xref: /openbmc/linux/drivers/mtd/spi-nor/spansion.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
12 #define USE_CLSR	BIT(0)
13 
14 #define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
15 #define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
16 #define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
17 #define SPINOR_REG_CYPRESS_CFR1V		0x00800002
18 #define SPINOR_REG_CYPRESS_CFR1V_QUAD_EN	BIT(1)	/* Quad Enable */
19 #define SPINOR_REG_CYPRESS_CFR2V		0x00800003
20 #define SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24	0xb
21 #define SPINOR_REG_CYPRESS_CFR3V		0x00800004
22 #define SPINOR_REG_CYPRESS_CFR3V_PGSZ		BIT(4) /* Page size. */
23 #define SPINOR_REG_CYPRESS_CFR5V		0x00800006
24 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN	0x3
25 #define SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS	0
26 #define SPINOR_OP_CYPRESS_RD_FAST		0xee
27 
28 /* Cypress SPI NOR flash operations. */
29 #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
30 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
31 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
32 		   SPI_MEM_OP_NO_DUMMY,					\
33 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
34 
35 #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, buf)			\
36 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
37 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
38 		   SPI_MEM_OP_NO_DUMMY,					\
39 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
40 
41 #define SPANSION_CLSR_OP						\
42 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),			\
43 		   SPI_MEM_OP_NO_ADDR,					\
44 		   SPI_MEM_OP_NO_DUMMY,					\
45 		   SPI_MEM_OP_NO_DATA)
46 
47 static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
48 {
49 	struct spi_mem_op op;
50 	u8 *buf = nor->bouncebuf;
51 	int ret;
52 
53 	/* Use 24 dummy cycles for memory array reads. */
54 	*buf = SPINOR_REG_CYPRESS_CFR2V_MEMLAT_11_24;
55 	op = (struct spi_mem_op)
56 		CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR2V, 1, buf);
57 
58 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
59 	if (ret)
60 		return ret;
61 
62 	nor->read_dummy = 24;
63 
64 	/* Set the octal and DTR enable bits. */
65 	buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_EN;
66 	op = (struct spi_mem_op)
67 		CYPRESS_NOR_WR_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR5V, 1, buf);
68 
69 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
70 	if (ret)
71 		return ret;
72 
73 	/* Read flash ID to make sure the switch was successful. */
74 	ret = spi_nor_read_id(nor, 4, 3, buf, SNOR_PROTO_8_8_8_DTR);
75 	if (ret) {
76 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
77 		return ret;
78 	}
79 
80 	if (memcmp(buf, nor->info->id, nor->info->id_len))
81 		return -EINVAL;
82 
83 	return 0;
84 }
85 
86 static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
87 {
88 	struct spi_mem_op op;
89 	u8 *buf = nor->bouncebuf;
90 	int ret;
91 
92 	/*
93 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
94 	 * in 8D-8D-8D mode. Since there is no register at the next location,
95 	 * just initialize the value to 0 and let the transaction go on.
96 	 */
97 	buf[0] = SPINOR_REG_CYPRESS_CFR5V_OCT_DTR_DS;
98 	buf[1] = 0;
99 	op = (struct spi_mem_op)
100 		CYPRESS_NOR_WR_ANY_REG_OP(4, SPINOR_REG_CYPRESS_CFR5V, 2, buf);
101 	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
102 	if (ret)
103 		return ret;
104 
105 	/* Read flash ID to make sure the switch was successful. */
106 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
107 	if (ret) {
108 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
109 		return ret;
110 	}
111 
112 	if (memcmp(buf, nor->info->id, nor->info->id_len))
113 		return -EINVAL;
114 
115 	return 0;
116 }
117 
118 /**
119  * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
120  *                                      register.
121  * @nor:	pointer to a 'struct spi_nor'
122  *
123  * It is recommended to update volatile registers in the field application due
124  * to a risk of the non-volatile registers corruption by power interrupt. This
125  * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
126  * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
127  * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
128  * also set during Flash power-up.
129  *
130  * Return: 0 on success, -errno otherwise.
131  */
132 static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
133 {
134 	struct spi_mem_op op;
135 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
136 	u8 cfr1v_written;
137 	int ret;
138 
139 	op = (struct spi_mem_op)
140 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
141 					  SPINOR_REG_CYPRESS_CFR1V,
142 					  nor->bouncebuf);
143 
144 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
145 	if (ret)
146 		return ret;
147 
148 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1V_QUAD_EN)
149 		return 0;
150 
151 	/* Update the Quad Enable bit. */
152 	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1V_QUAD_EN;
153 	op = (struct spi_mem_op)
154 		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
155 					  SPINOR_REG_CYPRESS_CFR1V, 1,
156 					  nor->bouncebuf);
157 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
158 	if (ret)
159 		return ret;
160 
161 	cfr1v_written = nor->bouncebuf[0];
162 
163 	/* Read back and check it. */
164 	op = (struct spi_mem_op)
165 		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes,
166 					  SPINOR_REG_CYPRESS_CFR1V,
167 					  nor->bouncebuf);
168 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
169 	if (ret)
170 		return ret;
171 
172 	if (nor->bouncebuf[0] != cfr1v_written) {
173 		dev_err(nor->dev, "CFR1: Read back test failed\n");
174 		return -EIO;
175 	}
176 
177 	return 0;
178 }
179 
180 /**
181  * cypress_nor_set_page_size() - Set page size which corresponds to the flash
182  *                               configuration.
183  * @nor:	pointer to a 'struct spi_nor'
184  *
185  * The BFPT table advertises a 512B or 256B page size depending on part but the
186  * page size is actually configurable (with the default being 256B). Read from
187  * CFR3V[4] and set the correct size.
188  *
189  * Return: 0 on success, -errno otherwise.
190  */
191 static int cypress_nor_set_page_size(struct spi_nor *nor)
192 {
193 	struct spi_mem_op op =
194 		CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_CFR3V,
195 					  nor->bouncebuf);
196 	int ret;
197 
198 	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
199 	if (ret)
200 		return ret;
201 
202 	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3V_PGSZ)
203 		nor->params->page_size = 512;
204 	else
205 		nor->params->page_size = 256;
206 
207 	return 0;
208 }
209 
210 static int
211 s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
212 			const struct sfdp_parameter_header *bfpt_header,
213 			const struct sfdp_bfpt *bfpt)
214 {
215 	/* Replace Quad Enable with volatile version */
216 	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
217 
218 	return cypress_nor_set_page_size(nor);
219 }
220 
221 static void s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
222 {
223 	struct spi_nor_erase_type *erase_type =
224 					nor->params->erase_map.erase_type;
225 	unsigned int i;
226 
227 	/*
228 	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
229 	 * Convert them to 4byte erase opcodes.
230 	 */
231 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
232 		switch (erase_type[i].opcode) {
233 		case SPINOR_OP_SE:
234 			erase_type[i].opcode = SPINOR_OP_SE_4B;
235 			break;
236 		case SPINOR_OP_BE_4K:
237 			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
238 			break;
239 		default:
240 			break;
241 		}
242 	}
243 }
244 
245 static void s25hx_t_late_init(struct spi_nor *nor)
246 {
247 	struct spi_nor_flash_parameter *params = nor->params;
248 
249 	/* Fast Read 4B requires mode cycles */
250 	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
251 
252 	/* The writesize should be ECC data unit size */
253 	params->writesize = 16;
254 }
255 
256 static struct spi_nor_fixups s25hx_t_fixups = {
257 	.post_bfpt = s25hx_t_post_bfpt_fixup,
258 	.post_sfdp = s25hx_t_post_sfdp_fixup,
259 	.late_init = s25hx_t_late_init,
260 };
261 
262 /**
263  * cypress_nor_octal_dtr_enable() - Enable octal DTR on Cypress flashes.
264  * @nor:		pointer to a 'struct spi_nor'
265  * @enable:              whether to enable or disable Octal DTR
266  *
267  * This also sets the memory access latency cycles to 24 to allow the flash to
268  * run at up to 200MHz.
269  *
270  * Return: 0 on success, -errno otherwise.
271  */
272 static int cypress_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
273 {
274 	return enable ? cypress_nor_octal_dtr_en(nor) :
275 			cypress_nor_octal_dtr_dis(nor);
276 }
277 
278 static void s28hs512t_default_init(struct spi_nor *nor)
279 {
280 	nor->params->octal_dtr_enable = cypress_nor_octal_dtr_enable;
281 	nor->params->writesize = 16;
282 }
283 
284 static void s28hs512t_post_sfdp_fixup(struct spi_nor *nor)
285 {
286 	/*
287 	 * On older versions of the flash the xSPI Profile 1.0 table has the
288 	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
289 	 */
290 	if (nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
291 		nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
292 			SPINOR_OP_CYPRESS_RD_FAST;
293 
294 	/* This flash is also missing the 4-byte Page Program opcode bit. */
295 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP],
296 				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
297 	/*
298 	 * Since xSPI Page Program opcode is backward compatible with
299 	 * Legacy SPI, use Legacy SPI opcode there as well.
300 	 */
301 	spi_nor_set_pp_settings(&nor->params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
302 				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
303 
304 	/*
305 	 * The xSPI Profile 1.0 table advertises the number of additional
306 	 * address bytes needed for Read Status Register command as 0 but the
307 	 * actual value for that is 4.
308 	 */
309 	nor->params->rdsr_addr_nbytes = 4;
310 }
311 
312 static int s28hs512t_post_bfpt_fixup(struct spi_nor *nor,
313 				     const struct sfdp_parameter_header *bfpt_header,
314 				     const struct sfdp_bfpt *bfpt)
315 {
316 	return cypress_nor_set_page_size(nor);
317 }
318 
319 static const struct spi_nor_fixups s28hs512t_fixups = {
320 	.default_init = s28hs512t_default_init,
321 	.post_sfdp = s28hs512t_post_sfdp_fixup,
322 	.post_bfpt = s28hs512t_post_bfpt_fixup,
323 };
324 
325 static int
326 s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
327 			     const struct sfdp_parameter_header *bfpt_header,
328 			     const struct sfdp_bfpt *bfpt)
329 {
330 	/*
331 	 * The S25FS-S chip family reports 512-byte pages in BFPT but
332 	 * in reality the write buffer still wraps at the safe default
333 	 * of 256 bytes.  Overwrite the page size advertised by BFPT
334 	 * to get the writes working.
335 	 */
336 	nor->params->page_size = 256;
337 
338 	return 0;
339 }
340 
341 static const struct spi_nor_fixups s25fs_s_nor_fixups = {
342 	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
343 };
344 
345 static const struct flash_info spansion_nor_parts[] = {
346 	/* Spansion/Cypress -- single (large) sector size only, at least
347 	 * for the chips listed here (without boot sectors).
348 	 */
349 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64)
350 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
351 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128)
352 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
353 	{ "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64)
354 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
355 		MFR_FLAGS(USE_CLSR)
356 	},
357 	{ "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256)
358 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
359 		MFR_FLAGS(USE_CLSR)
360 	},
361 	{ "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128)
362 		NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ |
363 			      SPI_NOR_QUAD_READ)
364 		MFR_FLAGS(USE_CLSR)
365 	},
366 	{ "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512)
367 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
368 		MFR_FLAGS(USE_CLSR)
369 	},
370 	{ "s25fl512s",  INFO6(0x010220, 0x4d0080, 256 * 1024, 256)
371 		FLAGS(SPI_NOR_HAS_LOCK)
372 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
373 		MFR_FLAGS(USE_CLSR)
374 	},
375 	{ "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256)
376 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
377 		MFR_FLAGS(USE_CLSR)
378 		.fixups = &s25fs_s_nor_fixups, },
379 	{ "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128)
380 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
381 		MFR_FLAGS(USE_CLSR)
382 	},
383 	{ "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512)
384 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
385 		MFR_FLAGS(USE_CLSR)
386 	},
387 	{ "s25fs512s",  INFO6(0x010220, 0x4d0081, 256 * 1024, 256)
388 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
389 		MFR_FLAGS(USE_CLSR)
390 		.fixups = &s25fs_s_nor_fixups, },
391 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64) },
392 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256) },
393 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64)
394 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
395 		MFR_FLAGS(USE_CLSR)
396 	},
397 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256)
398 		NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
399 		MFR_FLAGS(USE_CLSR)
400 	},
401 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8) },
402 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16) },
403 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32) },
404 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64) },
405 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128) },
406 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8)
407 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
408 			      SPI_NOR_QUAD_READ) },
409 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16)
410 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
411 			      SPI_NOR_QUAD_READ) },
412 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32)
413 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
414 			      SPI_NOR_QUAD_READ) },
415 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128)
416 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
417 			      SPI_NOR_QUAD_READ) },
418 	{ "s25fl116k",  INFO(0x014015,      0,  64 * 1024,  32)
419 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
420 			      SPI_NOR_QUAD_READ) },
421 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64)
422 		NO_SFDP_FLAGS(SECT_4K) },
423 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128)
424 		NO_SFDP_FLAGS(SECT_4K) },
425 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8)
426 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
427 	{ "s25fl208k",  INFO(0x014014,      0,  64 * 1024,  16)
428 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) },
429 	{ "s25fl064l",  INFO(0x016017,      0,  64 * 1024, 128)
430 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
431 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
432 	{ "s25fl128l",  INFO(0x016018,      0,  64 * 1024, 256)
433 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
434 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
435 	{ "s25fl256l",  INFO(0x016019,      0,  64 * 1024, 512)
436 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
437 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES) },
438 	{ "s25hl512t",  INFO6(0x342a1a, 0x0f0390, 256 * 1024, 256)
439 		PARSE_SFDP
440 		MFR_FLAGS(USE_CLSR)
441 		.fixups = &s25hx_t_fixups },
442 	{ "s25hl01gt",  INFO6(0x342a1b, 0x0f0390, 256 * 1024, 512)
443 		PARSE_SFDP
444 		MFR_FLAGS(USE_CLSR)
445 		.fixups = &s25hx_t_fixups },
446 	{ "s25hs512t",  INFO6(0x342b1a, 0x0f0390, 256 * 1024, 256)
447 		PARSE_SFDP
448 		MFR_FLAGS(USE_CLSR)
449 		.fixups = &s25hx_t_fixups },
450 	{ "s25hs01gt",  INFO6(0x342b1b, 0x0f0390, 256 * 1024, 512)
451 		PARSE_SFDP
452 		MFR_FLAGS(USE_CLSR)
453 		.fixups = &s25hx_t_fixups },
454 	{ "cy15x104q",  INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1)
455 		FLAGS(SPI_NOR_NO_ERASE) },
456 	{ "s28hs512t",   INFO(0x345b1a,      0, 256 * 1024, 256)
457 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_DTR_READ |
458 			      SPI_NOR_OCTAL_DTR_PP)
459 		.fixups = &s28hs512t_fixups,
460 	},
461 };
462 
463 /**
464  * spansion_nor_clear_sr() - Clear the Status Register.
465  * @nor:	pointer to 'struct spi_nor'.
466  */
467 static void spansion_nor_clear_sr(struct spi_nor *nor)
468 {
469 	int ret;
470 
471 	if (nor->spimem) {
472 		struct spi_mem_op op = SPANSION_CLSR_OP;
473 
474 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
475 
476 		ret = spi_mem_exec_op(nor->spimem, &op);
477 	} else {
478 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
479 						       NULL, 0);
480 	}
481 
482 	if (ret)
483 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
484 }
485 
486 /**
487  * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
488  * flash is ready for new commands and clear it if there are any errors.
489  * @nor:	pointer to 'struct spi_nor'.
490  *
491  * Return: 1 if ready, 0 if not ready, -errno on errors.
492  */
493 static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
494 {
495 	int ret;
496 
497 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
498 	if (ret)
499 		return ret;
500 
501 	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
502 		if (nor->bouncebuf[0] & SR_E_ERR)
503 			dev_err(nor->dev, "Erase Error occurred\n");
504 		else
505 			dev_err(nor->dev, "Programming Error occurred\n");
506 
507 		spansion_nor_clear_sr(nor);
508 
509 		/*
510 		 * WEL bit remains set to one when an erase or page program
511 		 * error occurs. Issue a Write Disable command to protect
512 		 * against inadvertent writes that can possibly corrupt the
513 		 * contents of the memory.
514 		 */
515 		ret = spi_nor_write_disable(nor);
516 		if (ret)
517 			return ret;
518 
519 		return -EIO;
520 	}
521 
522 	return !(nor->bouncebuf[0] & SR_WIP);
523 }
524 
525 static void spansion_nor_late_init(struct spi_nor *nor)
526 {
527 	if (nor->params->size > SZ_16M) {
528 		nor->flags |= SNOR_F_4B_OPCODES;
529 		/* No small sector erase for 4-byte command set */
530 		nor->erase_opcode = SPINOR_OP_SE;
531 		nor->mtd.erasesize = nor->info->sector_size;
532 	}
533 
534 	if (nor->info->mfr_flags & USE_CLSR)
535 		nor->params->ready = spansion_nor_sr_ready_and_clear;
536 }
537 
538 static const struct spi_nor_fixups spansion_nor_fixups = {
539 	.late_init = spansion_nor_late_init,
540 };
541 
542 const struct spi_nor_manufacturer spi_nor_spansion = {
543 	.name = "spansion",
544 	.parts = spansion_nor_parts,
545 	.nparts = ARRAY_SIZE(spansion_nor_parts),
546 	.fixups = &spansion_nor_fixups,
547 };
548