
283 		}
284 		pr_info("ok - %s-%zd\n",
285 			nand_ecc_test[i].name, size);
286 
287 		err = mtdtest_relax();
288 		if (err)
289 			break;
290 	}
291 error:
292 	kfree(error_data);
293 	kfree(error_ecc);
294 	kfree(correct_data);
295 	kfree(correct_ecc);
296 
297 	return err;
298 }
299 
300 #else
301 
302 static int nand_ecc_test_run(const size_t size)
303 {
304 	return 0;
305 }
306 
307 #endif
308 
309 static int __init ecc_test_init(void)
310 {
311 	int err;
312 
313 	err = nand_ecc_test_run(256);
314 	if (err)
315 		return err;
316 
317 	return nand_ecc_test_run(512);
318 }
319 
320 static void __exit ecc_test_exit(void)
321 {
322 }
323 
324 module_init(ecc_test_init);
325 module_exit(ecc_test_exit);
326 
327 MODULE_DESCRIPTION("NAND ECC function test module");
328 MODULE_AUTHOR("Akinobu Mita");
329 MODULE_LICENSE("GPL");
330