xref: /openbmc/linux/drivers/mtd/spi-nor/spansion.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
12 #define USE_CLSR	BIT(0)
13 
14 #define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
15 #define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
16 #define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
17 #define SPINOR_REG_CYPRESS_CFR2V		0x00800003
18 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24	0xb
19 #define SPINOR_REG_CYPRESS_CFR3V		0x00800004
20 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ		BIT(4) /* Page size. */
21 #define SPINOR_REG_CYPRESS_CFR5V		0x00800006
22 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN	0x3
23 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS	0
24 #define SPINOR_OP_CYPRESS_RD_FAST		0xee
25 
26 /**
27  * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
28  * @nor:		pointer to a 'struct spi_nor'
29  * @enable:              whether to enable or disable Octal DTR
30  *
31  * This also sets the memory access latency cycles to 24 to allow the flash to
32  * run at up to 200MHz.
33  *
34  * Return: 0 on success, -errno otherwise.
35  */
36 static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
37 {
38 	struct spi_mem_op op;
39 	u8 *buf = nor->bouncebuf;
40 	int ret;
41 
42 	if (enable) {
43 		/* Use 24 dummy cycles for memory array reads. */
44 		ret = spi_nor_write_enable(nor);
45 		if (ret)
46 			return ret;
47 
48 		*buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
49 		op = (struct spi_mem_op)
50 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
51 				   SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR2V,
52 						   1),
53 				   SPI_MEM_OP_NO_DUMMY,
54 				   SPI_MEM_OP_DATA_OUT(1, buf, 1));
55 
56 		ret = spi_mem_exec_op(nor->spimem, &op);
57 		if (ret)
58 			return ret;
59 
60 		ret = spi_nor_wait_till_ready(nor);
61 		if (ret)
62 			return ret;
63 
64 		nor->read_dummy = 24;
65 	}
66 
67 	/* Set/unset the octal and DTR enable bits. */
68 	ret = spi_nor_write_enable(nor);
69 	if (ret)
70 		return ret;
71 
72 	if (enable) {
73 		buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
74 	} else {
75 		/*
76 		 * The register is 1-byte wide, but 1-byte transactions are not
77 		 * allowed in 8D-8D-8D mode. Since there is no register at the
78 		 * next location, just initialize the value to 0 and let the
79 		 * transaction go on.
80 		 */
81 		buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
82 		buf[1] = 0;
83 	}
84 
85 	op = (struct spi_mem_op)
86 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 1),
87 			   SPI_MEM_OP_ADDR(enable ? 3 : 4,
88 					   SPINOR_REG_CYPRESS_CFR5V,
89 					   1),
90 			   SPI_MEM_OP_NO_DUMMY,
91 			   SPI_MEM_OP_DATA_OUT(enable ? 1 : 2, buf, 1));
92 
93 	if (!enable)
94 		spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
95 
96 	ret = spi_mem_exec_op(nor->spimem, &op);
97 	if (ret)
98 		return ret;
99 
100 	/* Read flash ID to make sure the switch was successful. */
101 	op = (struct spi_mem_op)
102 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
103 			   SPI_MEM_OP_ADDR(enable ? 4 : 0, 0, 1),
104 			   SPI_MEM_OP_DUMMY(enable ? 3 : 0, 1),
105 			   SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
106 					      buf, 1));
107 
108 	if (enable)
109 		spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
110 
111 	ret = spi_mem_exec_op(nor->spimem, &op);
112 	if (ret)
113 		return ret;
114 
115 	if (memcmp(buf, nor->info->id, nor->info->id_len))
116 		return -EINVAL;
117 
118 	return 0;
119 }
120 
121 static void s28hs512t_default_init(struct spi_nor *nor)
122 {
123 	nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
124 	nor->params->writesize = 16;
125 }
126 
127 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
128 {
129 	/*
130 	 * On older versions of the flash the xSPI Profile 1.0 table has the
131 	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
132 	 */
133 	if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
134 		nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
135 			SPINOR_OP_CYPRESS_RD_FAST;
136 
137 	/* This flash is also missing the 4-byte Page Program opcode bit. */
138 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
139 				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
140 	/*
141 	 * Since xSPI Page Program opcode is backward compatible with
142 	 * Legacy SPI, use Legacy SPI opcode there as well.
143 	 */
144 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
145 				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
146 
147 	/*
148 	 * The xSPI Profile 1.0 table advertises the number of additional
149 	 * address bytes needed for Read Status Register command as 0 but the
150 	 * actual value for that is 4.
151 	 */
152 	nor->params->rdsr_addr_nbytes = 4;
153 }
154 
155 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
156 				     const struct sfdp_parameter_header *bfpt_header,
157 				     const struct sfdp_bfpt *bfpt)
158 {
159 	/*
160 	 * The BFPT table advertises a 512B page size but the page size is
161 	 * actually configurable (with the default being 256B). Read from
162 	 * CFR3V[4] and set the correct size.
163 	 */
164 	struct spi_mem_op op =
165 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 1),
166 			   SPI_MEM_OP_ADDR(3, SPINOR_REG_CYPRESS_CFR3V, 1),
167 			   SPI_MEM_OP_NO_DUMMY,
168 			   SPI_MEM_OP_DATA_IN(1, nor->bouncebuf, 1));
169 	int ret;
170 
171 	ret = spi_mem_exec_op(nor->spimem, &op);
172 	if (ret)
173 		return ret;
174 
175 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
176 		nor->params->page_size = 512;
177 	else
178 		nor->params->page_size = 256;
179 
180 	return 0;
181 }
182 
183 static const struct spi_nor_fixups s28hs512t_fixups = {
184 	.default_init = s28hs512t_default_init,
185 	.post_sfdp = s28hs512t_post_sfdp_fixup,
186 	.post_bfpt = s28hs512t_post_bfpt_fixup,
187 };
188 
189 static int
190 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
191 			     const struct sfdp_parameter_header *bfpt_header,
192 			     const struct sfdp_bfpt *bfpt)
193 {
194 	/*
195 	 * The S25FS-S chip family reports 512-byte pages in BFPT but
196 	 * in reality the write buffer still wraps at the safe default
197 	 * of 256 bytes.  Overwrite the page size advertised by BFPT
198 	 * to get the writes working.
199 	 */
200 	nor->params->page_size = 256;
201 
202 	return 0;
203 }
204 
205 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
206 	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
207 };
208 
209 static const struct flash_info spansion_nor_parts[] = {
210 	/* Spansion/Cypress -- single (large) sector size only, at least
211 	 * for the chips listed here (without boot sectors).
212 	 */
213 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64)
214 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
215 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128)
216 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
217 	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
218 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
219 		MFR_FLAGS(USE_CLSR)
220 	},
221 	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
222 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
223 		MFR_FLAGS(USE_CLSR)
224 	},
225 	{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
226 		NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
227 			      SPI_NOR_QUAD_READ)
228 		MFR_FLAGS(USE_CLSR)
229 	},
230 	{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
231 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
232 		MFR_FLAGS(USE_CLSR)
233 	},
234 	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
235 		FLAGS(SPI_NOR_HAS_LOCK)
236 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
237 		MFR_FLAGS(USE_CLSR)
238 	},
239 	{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
240 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
241 		MFR_FLAGS(USE_CLSR)
242 		.fixups = &s25fs_s_nor_fixups, },
243 	{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
244 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
245 		MFR_FLAGS(USE_CLSR)
246 	},
247 	{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
248 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
249 		MFR_FLAGS(USE_CLSR)
250 	},
251 	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
252 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
253 		MFR_FLAGS(USE_CLSR)
254 		.fixups = &s25fs_s_nor_fixups, },
255 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64) },
256 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256) },
257 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64)
258 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
259 		MFR_FLAGS(USE_CLSR)
260 	},
261 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256)
262 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
263 		MFR_FLAGS(USE_CLSR)
264 	},
265 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8) },
266 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16) },
267 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32) },
268 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64) },
269 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128) },
270 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8)
271 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
272 			      SPI_NOR_QUAD_READ) },
273 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16)
274 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
275 			      SPI_NOR_QUAD_READ) },
276 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32)
277 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
278 			      SPI_NOR_QUAD_READ) },
279 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128)
280 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
281 			      SPI_NOR_QUAD_READ) },
282 	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32)
283 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
284 			      SPI_NOR_QUAD_READ) },
285 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64)
286 		NO_SFDP_FLAGS(SECT_4K) },
287 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128)
288 		NO_SFDP_FLAGS(SECT_4K) },
289 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8)
290 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
291 	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16)
292 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
293 	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128)
294 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
295 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
296 	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256)
297 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
298 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
299 	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512)
300 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
301 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
302 	{ "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
303 		FLAGS(SPI_NOR_NO_ERASE) },
304 	{ "s28hs512t",   INFO(0x345b1a,      0, 256 * 1024, 256)
305 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ |
306 			      SPI_NOR_OCTAL_DTR_PP)
307 		.fixups = &s28hs512t_fixups,
308 	},
309 };
310 
311 /**
312  * spansion_nor_clear_sr() - Clear the Status Register.
313  * @nor:	pointer to 'struct spi_nor'.
314  */
315 static void spansion_nor_clear_sr(struct spi_nor *nor)
316 {
317 	int ret;
318 
319 	if (nor->spimem) {
320 		struct spi_mem_op op =
321 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),
322 				   SPI_MEM_OP_NO_ADDR,
323 				   SPI_MEM_OP_NO_DUMMY,
324 				   SPI_MEM_OP_NO_DATA);
325 
326 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
327 
328 		ret = spi_mem_exec_op(nor->spimem, &op);
329 	} else {
330 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
331 						       NULL, 0);
332 	}
333 
334 	if (ret)
335 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
336 }
337 
338 /**
339  * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
340  * flash is ready for new commands and clear it if there are any errors.
341  * @nor:	pointer to 'struct spi_nor'.
342  *
343  * Return: 1 if ready, 0 if not ready, -errno on errors.
344  */
345 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
346 {
347 	int ret;
348 
349 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
350 	if (ret)
351 		return ret;
352 
353 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
354 		if (nor->bouncebuf[0] & SR_E_ERR)
355 			dev_err(nor->dev, "Erase Error occurred\n");
356 		else
357 			dev_err(nor->dev, "Programming Error occurred\n");
358 
359 		spansion_nor_clear_sr(nor);
360 
361 		/*
362 		 * WEL bit remains set to one when an erase or page program
363 		 * error occurs. Issue a Write Disable command to protect
364 		 * against inadvertent writes that can possibly corrupt the
365 		 * contents of the memory.
366 		 */
367 		ret = spi_nor_write_disable(nor);
368 		if (ret)
369 			return ret;
370 
371 		return -EIO;
372 	}
373 
374 	return !(nor->bouncebuf[0] & SR_WIP);
375 }
376 
377 static void spansion_nor_late_init(struct spi_nor *nor)
378 {
379 	if (nor->params->size > SZ_16M) {
380 		nor->flags |= SNOR_F_4B_OPCODES;
381 		/* No small sector erase for 4-byte command set */
382 		nor->erase_opcode = SPINOR_OP_SE;
383 		nor->mtd.erasesize = nor->info->sector_size;
384 	}
385 
386 	if (nor->info->mfr_flags & USE_CLSR)
387 		nor->params->ready = spansion_nor_sr_ready_and_clear;
388 }
389 
390 static const struct spi_nor_fixups spansion_nor_fixups = {
391 	.late_init = spansion_nor_late_init,
392 };
393 
394 const struct spi_nor_manufacturer spi_nor_spansion = {
395 	.name = "spansion",
396 	.parts = spansion_nor_parts,
397 	.nparts = ARRAY_SIZE(spansion_nor_parts),
398 	.fixups = &spansion_nor_fixups,
399 };
400