xref: /openbmc/linux/drivers/mtd/spi-nor/sfdp.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/mtd/spi-nor.h>
9 #include <linux/slab.h>
10 #include <linux/sort.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 #define SFDP_SCCR_MAP_MC_ID	0xff88	/*
30 					 * Status, Control and Configuration
31 					 * Register Map Offsets for Multi-Chip
32 					 * SPI Memory Devices.
33 					 */
34 
35 #define SFDP_SIGNATURE		0x50444653U
36 
37 struct sfdp_header {
38 	u32		signature; /* Ox50444653U <=> "SFDP" */
39 	u8		minor;
40 	u8		major;
41 	u8		nph; /* 0-base number of parameter headers */
42 	u8		unused;
43 
44 	/* Basic Flash Parameter Table. */
45 	struct sfdp_parameter_header	bfpt_header;
46 };
47 
48 /* Fast Read settings. */
49 struct sfdp_bfpt_read {
50 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
51 	u32			hwcaps;
52 
53 	/*
54 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
55 	 * whether the Fast Read x-y-z command is supported.
56 	 */
57 	u32			supported_dword;
58 	u32			supported_bit;
59 
60 	/*
61 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
62 	 * encodes the op code, the number of mode clocks and the number of wait
63 	 * states to be used by Fast Read x-y-z command.
64 	 */
65 	u32			settings_dword;
66 	u32			settings_shift;
67 
68 	/* The SPI protocol for this Fast Read x-y-z command. */
69 	enum spi_nor_protocol	proto;
70 };
71 
72 struct sfdp_bfpt_erase {
73 	/*
74 	 * The half-word at offset <shift> in DWORD <dword> encodes the
75 	 * op code and erase sector size to be used by Sector Erase commands.
76 	 */
77 	u32			dword;
78 	u32			shift;
79 };
80 
81 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
82 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
83 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
84 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
85 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
86 
87 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
88 #define SMPT_CMD_READ_DUMMY_SHIFT		16
89 #define SMPT_CMD_READ_DUMMY(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
91 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
92 
93 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
94 #define SMPT_CMD_READ_DATA_SHIFT		24
95 #define SMPT_CMD_READ_DATA(_cmd) \
96 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
97 
98 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
99 #define SMPT_CMD_OPCODE_SHIFT			8
100 #define SMPT_CMD_OPCODE(_cmd) \
101 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
102 
103 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
104 #define SMPT_MAP_REGION_COUNT_SHIFT		16
105 #define SMPT_MAP_REGION_COUNT(_header) \
106 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
107 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
108 
109 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
110 #define SMPT_MAP_ID_SHIFT			8
111 #define SMPT_MAP_ID(_header) \
112 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
113 
114 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
115 #define SMPT_MAP_REGION_SIZE_SHIFT		8
116 #define SMPT_MAP_REGION_SIZE(_region) \
117 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
118 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
119 
120 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
121 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
122 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
123 
124 #define SMPT_DESC_TYPE_MAP			BIT(1)
125 #define SMPT_DESC_END				BIT(0)
126 
127 #define SFDP_4BAIT_DWORD_MAX	2
128 
129 struct sfdp_4bait {
130 	/* The hardware capability. */
131 	u32		hwcaps;
132 
133 	/*
134 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
135 	 * the associated 4-byte address op code is supported.
136 	 */
137 	u32		supported_bit;
138 };
139 
140 /**
141  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
142  *			addr_nbytes and read_dummy members of the struct spi_nor
143  *			should be previously set.
144  * @nor:	pointer to a 'struct spi_nor'
145  * @addr:	offset in the serial flash memory
146  * @len:	number of bytes to read
147  * @buf:	buffer where the data is copied into (dma-safe memory)
148  *
149  * Return: 0 on success, -errno otherwise.
150  */
151 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
152 {
153 	ssize_t ret;
154 
155 	while (len) {
156 		ret = spi_nor_read_data(nor, addr, len, buf);
157 		if (ret < 0)
158 			return ret;
159 		if (!ret || ret > len)
160 			return -EIO;
161 
162 		buf += ret;
163 		addr += ret;
164 		len -= ret;
165 	}
166 	return 0;
167 }
168 
169 /**
170  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
171  * @nor:	pointer to a 'struct spi_nor'
172  * @addr:	offset in the SFDP area to start reading data from
173  * @len:	number of bytes to read
174  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
175  *
176  * Whatever the actual numbers of bytes for address and dummy cycles are
177  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
178  * followed by a 3-byte address and 8 dummy clock cycles.
179  *
180  * Return: 0 on success, -errno otherwise.
181  */
182 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
183 			     size_t len, void *buf)
184 {
185 	u8 addr_nbytes, read_opcode, read_dummy;
186 	int ret;
187 
188 	read_opcode = nor->read_opcode;
189 	addr_nbytes = nor->addr_nbytes;
190 	read_dummy = nor->read_dummy;
191 
192 	nor->read_opcode = SPINOR_OP_RDSFDP;
193 	nor->addr_nbytes = 3;
194 	nor->read_dummy = 8;
195 
196 	ret = spi_nor_read_raw(nor, addr, len, buf);
197 
198 	nor->read_opcode = read_opcode;
199 	nor->addr_nbytes = addr_nbytes;
200 	nor->read_dummy = read_dummy;
201 
202 	return ret;
203 }
204 
205 /**
206  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
207  * @nor:	pointer to a 'struct spi_nor'
208  * @addr:	offset in the SFDP area to start reading data from
209  * @len:	number of bytes to read
210  * @buf:	buffer where the SFDP data are copied into
211  *
212  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
213  * guaranteed to be dma-safe.
214  *
215  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
216  *          otherwise.
217  */
218 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
219 					size_t len, void *buf)
220 {
221 	void *dma_safe_buf;
222 	int ret;
223 
224 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
225 	if (!dma_safe_buf)
226 		return -ENOMEM;
227 
228 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
229 	memcpy(buf, dma_safe_buf, len);
230 	kfree(dma_safe_buf);
231 
232 	return ret;
233 }
234 
235 static void
236 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
237 				    u16 half,
238 				    enum spi_nor_protocol proto)
239 {
240 	read->num_mode_clocks = (half >> 5) & 0x07;
241 	read->num_wait_states = (half >> 0) & 0x1f;
242 	read->opcode = (half >> 8) & 0xff;
243 	read->proto = proto;
244 }
245 
246 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
247 	/* Fast Read 1-1-2 */
248 	{
249 		SNOR_HWCAPS_READ_1_1_2,
250 		SFDP_DWORD(1), BIT(16),	/* Supported bit */
251 		SFDP_DWORD(4), 0,	/* Settings */
252 		SNOR_PROTO_1_1_2,
253 	},
254 
255 	/* Fast Read 1-2-2 */
256 	{
257 		SNOR_HWCAPS_READ_1_2_2,
258 		SFDP_DWORD(1), BIT(20),	/* Supported bit */
259 		SFDP_DWORD(4), 16,	/* Settings */
260 		SNOR_PROTO_1_2_2,
261 	},
262 
263 	/* Fast Read 2-2-2 */
264 	{
265 		SNOR_HWCAPS_READ_2_2_2,
266 		SFDP_DWORD(5),  BIT(0),	/* Supported bit */
267 		SFDP_DWORD(6), 16,	/* Settings */
268 		SNOR_PROTO_2_2_2,
269 	},
270 
271 	/* Fast Read 1-1-4 */
272 	{
273 		SNOR_HWCAPS_READ_1_1_4,
274 		SFDP_DWORD(1), BIT(22),	/* Supported bit */
275 		SFDP_DWORD(3), 16,	/* Settings */
276 		SNOR_PROTO_1_1_4,
277 	},
278 
279 	/* Fast Read 1-4-4 */
280 	{
281 		SNOR_HWCAPS_READ_1_4_4,
282 		SFDP_DWORD(1), BIT(21),	/* Supported bit */
283 		SFDP_DWORD(3), 0,	/* Settings */
284 		SNOR_PROTO_1_4_4,
285 	},
286 
287 	/* Fast Read 4-4-4 */
288 	{
289 		SNOR_HWCAPS_READ_4_4_4,
290 		SFDP_DWORD(5), BIT(4),	/* Supported bit */
291 		SFDP_DWORD(7), 16,	/* Settings */
292 		SNOR_PROTO_4_4_4,
293 	},
294 };
295 
296 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
297 	/* Erase Type 1 in DWORD8 bits[15:0] */
298 	{SFDP_DWORD(8), 0},
299 
300 	/* Erase Type 2 in DWORD8 bits[31:16] */
301 	{SFDP_DWORD(8), 16},
302 
303 	/* Erase Type 3 in DWORD9 bits[15:0] */
304 	{SFDP_DWORD(9), 0},
305 
306 	/* Erase Type 4 in DWORD9 bits[31:16] */
307 	{SFDP_DWORD(9), 16},
308 };
309 
310 /**
311  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
312  * @erase:	pointer to a structure that describes a SPI NOR erase type
313  * @size:	the size of the sector/block erased by the erase type
314  * @opcode:	the SPI command op code to erase the sector/block
315  * @i:		erase type index as sorted in the Basic Flash Parameter Table
316  *
317  * The supported Erase Types will be sorted at init in ascending order, with
318  * the smallest Erase Type size being the first member in the erase_type array
319  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
320  * the Basic Flash Parameter Table since it will be used later on to
321  * synchronize with the supported Erase Types defined in SFDP optional tables.
322  */
323 static void
324 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
325 				     u32 size, u8 opcode, u8 i)
326 {
327 	erase->idx = i;
328 	spi_nor_set_erase_type(erase, size, opcode);
329 }
330 
331 /**
332  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
333  * @l:	member in the left half of the map's erase_type array
334  * @r:	member in the right half of the map's erase_type array
335  *
336  * Comparison function used in the sort() call to sort in ascending order the
337  * map's erase types, the smallest erase type size being the first member in the
338  * sorted erase_type array.
339  *
340  * Return: the result of @l->size - @r->size
341  */
342 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
343 {
344 	const struct spi_nor_erase_type *left = l, *right = r;
345 
346 	return left->size - right->size;
347 }
348 
349 /**
350  * spi_nor_sort_erase_mask() - sort erase mask
351  * @map:	the erase map of the SPI NOR
352  * @erase_mask:	the erase type mask to be sorted
353  *
354  * Replicate the sort done for the map's erase types in BFPT: sort the erase
355  * mask in ascending order with the smallest erase type size starting from
356  * BIT(0) in the sorted erase mask.
357  *
358  * Return: sorted erase mask.
359  */
360 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
361 {
362 	struct spi_nor_erase_type *erase_type = map->erase_type;
363 	int i;
364 	u8 sorted_erase_mask = 0;
365 
366 	if (!erase_mask)
367 		return 0;
368 
369 	/* Replicate the sort done for the map's erase types. */
370 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
371 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
372 			sorted_erase_mask |= BIT(i);
373 
374 	return sorted_erase_mask;
375 }
376 
377 /**
378  * spi_nor_regions_sort_erase_types() - sort erase types in each region
379  * @map:	the erase map of the SPI NOR
380  *
381  * Function assumes that the erase types defined in the erase map are already
382  * sorted in ascending order, with the smallest erase type size being the first
383  * member in the erase_type array. It replicates the sort done for the map's
384  * erase types. Each region's erase bitmask will indicate which erase types are
385  * supported from the sorted erase types defined in the erase map.
386  * Sort the all region's erase type at init in order to speed up the process of
387  * finding the best erase command at runtime.
388  */
389 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
390 {
391 	struct spi_nor_erase_region *region = map->regions;
392 	u8 region_erase_mask, sorted_erase_mask;
393 
394 	while (region) {
395 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
396 
397 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
398 							    region_erase_mask);
399 
400 		/* Overwrite erase mask. */
401 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
402 				 sorted_erase_mask;
403 
404 		region = spi_nor_region_next(region);
405 	}
406 }
407 
408 /**
409  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
410  * @nor:		pointer to a 'struct spi_nor'
411  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
412  *			the Basic Flash Parameter Table length and version
413  *
414  * The Basic Flash Parameter Table is the main and only mandatory table as
415  * defined by the SFDP (JESD216) specification.
416  * It provides us with the total size (memory density) of the data array and
417  * the number of address bytes for Fast Read, Page Program and Sector Erase
418  * commands.
419  * For Fast READ commands, it also gives the number of mode clock cycles and
420  * wait states (regrouped in the number of dummy clock cycles) for each
421  * supported instruction op code.
422  * For Page Program, the page size is now available since JESD216 rev A, however
423  * the supported instruction op codes are still not provided.
424  * For Sector Erase commands, this table stores the supported instruction op
425  * codes and the associated sector sizes.
426  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
427  * rev A. The QER bits encode the manufacturer dependent procedure to be
428  * executed to set the Quad Enable (QE) bit in some internal register of the
429  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
430  * sending any Quad SPI command to the memory. Actually, setting the QE bit
431  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
432  * and IO3 hence enabling 4 (Quad) I/O lines.
433  *
434  * Return: 0 on success, -errno otherwise.
435  */
436 static int spi_nor_parse_bfpt(struct spi_nor *nor,
437 			      const struct sfdp_parameter_header *bfpt_header)
438 {
439 	struct spi_nor_flash_parameter *params = nor->params;
440 	struct spi_nor_erase_map *map = &params->erase_map;
441 	struct spi_nor_erase_type *erase_type = map->erase_type;
442 	struct sfdp_bfpt bfpt;
443 	size_t len;
444 	int i, cmd, err;
445 	u32 addr, val;
446 	u32 dword;
447 	u16 half;
448 	u8 erase_mask;
449 
450 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
451 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
452 		return -EINVAL;
453 
454 	/* Read the Basic Flash Parameter Table. */
455 	len = min_t(size_t, sizeof(bfpt),
456 		    bfpt_header->length * sizeof(u32));
457 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
458 	memset(&bfpt, 0, sizeof(bfpt));
459 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
460 	if (err < 0)
461 		return err;
462 
463 	/* Fix endianness of the BFPT DWORDs. */
464 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
465 
466 	/* Number of address bytes. */
467 	switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
468 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
469 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
470 		params->addr_nbytes = 3;
471 		params->addr_mode_nbytes = 3;
472 		break;
473 
474 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
475 		params->addr_nbytes = 4;
476 		params->addr_mode_nbytes = 4;
477 		break;
478 
479 	default:
480 		break;
481 	}
482 
483 	/* Flash Memory Density (in bits). */
484 	val = bfpt.dwords[SFDP_DWORD(2)];
485 	if (val & BIT(31)) {
486 		val &= ~BIT(31);
487 
488 		/*
489 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
490 		 * bits is unlikely to exist so this error probably means
491 		 * the BFPT we are reading is corrupted/wrong.
492 		 */
493 		if (val > 63)
494 			return -EINVAL;
495 
496 		params->size = 1ULL << val;
497 	} else {
498 		params->size = val + 1;
499 	}
500 	params->size >>= 3; /* Convert to bytes. */
501 
502 	/* Fast Read settings. */
503 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
504 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
505 		struct spi_nor_read_command *read;
506 
507 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
508 			params->hwcaps.mask &= ~rd->hwcaps;
509 			continue;
510 		}
511 
512 		params->hwcaps.mask |= rd->hwcaps;
513 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
514 		read = &params->reads[cmd];
515 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
516 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
517 	}
518 
519 	/*
520 	 * Sector Erase settings. Reinitialize the uniform erase map using the
521 	 * Erase Types defined in the bfpt table.
522 	 */
523 	erase_mask = 0;
524 	memset(&params->erase_map, 0, sizeof(params->erase_map));
525 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
526 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
527 		u32 erasesize;
528 		u8 opcode;
529 
530 		half = bfpt.dwords[er->dword] >> er->shift;
531 		erasesize = half & 0xff;
532 
533 		/* erasesize == 0 means this Erase Type is not supported. */
534 		if (!erasesize)
535 			continue;
536 
537 		erasesize = 1U << erasesize;
538 		opcode = (half >> 8) & 0xff;
539 		erase_mask |= BIT(i);
540 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
541 						     opcode, i);
542 	}
543 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
544 	/*
545 	 * Sort all the map's Erase Types in ascending order with the smallest
546 	 * erase size being the first member in the erase_type array.
547 	 */
548 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
549 	     spi_nor_map_cmp_erase_type, NULL);
550 	/*
551 	 * Sort the erase types in the uniform region in order to update the
552 	 * uniform_erase_type bitmask. The bitmask will be used later on when
553 	 * selecting the uniform erase.
554 	 */
555 	spi_nor_regions_sort_erase_types(map);
556 	map->uniform_erase_type = map->uniform_region.offset &
557 				  SNOR_ERASE_TYPE_MASK;
558 
559 	/* Stop here if not JESD216 rev A or later. */
560 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
561 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
562 
563 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
564 	val = bfpt.dwords[SFDP_DWORD(11)];
565 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
566 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
567 	params->page_size = 1U << val;
568 
569 	/* Quad Enable Requirements. */
570 	switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
571 	case BFPT_DWORD15_QER_NONE:
572 		params->quad_enable = NULL;
573 		break;
574 
575 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
576 		/*
577 		 * Writing only one byte to the Status Register has the
578 		 * side-effect of clearing Status Register 2.
579 		 */
580 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
581 		/*
582 		 * Read Configuration Register (35h) instruction is not
583 		 * supported.
584 		 */
585 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
586 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
587 		break;
588 
589 	case BFPT_DWORD15_QER_SR1_BIT6:
590 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
592 		break;
593 
594 	case BFPT_DWORD15_QER_SR2_BIT7:
595 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
596 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
597 		break;
598 
599 	case BFPT_DWORD15_QER_SR2_BIT1:
600 		/*
601 		 * JESD216 rev B or later does not specify if writing only one
602 		 * byte to the Status Register clears or not the Status
603 		 * Register 2, so let's be cautious and keep the default
604 		 * assumption of a 16-bit Write Status (01h) command.
605 		 */
606 		nor->flags |= SNOR_F_HAS_16BIT_SR;
607 
608 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
609 		break;
610 
611 	default:
612 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
613 		break;
614 	}
615 
616 	dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK;
617 	if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR))
618 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
619 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B))
620 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
621 	else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B))
622 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
623 	else
624 		dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n");
625 
626 	/* Soft Reset support. */
627 	if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
628 		nor->flags |= SNOR_F_SOFT_RESET;
629 
630 	/* Stop here if not JESD216 rev C or later. */
631 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
632 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
633 
634 	/* 8D-8D-8D command extension. */
635 	switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
636 	case BFPT_DWORD18_CMD_EXT_REP:
637 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
638 		break;
639 
640 	case BFPT_DWORD18_CMD_EXT_INV:
641 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
642 		break;
643 
644 	case BFPT_DWORD18_CMD_EXT_RES:
645 		dev_dbg(nor->dev, "Reserved command extension used\n");
646 		break;
647 
648 	case BFPT_DWORD18_CMD_EXT_16B:
649 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
650 		return -EOPNOTSUPP;
651 	}
652 
653 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
654 }
655 
656 /**
657  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
658  *			       configuration detection command.
659  * @nor:	pointer to a 'struct spi_nor'
660  * @settings:	configuration detection command descriptor, dword1
661  */
662 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
663 {
664 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
665 	case SMPT_CMD_ADDRESS_LEN_0:
666 		return 0;
667 	case SMPT_CMD_ADDRESS_LEN_3:
668 		return 3;
669 	case SMPT_CMD_ADDRESS_LEN_4:
670 		return 4;
671 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
672 	default:
673 		return nor->params->addr_mode_nbytes;
674 	}
675 }
676 
677 /**
678  * spi_nor_smpt_read_dummy() - return the configuration detection command read
679  *			       latency, in clock cycles.
680  * @nor:	pointer to a 'struct spi_nor'
681  * @settings:	configuration detection command descriptor, dword1
682  *
683  * Return: the number of dummy cycles for an SMPT read
684  */
685 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
686 {
687 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
688 
689 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
690 		return nor->read_dummy;
691 	return read_dummy;
692 }
693 
694 /**
695  * spi_nor_get_map_in_use() - get the configuration map in use
696  * @nor:	pointer to a 'struct spi_nor'
697  * @smpt:	pointer to the sector map parameter table
698  * @smpt_len:	sector map parameter table length
699  *
700  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
701  */
702 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
703 					 u8 smpt_len)
704 {
705 	const u32 *ret;
706 	u8 *buf;
707 	u32 addr;
708 	int err;
709 	u8 i;
710 	u8 addr_nbytes, read_opcode, read_dummy;
711 	u8 read_data_mask, map_id;
712 
713 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
714 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
715 	if (!buf)
716 		return ERR_PTR(-ENOMEM);
717 
718 	addr_nbytes = nor->addr_nbytes;
719 	read_dummy = nor->read_dummy;
720 	read_opcode = nor->read_opcode;
721 
722 	map_id = 0;
723 	/* Determine if there are any optional Detection Command Descriptors */
724 	for (i = 0; i < smpt_len; i += 2) {
725 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
726 			break;
727 
728 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
729 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
730 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
731 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
732 		addr = smpt[i + 1];
733 
734 		err = spi_nor_read_raw(nor, addr, 1, buf);
735 		if (err) {
736 			ret = ERR_PTR(err);
737 			goto out;
738 		}
739 
740 		/*
741 		 * Build an index value that is used to select the Sector Map
742 		 * Configuration that is currently in use.
743 		 */
744 		map_id = map_id << 1 | !!(*buf & read_data_mask);
745 	}
746 
747 	/*
748 	 * If command descriptors are provided, they always precede map
749 	 * descriptors in the table. There is no need to start the iteration
750 	 * over smpt array all over again.
751 	 *
752 	 * Find the matching configuration map.
753 	 */
754 	ret = ERR_PTR(-EINVAL);
755 	while (i < smpt_len) {
756 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
757 			ret = smpt + i;
758 			break;
759 		}
760 
761 		/*
762 		 * If there are no more configuration map descriptors and no
763 		 * configuration ID matched the configuration identifier, the
764 		 * sector address map is unknown.
765 		 */
766 		if (smpt[i] & SMPT_DESC_END)
767 			break;
768 
769 		/* increment the table index to the next map */
770 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
771 	}
772 
773 	/* fall through */
774 out:
775 	kfree(buf);
776 	nor->addr_nbytes = addr_nbytes;
777 	nor->read_dummy = read_dummy;
778 	nor->read_opcode = read_opcode;
779 	return ret;
780 }
781 
782 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
783 {
784 	region->offset |= SNOR_LAST_REGION;
785 }
786 
787 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
788 {
789 	region->offset |= SNOR_OVERLAID_REGION;
790 }
791 
792 /**
793  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
794  * @region:	pointer to a structure that describes a SPI NOR erase region
795  * @erase:	pointer to a structure that describes a SPI NOR erase type
796  * @erase_type:	erase type bitmask
797  */
798 static void
799 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
800 			     const struct spi_nor_erase_type *erase,
801 			     const u8 erase_type)
802 {
803 	int i;
804 
805 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
806 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
807 			continue;
808 		if (region->size & erase[i].size_mask) {
809 			spi_nor_region_mark_overlay(region);
810 			return;
811 		}
812 	}
813 }
814 
815 /**
816  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
817  * @nor:	pointer to a 'struct spi_nor'
818  * @smpt:	pointer to the sector map parameter table
819  *
820  * Return: 0 on success, -errno otherwise.
821  */
822 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
823 					      const u32 *smpt)
824 {
825 	struct spi_nor_erase_map *map = &nor->params->erase_map;
826 	struct spi_nor_erase_type *erase = map->erase_type;
827 	struct spi_nor_erase_region *region;
828 	u64 offset;
829 	u32 region_count;
830 	int i, j;
831 	u8 uniform_erase_type, save_uniform_erase_type;
832 	u8 erase_type, regions_erase_type;
833 
834 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
835 	/*
836 	 * The regions will be freed when the driver detaches from the
837 	 * device.
838 	 */
839 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
840 			      GFP_KERNEL);
841 	if (!region)
842 		return -ENOMEM;
843 	map->regions = region;
844 
845 	uniform_erase_type = 0xff;
846 	regions_erase_type = 0;
847 	offset = 0;
848 	/* Populate regions. */
849 	for (i = 0; i < region_count; i++) {
850 		j = i + 1; /* index for the region dword */
851 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
852 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
853 		region[i].offset = offset | erase_type;
854 
855 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
856 
857 		/*
858 		 * Save the erase types that are supported in all regions and
859 		 * can erase the entire flash memory.
860 		 */
861 		uniform_erase_type &= erase_type;
862 
863 		/*
864 		 * regions_erase_type mask will indicate all the erase types
865 		 * supported in this configuration map.
866 		 */
867 		regions_erase_type |= erase_type;
868 
869 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
870 			 region[i].size;
871 	}
872 	spi_nor_region_mark_end(&region[i - 1]);
873 
874 	save_uniform_erase_type = map->uniform_erase_type;
875 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
876 							  uniform_erase_type);
877 
878 	if (!regions_erase_type) {
879 		/*
880 		 * Roll back to the previous uniform_erase_type mask, SMPT is
881 		 * broken.
882 		 */
883 		map->uniform_erase_type = save_uniform_erase_type;
884 		return -EINVAL;
885 	}
886 
887 	/*
888 	 * BFPT advertises all the erase types supported by all the possible
889 	 * map configurations. Mask out the erase types that are not supported
890 	 * by the current map configuration.
891 	 */
892 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
893 		if (!(regions_erase_type & BIT(erase[i].idx)))
894 			spi_nor_mask_erase_type(&erase[i]);
895 
896 	return 0;
897 }
898 
899 /**
900  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
901  * @nor:		pointer to a 'struct spi_nor'
902  * @smpt_header:	sector map parameter table header
903  *
904  * This table is optional, but when available, we parse it to identify the
905  * location and size of sectors within the main data array of the flash memory
906  * device and to identify which Erase Types are supported by each sector.
907  *
908  * Return: 0 on success, -errno otherwise.
909  */
910 static int spi_nor_parse_smpt(struct spi_nor *nor,
911 			      const struct sfdp_parameter_header *smpt_header)
912 {
913 	const u32 *sector_map;
914 	u32 *smpt;
915 	size_t len;
916 	u32 addr;
917 	int ret;
918 
919 	/* Read the Sector Map Parameter Table. */
920 	len = smpt_header->length * sizeof(*smpt);
921 	smpt = kmalloc(len, GFP_KERNEL);
922 	if (!smpt)
923 		return -ENOMEM;
924 
925 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
926 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
927 	if (ret)
928 		goto out;
929 
930 	/* Fix endianness of the SMPT DWORDs. */
931 	le32_to_cpu_array(smpt, smpt_header->length);
932 
933 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
934 	if (IS_ERR(sector_map)) {
935 		ret = PTR_ERR(sector_map);
936 		goto out;
937 	}
938 
939 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
940 	if (ret)
941 		goto out;
942 
943 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
944 	/* fall through */
945 out:
946 	kfree(smpt);
947 	return ret;
948 }
949 
950 /**
951  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
952  * @nor:		pointer to a 'struct spi_nor'.
953  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
954  *			the 4-Byte Address Instruction Table length and version.
955  *
956  * Return: 0 on success, -errno otherwise.
957  */
958 static int spi_nor_parse_4bait(struct spi_nor *nor,
959 			       const struct sfdp_parameter_header *param_header)
960 {
961 	static const struct sfdp_4bait reads[] = {
962 		{ SNOR_HWCAPS_READ,		BIT(0) },
963 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
964 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
965 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
966 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
967 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
968 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
969 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
970 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
971 	};
972 	static const struct sfdp_4bait programs[] = {
973 		{ SNOR_HWCAPS_PP,		BIT(6) },
974 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
975 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
976 	};
977 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
978 		{ 0u /* not used */,		BIT(9) },
979 		{ 0u /* not used */,		BIT(10) },
980 		{ 0u /* not used */,		BIT(11) },
981 		{ 0u /* not used */,		BIT(12) },
982 	};
983 	struct spi_nor_flash_parameter *params = nor->params;
984 	struct spi_nor_pp_command *params_pp = params->page_programs;
985 	struct spi_nor_erase_map *map = &params->erase_map;
986 	struct spi_nor_erase_type *erase_type = map->erase_type;
987 	u32 *dwords;
988 	size_t len;
989 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
990 	int i, ret;
991 
992 	if (param_header->major != SFDP_JESD216_MAJOR ||
993 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
994 		return -EINVAL;
995 
996 	/* Read the 4-byte Address Instruction Table. */
997 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
998 
999 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
1000 	dwords = kmalloc(len, GFP_KERNEL);
1001 	if (!dwords)
1002 		return -ENOMEM;
1003 
1004 	addr = SFDP_PARAM_HEADER_PTP(param_header);
1005 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1006 	if (ret)
1007 		goto out;
1008 
1009 	/* Fix endianness of the 4BAIT DWORDs. */
1010 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1011 
1012 	/*
1013 	 * Compute the subset of (Fast) Read commands for which the 4-byte
1014 	 * version is supported.
1015 	 */
1016 	discard_hwcaps = 0;
1017 	read_hwcaps = 0;
1018 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1019 		const struct sfdp_4bait *read = &reads[i];
1020 
1021 		discard_hwcaps |= read->hwcaps;
1022 		if ((params->hwcaps.mask & read->hwcaps) &&
1023 		    (dwords[SFDP_DWORD(1)] & read->supported_bit))
1024 			read_hwcaps |= read->hwcaps;
1025 	}
1026 
1027 	/*
1028 	 * Compute the subset of Page Program commands for which the 4-byte
1029 	 * version is supported.
1030 	 */
1031 	pp_hwcaps = 0;
1032 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1033 		const struct sfdp_4bait *program = &programs[i];
1034 
1035 		/*
1036 		 * The 4 Byte Address Instruction (Optional) Table is the only
1037 		 * SFDP table that indicates support for Page Program Commands.
1038 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1039 		 * authority for specifying Page Program support.
1040 		 */
1041 		discard_hwcaps |= program->hwcaps;
1042 		if (dwords[SFDP_DWORD(1)] & program->supported_bit)
1043 			pp_hwcaps |= program->hwcaps;
1044 	}
1045 
1046 	/*
1047 	 * Compute the subset of Sector Erase commands for which the 4-byte
1048 	 * version is supported.
1049 	 */
1050 	erase_mask = 0;
1051 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1052 		const struct sfdp_4bait *erase = &erases[i];
1053 
1054 		if (dwords[SFDP_DWORD(1)] & erase->supported_bit)
1055 			erase_mask |= BIT(i);
1056 	}
1057 
1058 	/* Replicate the sort done for the map's erase types in BFPT. */
1059 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1060 
1061 	/*
1062 	 * We need at least one 4-byte op code per read, program and erase
1063 	 * operation; the .read(), .write() and .erase() hooks share the
1064 	 * nor->addr_nbytes value.
1065 	 */
1066 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1067 		goto out;
1068 
1069 	/*
1070 	 * Discard all operations from the 4-byte instruction set which are
1071 	 * not supported by this memory.
1072 	 */
1073 	params->hwcaps.mask &= ~discard_hwcaps;
1074 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1075 
1076 	/* Use the 4-byte address instruction set. */
1077 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1078 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1079 
1080 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1081 	}
1082 
1083 	/* 4BAIT is the only SFDP table that indicates page program support. */
1084 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1085 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1086 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1087 		/*
1088 		 * Since xSPI Page Program opcode is backward compatible with
1089 		 * Legacy SPI, use Legacy SPI opcode there as well.
1090 		 */
1091 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1092 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1093 	}
1094 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1095 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1096 					SPINOR_OP_PP_1_1_4_4B,
1097 					SNOR_PROTO_1_1_4);
1098 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1099 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1100 					SPINOR_OP_PP_1_4_4_4B,
1101 					SNOR_PROTO_1_4_4);
1102 
1103 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1104 		if (erase_mask & BIT(i))
1105 			erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >>
1106 						erase_type[i].idx * 8) & 0xFF;
1107 		else
1108 			spi_nor_mask_erase_type(&erase_type[i]);
1109 	}
1110 
1111 	/*
1112 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1113 	 * later because we already did the conversion to 4byte opcodes. Also,
1114 	 * this latest function implements a legacy quirk for the erase size of
1115 	 * Spansion memory. However this quirk is no longer needed with new
1116 	 * SFDP compliant memories.
1117 	 */
1118 	params->addr_nbytes = 4;
1119 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1120 
1121 	/* fall through */
1122 out:
1123 	kfree(dwords);
1124 	return ret;
1125 }
1126 
1127 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1128 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1129 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1130 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1131 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1132 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1133 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1134 
1135 /**
1136  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1137  * @nor:		pointer to a 'struct spi_nor'
1138  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1139  *			the Profile 1.0 Table length and version.
1140  *
1141  * Return: 0 on success, -errno otherwise.
1142  */
1143 static int spi_nor_parse_profile1(struct spi_nor *nor,
1144 				  const struct sfdp_parameter_header *profile1_header)
1145 {
1146 	u32 *dwords, addr;
1147 	size_t len;
1148 	int ret;
1149 	u8 dummy, opcode;
1150 
1151 	len = profile1_header->length * sizeof(*dwords);
1152 	dwords = kmalloc(len, GFP_KERNEL);
1153 	if (!dwords)
1154 		return -ENOMEM;
1155 
1156 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1157 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1158 	if (ret)
1159 		goto out;
1160 
1161 	le32_to_cpu_array(dwords, profile1_header->length);
1162 
1163 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1164 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]);
1165 
1166 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1167 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY)
1168 		nor->params->rdsr_dummy = 8;
1169 	else
1170 		nor->params->rdsr_dummy = 4;
1171 
1172 	if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1173 		nor->params->rdsr_addr_nbytes = 4;
1174 	else
1175 		nor->params->rdsr_addr_nbytes = 0;
1176 
1177 	/*
1178 	 * We don't know what speed the controller is running at. Find the
1179 	 * dummy cycles for the fastest frequency the flash can run at to be
1180 	 * sure we are never short of dummy cycles. A value of 0 means the
1181 	 * frequency is not supported.
1182 	 *
1183 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1184 	 * flashes set the correct value if needed in their fixup hooks.
1185 	 */
1186 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]);
1187 	if (!dummy)
1188 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ,
1189 				  dwords[SFDP_DWORD(5)]);
1190 	if (!dummy)
1191 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ,
1192 				  dwords[SFDP_DWORD(5)]);
1193 	if (!dummy)
1194 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ,
1195 				  dwords[SFDP_DWORD(5)]);
1196 	if (!dummy)
1197 		dev_dbg(nor->dev,
1198 			"Can't find dummy cycles from Profile 1.0 table\n");
1199 
1200 	/* Round up to an even value to avoid tripping controllers up. */
1201 	dummy = round_up(dummy, 2);
1202 
1203 	/* Update the fast read settings. */
1204 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1205 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1206 				  0, dummy, opcode,
1207 				  SNOR_PROTO_8_8_8_DTR);
1208 
1209 	/*
1210 	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1211 	 * the params->hwcaps.mask here.
1212 	 */
1213 	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1214 
1215 out:
1216 	kfree(dwords);
1217 	return ret;
1218 }
1219 
1220 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1221 
1222 /**
1223  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1224  *                        Map.
1225  * @nor:		pointer to a 'struct spi_nor'
1226  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1227  *			the SCCR Map table length and version.
1228  *
1229  * Return: 0 on success, -errno otherwise.
1230  */
1231 static int spi_nor_parse_sccr(struct spi_nor *nor,
1232 			      const struct sfdp_parameter_header *sccr_header)
1233 {
1234 	struct spi_nor_flash_parameter *params = nor->params;
1235 	u32 *dwords, addr;
1236 	size_t len;
1237 	int ret;
1238 
1239 	len = sccr_header->length * sizeof(*dwords);
1240 	dwords = kmalloc(len, GFP_KERNEL);
1241 	if (!dwords)
1242 		return -ENOMEM;
1243 
1244 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1245 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1246 	if (ret)
1247 		goto out;
1248 
1249 	le32_to_cpu_array(dwords, sccr_header->length);
1250 
1251 	/* Address offset for volatile registers (die 0) */
1252 	if (!params->vreg_offset) {
1253 		params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords),
1254 						   GFP_KERNEL);
1255 		if (!params->vreg_offset) {
1256 			ret = -ENOMEM;
1257 			goto out;
1258 		}
1259 	}
1260 	params->vreg_offset[0] = dwords[SFDP_DWORD(1)];
1261 	params->n_dice = 1;
1262 
1263 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE,
1264 		      dwords[SFDP_DWORD(22)]))
1265 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1266 
1267 out:
1268 	kfree(dwords);
1269 	return ret;
1270 }
1271 
1272 /**
1273  * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration
1274  *                           Register Map Offsets for Multi-Chip SPI Memory
1275  *                           Devices.
1276  * @nor:		pointer to a 'struct spi_nor'
1277  * @sccr_mc_header:	pointer to the 'struct sfdp_parameter_header' describing
1278  *			the SCCR Map offsets table length and version.
1279  *
1280  * Return: 0 on success, -errno otherwise.
1281  */
1282 static int spi_nor_parse_sccr_mc(struct spi_nor *nor,
1283 				 const struct sfdp_parameter_header *sccr_mc_header)
1284 {
1285 	struct spi_nor_flash_parameter *params = nor->params;
1286 	u32 *dwords, addr;
1287 	u8 i, n_dice;
1288 	size_t len;
1289 	int ret;
1290 
1291 	len = sccr_mc_header->length * sizeof(*dwords);
1292 	dwords = kmalloc(len, GFP_KERNEL);
1293 	if (!dwords)
1294 		return -ENOMEM;
1295 
1296 	addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header);
1297 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1298 	if (ret)
1299 		goto out;
1300 
1301 	le32_to_cpu_array(dwords, sccr_mc_header->length);
1302 
1303 	/*
1304 	 * Pair of DOWRDs (volatile and non-volatile register offsets) per
1305 	 * additional die. Hence, length = 2 * (number of additional dice).
1306 	 */
1307 	n_dice = 1 + sccr_mc_header->length / 2;
1308 
1309 	/* Address offset for volatile registers of additional dice */
1310 	params->vreg_offset =
1311 			devm_krealloc(nor->dev, params->vreg_offset,
1312 				      n_dice * sizeof(*dwords),
1313 				      GFP_KERNEL);
1314 	if (!params->vreg_offset) {
1315 		ret = -ENOMEM;
1316 		goto out;
1317 	}
1318 
1319 	for (i = 1; i < n_dice; i++)
1320 		params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2];
1321 
1322 	params->n_dice = n_dice;
1323 
1324 out:
1325 	kfree(dwords);
1326 	return ret;
1327 }
1328 
1329 /**
1330  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1331  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1332  * tables.
1333  * @nor:	pointer to a 'struct spi_nor'
1334  *
1335  * Used to tweak various flash parameters when information provided by the SFDP
1336  * tables are wrong.
1337  */
1338 static int spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1339 {
1340 	int ret;
1341 
1342 	if (nor->manufacturer && nor->manufacturer->fixups &&
1343 	    nor->manufacturer->fixups->post_sfdp) {
1344 		ret = nor->manufacturer->fixups->post_sfdp(nor);
1345 		if (ret)
1346 			return ret;
1347 	}
1348 
1349 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1350 		return nor->info->fixups->post_sfdp(nor);
1351 
1352 	return 0;
1353 }
1354 
1355 /**
1356  * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1357  * @nor:	pointer to a 'struct spi_nor'
1358  *
1359  * Used to detect if the flash supports the RDSFDP command as well as the
1360  * presence of a valid SFDP table.
1361  *
1362  * Return: 0 on success, -errno otherwise.
1363  */
1364 int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1365 {
1366 	u32 signature;
1367 	int err;
1368 
1369 	/* Get the SFDP header. */
1370 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1371 					   &signature);
1372 	if (err < 0)
1373 		return err;
1374 
1375 	/* Check the SFDP signature. */
1376 	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1377 		return -EINVAL;
1378 
1379 	return 0;
1380 }
1381 
1382 /**
1383  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1384  * @nor:		pointer to a 'struct spi_nor'
1385  *
1386  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1387  * specification. This is a standard which tends to supported by almost all
1388  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1389  * runtime the main parameters needed to perform basic SPI flash operations such
1390  * as Fast Read, Page Program or Sector Erase commands.
1391  *
1392  * Return: 0 on success, -errno otherwise.
1393  */
1394 int spi_nor_parse_sfdp(struct spi_nor *nor)
1395 {
1396 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1397 	struct sfdp_parameter_header *param_headers = NULL;
1398 	struct sfdp_header header;
1399 	struct device *dev = nor->dev;
1400 	struct sfdp *sfdp;
1401 	size_t sfdp_size;
1402 	size_t psize;
1403 	int i, err;
1404 
1405 	/* Get the SFDP header. */
1406 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1407 	if (err < 0)
1408 		return err;
1409 
1410 	/* Check the SFDP header version. */
1411 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1412 	    header.major != SFDP_JESD216_MAJOR)
1413 		return -EINVAL;
1414 
1415 	/*
1416 	 * Verify that the first and only mandatory parameter header is a
1417 	 * Basic Flash Parameter Table header as specified in JESD216.
1418 	 */
1419 	bfpt_header = &header.bfpt_header;
1420 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1421 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1422 		return -EINVAL;
1423 
1424 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1425 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1426 
1427 	/*
1428 	 * Allocate memory then read all parameter headers with a single
1429 	 * Read SFDP command. These parameter headers will actually be parsed
1430 	 * twice: a first time to get the latest revision of the basic flash
1431 	 * parameter table, then a second time to handle the supported optional
1432 	 * tables.
1433 	 * Hence we read the parameter headers once for all to reduce the
1434 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1435 	 * because we don't need to keep these parameter headers: the allocated
1436 	 * memory is always released with kfree() before exiting this function.
1437 	 */
1438 	if (header.nph) {
1439 		psize = header.nph * sizeof(*param_headers);
1440 
1441 		param_headers = kmalloc(psize, GFP_KERNEL);
1442 		if (!param_headers)
1443 			return -ENOMEM;
1444 
1445 		err = spi_nor_read_sfdp(nor, sizeof(header),
1446 					psize, param_headers);
1447 		if (err < 0) {
1448 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1449 			goto exit;
1450 		}
1451 	}
1452 
1453 	/*
1454 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1455 	 * SFDP after probe time and we need it for the sysfs access.
1456 	 */
1457 	for (i = 0; i < header.nph; i++) {
1458 		param_header = &param_headers[i];
1459 		sfdp_size = max_t(size_t, sfdp_size,
1460 				  SFDP_PARAM_HEADER_PTP(param_header) +
1461 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1462 	}
1463 
1464 	/*
1465 	 * Limit the total size to a reasonable value to avoid allocating too
1466 	 * much memory just of because the flash returned some insane values.
1467 	 */
1468 	if (sfdp_size > PAGE_SIZE) {
1469 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1470 			sfdp_size);
1471 		sfdp_size = PAGE_SIZE;
1472 	}
1473 
1474 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1475 	if (!sfdp) {
1476 		err = -ENOMEM;
1477 		goto exit;
1478 	}
1479 
1480 	/*
1481 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1482 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1483 	 * is not spec compliant, make sure that we have enough space to store
1484 	 * the complete SFDP data.
1485 	 */
1486 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1487 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1488 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1489 	if (!sfdp->dwords) {
1490 		err = -ENOMEM;
1491 		devm_kfree(dev, sfdp);
1492 		goto exit;
1493 	}
1494 
1495 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1496 	if (err < 0) {
1497 		dev_dbg(dev, "failed to read SFDP data\n");
1498 		devm_kfree(dev, sfdp->dwords);
1499 		devm_kfree(dev, sfdp);
1500 		goto exit;
1501 	}
1502 
1503 	nor->sfdp = sfdp;
1504 
1505 	/*
1506 	 * Check other parameter headers to get the latest revision of
1507 	 * the basic flash parameter table.
1508 	 */
1509 	for (i = 0; i < header.nph; i++) {
1510 		param_header = &param_headers[i];
1511 
1512 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1513 		    param_header->major == SFDP_JESD216_MAJOR &&
1514 		    (param_header->minor > bfpt_header->minor ||
1515 		     (param_header->minor == bfpt_header->minor &&
1516 		      param_header->length > bfpt_header->length)))
1517 			bfpt_header = param_header;
1518 	}
1519 
1520 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1521 	if (err)
1522 		goto exit;
1523 
1524 	/* Parse optional parameter tables. */
1525 	for (i = 0; i < header.nph; i++) {
1526 		param_header = &param_headers[i];
1527 
1528 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1529 		case SFDP_SECTOR_MAP_ID:
1530 			err = spi_nor_parse_smpt(nor, param_header);
1531 			break;
1532 
1533 		case SFDP_4BAIT_ID:
1534 			err = spi_nor_parse_4bait(nor, param_header);
1535 			break;
1536 
1537 		case SFDP_PROFILE1_ID:
1538 			err = spi_nor_parse_profile1(nor, param_header);
1539 			break;
1540 
1541 		case SFDP_SCCR_MAP_ID:
1542 			err = spi_nor_parse_sccr(nor, param_header);
1543 			break;
1544 
1545 		case SFDP_SCCR_MAP_MC_ID:
1546 			err = spi_nor_parse_sccr_mc(nor, param_header);
1547 			break;
1548 
1549 		default:
1550 			break;
1551 		}
1552 
1553 		if (err) {
1554 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1555 				 SFDP_PARAM_HEADER_ID(param_header));
1556 			/*
1557 			 * Let's not drop all information we extracted so far
1558 			 * if optional table parsers fail. In case of failing,
1559 			 * each optional parser is responsible to roll back to
1560 			 * the previously known spi_nor data.
1561 			 */
1562 			err = 0;
1563 		}
1564 	}
1565 
1566 	err = spi_nor_post_sfdp_fixups(nor);
1567 exit:
1568 	kfree(param_headers);
1569 	return err;
1570 }
1571