xref: /openbmc/linux/drivers/mtd/spi-nor/spansion.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
12 #define USE_CLSR	BIT(0)
13 
14 #define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
15 #define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
16 #define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
17 #define SPINOR_REG_CYPRESS_CFR1V		0x00800002
18 #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN		BIT(1)	/* Quad Enable */
19 #define SPINOR_REG_CYPRESS_CFR2V		0x00800003
20 #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24	0xb
21 #define SPINOR_REG_CYPRESS_CFR3V		0x00800004
22 #define SPINOR_REG_CYPRESS_CFR3_PGSZ		BIT(4) /* Page size. */
23 #define SPINOR_REG_CYPRESS_CFR5V		0x00800006
24 #define SPINOR_REG_CYPRESS_CFR5_BIT6		BIT(6)
25 #define SPINOR_REG_CYPRESS_CFR5_DDR		BIT(1)
26 #define SPINOR_REG_CYPRESS_CFR5_OPI		BIT(0)
27 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN				\
28 	(SPINOR_REG_CYPRESS_CFR5_BIT6 |	SPINOR_REG_CYPRESS_CFR5_DDR |	\
29 	 SPINOR_REG_CYPRESS_CFR5_OPI)
30 #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS	SPINOR_REG_CYPRESS_CFR5_BIT6
31 #define SPINOR_OP_CYPRESS_RD_FAST		0xee
32 
33 /* Cypress SPI NOR flash operations. */
34 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
35 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
36 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
37 		   SPI_MEM_OP_NO_DUMMY,					\
38 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
39 
40 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, buf)			\
41 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
42 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
43 		   SPI_MEM_OP_NO_DUMMY,					\
44 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
45 
46 #define SPANSION_CLSR_OP						\
47 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),			\
48 		   SPI_MEM_OP_NO_ADDR,					\
49 		   SPI_MEM_OP_NO_DUMMY,					\
50 		   SPI_MEM_OP_NO_DATA)
51 
52 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
53 {
54 	struct spi_mem_op op;
55 	u8 *buf = nor->bouncebuf;
56 	int ret;
57 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
58 
59 	/* Use 24 dummy cycles for memory array reads. */
60 	*buf = SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24;
61 	op = (struct spi_mem_op)
62 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
63 					  SPINOR_REG_CYPRESS_CFR2V, 1, buf);
64 
65 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
66 	if (ret)
67 		return ret;
68 
69 	nor->read_dummy = 24;
70 
71 	/* Set the octal and DTR enable bits. */
72 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
73 	op = (struct spi_mem_op)
74 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
75 					  SPINOR_REG_CYPRESS_CFR5V, 1, buf);
76 
77 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
78 	if (ret)
79 		return ret;
80 
81 	/* Read flash ID to make sure the switch was successful. */
82 	ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
83 			      SNOR_PROTO_8_8_8_DTR);
84 	if (ret) {
85 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
86 		return ret;
87 	}
88 
89 	if (memcmp(buf, nor->info->id, nor->info->id_len))
90 		return -EINVAL;
91 
92 	return 0;
93 }
94 
95 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
96 {
97 	struct spi_mem_op op;
98 	u8 *buf = nor->bouncebuf;
99 	int ret;
100 
101 	/*
102 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
103 	 * in 8D-8D-8D mode. Since there is no register at the next location,
104 	 * just initialize the value to 0 and let the transaction go on.
105 	 */
106 	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
107 	buf[1] = 0;
108 	op = (struct spi_mem_op)
109 		CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
110 					  SPINOR_REG_CYPRESS_CFR5V, 2, buf);
111 	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
112 	if (ret)
113 		return ret;
114 
115 	/* Read flash ID to make sure the switch was successful. */
116 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
117 	if (ret) {
118 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
119 		return ret;
120 	}
121 
122 	if (memcmp(buf, nor->info->id, nor->info->id_len))
123 		return -EINVAL;
124 
125 	return 0;
126 }
127 
128 /**
129  * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
130  *                                      register.
131  * @nor:	pointer to a 'struct spi_nor'
132  *
133  * It is recommended to update volatile registers in the field application due
134  * to a risk of the non-volatile registers corruption by power interrupt. This
135  * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
136  * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
137  * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
138  * also set during Flash power-up.
139  *
140  * Return: 0 on success, -errno otherwise.
141  */
142 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
143 {
144 	struct spi_mem_op op;
145 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
146 	u8 cfr1v_written;
147 	int ret;
148 
149 	op = (struct spi_mem_op)
150 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
151 					  SPINOR_REG_CYPRESS_CFR1V,
152 					  nor->bouncebuf);
153 
154 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
155 	if (ret)
156 		return ret;
157 
158 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
159 		return 0;
160 
161 	/* Update the Quad Enable bit. */
162 	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
163 	op = (struct spi_mem_op)
164 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
165 					  SPINOR_REG_CYPRESS_CFR1V, 1,
166 					  nor->bouncebuf);
167 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
168 	if (ret)
169 		return ret;
170 
171 	cfr1v_written = nor->bouncebuf[0];
172 
173 	/* Read back and check it. */
174 	op = (struct spi_mem_op)
175 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
176 					  SPINOR_REG_CYPRESS_CFR1V,
177 					  nor->bouncebuf);
178 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
179 	if (ret)
180 		return ret;
181 
182 	if (nor->bouncebuf[0] != cfr1v_written) {
183 		dev_err(nor->dev, "CFR1: Read back test failed\n");
184 		return -EIO;
185 	}
186 
187 	return 0;
188 }
189 
190 /**
191  * cypress_nor_set_page_size() - Set page size which corresponds to the flash
192  *                               configuration.
193  * @nor:	pointer to a 'struct spi_nor'
194  *
195  * The BFPT table advertises a 512B or 256B page size depending on part but the
196  * page size is actually configurable (with the default being 256B). Read from
197  * CFR3V[4] and set the correct size.
198  *
199  * Return: 0 on success, -errno otherwise.
200  */
201 static int cypress_nor_set_page_size(struct spi_nor *nor)
202 {
203 	struct spi_mem_op op =
204 		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
205 					  SPINOR_REG_CYPRESS_CFR3V,
206 					  nor->bouncebuf);
207 	int ret;
208 
209 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
210 	if (ret)
211 		return ret;
212 
213 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)
214 		nor->params->page_size = 512;
215 	else
216 		nor->params->page_size = 256;
217 
218 	return 0;
219 }
220 
221 static int
222 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
223 			const struct sfdp_parameter_header *bfpt_header,
224 			const struct sfdp_bfpt *bfpt)
225 {
226 	/* Replace Quad Enable with volatile version */
227 	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
228 
229 	return cypress_nor_set_page_size(nor);
230 }
231 
232 static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
233 {
234 	struct spi_nor_erase_type *erase_type =
235 					nor->params->erase_map.erase_type;
236 	unsigned int i;
237 
238 	/*
239 	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
240 	 * Convert them to 4byte erase opcodes.
241 	 */
242 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
243 		switch (erase_type[i].opcode) {
244 		case SPINOR_OP_SE:
245 			erase_type[i].opcode = SPINOR_OP_SE_4B;
246 			break;
247 		case SPINOR_OP_BE_4K:
248 			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
249 			break;
250 		default:
251 			break;
252 		}
253 	}
254 }
255 
256 static void s25hx_t_late_init(struct spi_nor *nor)
257 {
258 	struct spi_nor_flash_parameter *params = nor->params;
259 
260 	/* Fast Read 4B requires mode cycles */
261 	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
262 
263 	/* The writesize should be ECC data unit size */
264 	params->writesize = 16;
265 }
266 
267 static struct spi_nor_fixups s25hx_t_fixups = {
268 	.post_bfpt = s25hx_t_post_bfpt_fixup,
269 	.post_sfdp = s25hx_t_post_sfdp_fixup,
270 	.late_init = s25hx_t_late_init,
271 };
272 
273 /**
274  * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
275  * @nor:		pointer to a 'struct spi_nor'
276  * @enable:              whether to enable or disable Octal DTR
277  *
278  * This also sets the memory access latency cycles to 24 to allow the flash to
279  * run at up to 200MHz.
280  *
281  * Return: 0 on success, -errno otherwise.
282  */
283 static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
284 {
285 	return enable ? cypress_nor_octal_dtr_en(nor) :
286 			cypress_nor_octal_dtr_dis(nor);
287 }
288 
289 static void s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
290 {
291 	/*
292 	 * On older versions of the flash the xSPI Profile 1.0 table has the
293 	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
294 	 */
295 	if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
296 		nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
297 			SPINOR_OP_CYPRESS_RD_FAST;
298 
299 	/* This flash is also missing the 4-byte Page Program opcode bit. */
300 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
301 				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
302 	/*
303 	 * Since xSPI Page Program opcode is backward compatible with
304 	 * Legacy SPI, use Legacy SPI opcode there as well.
305 	 */
306 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
307 				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
308 
309 	/*
310 	 * The xSPI Profile 1.0 table advertises the number of additional
311 	 * address bytes needed for Read Status Register command as 0 but the
312 	 * actual value for that is 4.
313 	 */
314 	nor->params->rdsr_addr_nbytes = 4;
315 }
316 
317 static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
318 				   const struct sfdp_parameter_header *bfpt_header,
319 				   const struct sfdp_bfpt *bfpt)
320 {
321 	return cypress_nor_set_page_size(nor);
322 }
323 
324 static void s28hx_t_late_init(struct spi_nor *nor)
325 {
326 	nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
327 	nor->params->writesize = 16;
328 }
329 
330 static const struct spi_nor_fixups s28hx_t_fixups = {
331 	.post_sfdp = s28hx_t_post_sfdp_fixup,
332 	.post_bfpt = s28hx_t_post_bfpt_fixup,
333 	.late_init = s28hx_t_late_init,
334 };
335 
336 static int
337 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
338 			     const struct sfdp_parameter_header *bfpt_header,
339 			     const struct sfdp_bfpt *bfpt)
340 {
341 	/*
342 	 * The S25FS-S chip family reports 512-byte pages in BFPT but
343 	 * in reality the write buffer still wraps at the safe default
344 	 * of 256 bytes.  Overwrite the page size advertised by BFPT
345 	 * to get the writes working.
346 	 */
347 	nor->params->page_size = 256;
348 
349 	return 0;
350 }
351 
352 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
353 	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
354 };
355 
356 static const struct flash_info spansion_nor_parts[] = {
357 	/* Spansion/Cypress -- single (large) sector size only, at least
358 	 * for the chips listed here (without boot sectors).
359 	 */
360 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64)
361 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
362 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128)
363 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
364 	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
365 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
366 		MFR_FLAGS(USE_CLSR)
367 	},
368 	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
369 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
370 		MFR_FLAGS(USE_CLSR)
371 	},
372 	{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
373 		NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
374 			      SPI_NOR_QUAD_READ)
375 		MFR_FLAGS(USE_CLSR)
376 	},
377 	{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
378 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
379 		MFR_FLAGS(USE_CLSR)
380 	},
381 	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
382 		FLAGS(SPI_NOR_HAS_LOCK)
383 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
384 		MFR_FLAGS(USE_CLSR)
385 	},
386 	{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
387 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
388 		MFR_FLAGS(USE_CLSR)
389 		.fixups = &s25fs_s_nor_fixups, },
390 	{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
391 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
392 		MFR_FLAGS(USE_CLSR)
393 	},
394 	{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
395 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
396 		MFR_FLAGS(USE_CLSR)
397 	},
398 	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
399 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
400 		MFR_FLAGS(USE_CLSR)
401 		.fixups = &s25fs_s_nor_fixups, },
402 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64) },
403 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256) },
404 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64)
405 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
406 		MFR_FLAGS(USE_CLSR)
407 	},
408 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256)
409 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
410 		MFR_FLAGS(USE_CLSR)
411 	},
412 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8) },
413 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16) },
414 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32) },
415 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64) },
416 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128) },
417 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8)
418 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
419 			      SPI_NOR_QUAD_READ) },
420 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16)
421 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
422 			      SPI_NOR_QUAD_READ) },
423 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32)
424 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
425 			      SPI_NOR_QUAD_READ) },
426 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128)
427 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
428 			      SPI_NOR_QUAD_READ) },
429 	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32)
430 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
431 			      SPI_NOR_QUAD_READ) },
432 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64)
433 		NO_SFDP_FLAGS(SECT_4K) },
434 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128)
435 		NO_SFDP_FLAGS(SECT_4K) },
436 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8)
437 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
438 	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16)
439 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
440 	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128)
441 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
442 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
443 	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256)
444 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
445 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
446 	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512)
447 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
448 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
449 	{ "s25hl512t",  INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256)
450 		PARSE_SFDP
451 		MFR_FLAGS(USE_CLSR)
452 		.fixups = &s25hx_t_fixups },
453 	{ "s25hl01gt",  INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512)
454 		PARSE_SFDP
455 		MFR_FLAGS(USE_CLSR)
456 		.fixups = &s25hx_t_fixups },
457 	{ "s25hs512t",  INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256)
458 		PARSE_SFDP
459 		MFR_FLAGS(USE_CLSR)
460 		.fixups = &s25hx_t_fixups },
461 	{ "s25hs01gt",  INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512)
462 		PARSE_SFDP
463 		MFR_FLAGS(USE_CLSR)
464 		.fixups = &s25hx_t_fixups },
465 	{ "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
466 		FLAGS(SPI_NOR_NO_ERASE) },
467 	{ "s28hl512t",   INFO(0x345a1a,      0, 256 * 1024, 256)
468 		PARSE_SFDP
469 		.fixups = &s28hx_t_fixups,
470 	},
471 	{ "s28hl01gt",   INFO(0x345a1b,      0, 256 * 1024, 512)
472 		PARSE_SFDP
473 		.fixups = &s28hx_t_fixups,
474 	},
475 	{ "s28hs512t",   INFO(0x345b1a,      0, 256 * 1024, 256)
476 		PARSE_SFDP
477 		.fixups = &s28hx_t_fixups,
478 	},
479 	{ "s28hs01gt",   INFO(0x345b1b,      0, 256 * 1024, 512)
480 		PARSE_SFDP
481 		.fixups = &s28hx_t_fixups,
482 	},
483 };
484 
485 /**
486  * spansion_nor_clear_sr() - Clear the Status Register.
487  * @nor:	pointer to 'struct spi_nor'.
488  */
489 static void spansion_nor_clear_sr(struct spi_nor *nor)
490 {
491 	int ret;
492 
493 	if (nor->spimem) {
494 		struct spi_mem_op op = SPANSION_CLSR_OP;
495 
496 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
497 
498 		ret = spi_mem_exec_op(nor->spimem, &op);
499 	} else {
500 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
501 						       NULL, 0);
502 	}
503 
504 	if (ret)
505 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
506 }
507 
508 /**
509  * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
510  * flash is ready for new commands and clear it if there are any errors.
511  * @nor:	pointer to 'struct spi_nor'.
512  *
513  * Return: 1 if ready, 0 if not ready, -errno on errors.
514  */
515 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
516 {
517 	int ret;
518 
519 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
520 	if (ret)
521 		return ret;
522 
523 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
524 		if (nor->bouncebuf[0] & SR_E_ERR)
525 			dev_err(nor->dev, "Erase Error occurred\n");
526 		else
527 			dev_err(nor->dev, "Programming Error occurred\n");
528 
529 		spansion_nor_clear_sr(nor);
530 
531 		/*
532 		 * WEL bit remains set to one when an erase or page program
533 		 * error occurs. Issue a Write Disable command to protect
534 		 * against inadvertent writes that can possibly corrupt the
535 		 * contents of the memory.
536 		 */
537 		ret = spi_nor_write_disable(nor);
538 		if (ret)
539 			return ret;
540 
541 		return -EIO;
542 	}
543 
544 	return !(nor->bouncebuf[0] & SR_WIP);
545 }
546 
547 static void spansion_nor_late_init(struct spi_nor *nor)
548 {
549 	if (nor->params->size > SZ_16M) {
550 		nor->flags |= SNOR_F_4B_OPCODES;
551 		/* No small sector erase for 4-byte command set */
552 		nor->erase_opcode = SPINOR_OP_SE;
553 		nor->mtd.erasesize = nor->info->sector_size;
554 	}
555 
556 	if (nor->info->mfr_flags & USE_CLSR)
557 		nor->params->ready = spansion_nor_sr_ready_and_clear;
558 }
559 
560 static const struct spi_nor_fixups spansion_nor_fixups = {
561 	.late_init = spansion_nor_late_init,
562 };
563 
564 const struct spi_nor_manufacturer spi_nor_spansion = {
565 	.name = "spansion",
566 	.parts = spansion_nor_parts,
567 	.nparts = ARRAY_SIZE(spansion_nor_parts),
568 	.fixups = &spansion_nor_fixups,
569 };
570