xref: /openbmc/linux/drivers/mtd/spi-nor/sfdp.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include <linux/mtd/spi-nor.h>
10 
11 #include "core.h"
12 
13 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
14 #define SFDP_PARAM_HEADER_PTP(p) \
15 	(((p)->parameter_table_pointer[2] << 16) | \
16 	 ((p)->parameter_table_pointer[1] <<  8) | \
17 	 ((p)->parameter_table_pointer[0] <<  0))
18 
19 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
20 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
21 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
22 
23 #define SFDP_SIGNATURE		0x50444653U
24 
25 struct sfdp_header {
26 	u32		signature; /* Ox50444653U <=> "SFDP" */
27 	u8		minor;
28 	u8		major;
29 	u8		nph; /* 0-base number of parameter headers */
30 	u8		unused;
31 
32 	/* Basic Flash Parameter Table. */
33 	struct sfdp_parameter_header	bfpt_header;
34 };
35 
36 /* Fast Read settings. */
37 struct sfdp_bfpt_read {
38 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
39 	u32			hwcaps;
40 
41 	/*
42 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
43 	 * whether the Fast Read x-y-z command is supported.
44 	 */
45 	u32			supported_dword;
46 	u32			supported_bit;
47 
48 	/*
49 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
50 	 * encodes the op code, the number of mode clocks and the number of wait
51 	 * states to be used by Fast Read x-y-z command.
52 	 */
53 	u32			settings_dword;
54 	u32			settings_shift;
55 
56 	/* The SPI protocol for this Fast Read x-y-z command. */
57 	enum spi_nor_protocol	proto;
58 };
59 
60 struct sfdp_bfpt_erase {
61 	/*
62 	 * The half-word at offset <shift> in DWORD <dwoard> encodes the
63 	 * op code and erase sector size to be used by Sector Erase commands.
64 	 */
65 	u32			dword;
66 	u32			shift;
67 };
68 
69 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
70 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
71 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
72 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
73 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
74 
75 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
76 #define SMPT_CMD_READ_DUMMY_SHIFT		16
77 #define SMPT_CMD_READ_DUMMY(_cmd) \
78 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
79 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
80 
81 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
82 #define SMPT_CMD_READ_DATA_SHIFT		24
83 #define SMPT_CMD_READ_DATA(_cmd) \
84 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
85 
86 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
87 #define SMPT_CMD_OPCODE_SHIFT			8
88 #define SMPT_CMD_OPCODE(_cmd) \
89 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
90 
91 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
92 #define SMPT_MAP_REGION_COUNT_SHIFT		16
93 #define SMPT_MAP_REGION_COUNT(_header) \
94 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
95 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
96 
97 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
98 #define SMPT_MAP_ID_SHIFT			8
99 #define SMPT_MAP_ID(_header) \
100 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
101 
102 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
103 #define SMPT_MAP_REGION_SIZE_SHIFT		8
104 #define SMPT_MAP_REGION_SIZE(_region) \
105 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
106 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
107 
108 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
109 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
110 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
111 
112 #define SMPT_DESC_TYPE_MAP			BIT(1)
113 #define SMPT_DESC_END				BIT(0)
114 
115 #define SFDP_4BAIT_DWORD_MAX	2
116 
117 struct sfdp_4bait {
118 	/* The hardware capability. */
119 	u32		hwcaps;
120 
121 	/*
122 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
123 	 * the associated 4-byte address op code is supported.
124 	 */
125 	u32		supported_bit;
126 };
127 
128 /**
129  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
130  *			addr_width and read_dummy members of the struct spi_nor
131  *			should be previously
132  * set.
133  * @nor:	pointer to a 'struct spi_nor'
134  * @addr:	offset in the serial flash memory
135  * @len:	number of bytes to read
136  * @buf:	buffer where the data is copied into (dma-safe memory)
137  *
138  * Return: 0 on success, -errno otherwise.
139  */
140 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
141 {
142 	ssize_t ret;
143 
144 	while (len) {
145 		ret = spi_nor_read_data(nor, addr, len, buf);
146 		if (ret < 0)
147 			return ret;
148 		if (!ret || ret > len)
149 			return -EIO;
150 
151 		buf += ret;
152 		addr += ret;
153 		len -= ret;
154 	}
155 	return 0;
156 }
157 
158 /**
159  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
160  * @nor:	pointer to a 'struct spi_nor'
161  * @addr:	offset in the SFDP area to start reading data from
162  * @len:	number of bytes to read
163  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
164  *
165  * Whatever the actual numbers of bytes for address and dummy cycles are
166  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
167  * followed by a 3-byte address and 8 dummy clock cycles.
168  *
169  * Return: 0 on success, -errno otherwise.
170  */
171 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
172 			     size_t len, void *buf)
173 {
174 	u8 addr_width, read_opcode, read_dummy;
175 	int ret;
176 
177 	read_opcode = nor->read_opcode;
178 	addr_width = nor->addr_width;
179 	read_dummy = nor->read_dummy;
180 
181 	nor->read_opcode = SPINOR_OP_RDSFDP;
182 	nor->addr_width = 3;
183 	nor->read_dummy = 8;
184 
185 	ret = spi_nor_read_raw(nor, addr, len, buf);
186 
187 	nor->read_opcode = read_opcode;
188 	nor->addr_width = addr_width;
189 	nor->read_dummy = read_dummy;
190 
191 	return ret;
192 }
193 
194 /**
195  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
196  * @nor:	pointer to a 'struct spi_nor'
197  * @addr:	offset in the SFDP area to start reading data from
198  * @len:	number of bytes to read
199  * @buf:	buffer where the SFDP data are copied into
200  *
201  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
202  * guaranteed to be dma-safe.
203  *
204  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
205  *          otherwise.
206  */
207 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
208 					size_t len, void *buf)
209 {
210 	void *dma_safe_buf;
211 	int ret;
212 
213 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
214 	if (!dma_safe_buf)
215 		return -ENOMEM;
216 
217 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
218 	memcpy(buf, dma_safe_buf, len);
219 	kfree(dma_safe_buf);
220 
221 	return ret;
222 }
223 
224 static void
225 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
226 				    u16 half,
227 				    enum spi_nor_protocol proto)
228 {
229 	read->num_mode_clocks = (half >> 5) & 0x07;
230 	read->num_wait_states = (half >> 0) & 0x1f;
231 	read->opcode = (half >> 8) & 0xff;
232 	read->proto = proto;
233 }
234 
235 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
236 	/* Fast Read 1-1-2 */
237 	{
238 		SNOR_HWCAPS_READ_1_1_2,
239 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
240 		BFPT_DWORD(4), 0,	/* Settings */
241 		SNOR_PROTO_1_1_2,
242 	},
243 
244 	/* Fast Read 1-2-2 */
245 	{
246 		SNOR_HWCAPS_READ_1_2_2,
247 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
248 		BFPT_DWORD(4), 16,	/* Settings */
249 		SNOR_PROTO_1_2_2,
250 	},
251 
252 	/* Fast Read 2-2-2 */
253 	{
254 		SNOR_HWCAPS_READ_2_2_2,
255 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
256 		BFPT_DWORD(6), 16,	/* Settings */
257 		SNOR_PROTO_2_2_2,
258 	},
259 
260 	/* Fast Read 1-1-4 */
261 	{
262 		SNOR_HWCAPS_READ_1_1_4,
263 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
264 		BFPT_DWORD(3), 16,	/* Settings */
265 		SNOR_PROTO_1_1_4,
266 	},
267 
268 	/* Fast Read 1-4-4 */
269 	{
270 		SNOR_HWCAPS_READ_1_4_4,
271 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
272 		BFPT_DWORD(3), 0,	/* Settings */
273 		SNOR_PROTO_1_4_4,
274 	},
275 
276 	/* Fast Read 4-4-4 */
277 	{
278 		SNOR_HWCAPS_READ_4_4_4,
279 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
280 		BFPT_DWORD(7), 16,	/* Settings */
281 		SNOR_PROTO_4_4_4,
282 	},
283 };
284 
285 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
286 	/* Erase Type 1 in DWORD8 bits[15:0] */
287 	{BFPT_DWORD(8), 0},
288 
289 	/* Erase Type 2 in DWORD8 bits[31:16] */
290 	{BFPT_DWORD(8), 16},
291 
292 	/* Erase Type 3 in DWORD9 bits[15:0] */
293 	{BFPT_DWORD(9), 0},
294 
295 	/* Erase Type 4 in DWORD9 bits[31:16] */
296 	{BFPT_DWORD(9), 16},
297 };
298 
299 /**
300  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
301  * @erase:	pointer to a structure that describes a SPI NOR erase type
302  * @size:	the size of the sector/block erased by the erase type
303  * @opcode:	the SPI command op code to erase the sector/block
304  * @i:		erase type index as sorted in the Basic Flash Parameter Table
305  *
306  * The supported Erase Types will be sorted at init in ascending order, with
307  * the smallest Erase Type size being the first member in the erase_type array
308  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
309  * the Basic Flash Parameter Table since it will be used later on to
310  * synchronize with the supported Erase Types defined in SFDP optional tables.
311  */
312 static void
313 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
314 				     u32 size, u8 opcode, u8 i)
315 {
316 	erase->idx = i;
317 	spi_nor_set_erase_type(erase, size, opcode);
318 }
319 
320 /**
321  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
322  * @l:	member in the left half of the map's erase_type array
323  * @r:	member in the right half of the map's erase_type array
324  *
325  * Comparison function used in the sort() call to sort in ascending order the
326  * map's erase types, the smallest erase type size being the first member in the
327  * sorted erase_type array.
328  *
329  * Return: the result of @l->size - @r->size
330  */
331 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
332 {
333 	const struct spi_nor_erase_type *left = l, *right = r;
334 
335 	return left->size - right->size;
336 }
337 
338 /**
339  * spi_nor_sort_erase_mask() - sort erase mask
340  * @map:	the erase map of the SPI NOR
341  * @erase_mask:	the erase type mask to be sorted
342  *
343  * Replicate the sort done for the map's erase types in BFPT: sort the erase
344  * mask in ascending order with the smallest erase type size starting from
345  * BIT(0) in the sorted erase mask.
346  *
347  * Return: sorted erase mask.
348  */
349 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
350 {
351 	struct spi_nor_erase_type *erase_type = map->erase_type;
352 	int i;
353 	u8 sorted_erase_mask = 0;
354 
355 	if (!erase_mask)
356 		return 0;
357 
358 	/* Replicate the sort done for the map's erase types. */
359 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
360 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
361 			sorted_erase_mask |= BIT(i);
362 
363 	return sorted_erase_mask;
364 }
365 
366 /**
367  * spi_nor_regions_sort_erase_types() - sort erase types in each region
368  * @map:	the erase map of the SPI NOR
369  *
370  * Function assumes that the erase types defined in the erase map are already
371  * sorted in ascending order, with the smallest erase type size being the first
372  * member in the erase_type array. It replicates the sort done for the map's
373  * erase types. Each region's erase bitmask will indicate which erase types are
374  * supported from the sorted erase types defined in the erase map.
375  * Sort the all region's erase type at init in order to speed up the process of
376  * finding the best erase command at runtime.
377  */
378 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
379 {
380 	struct spi_nor_erase_region *region = map->regions;
381 	u8 region_erase_mask, sorted_erase_mask;
382 
383 	while (region) {
384 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
385 
386 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
387 							    region_erase_mask);
388 
389 		/* Overwrite erase mask. */
390 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
391 				 sorted_erase_mask;
392 
393 		region = spi_nor_region_next(region);
394 	}
395 }
396 
397 /**
398  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
399  * @nor:		pointer to a 'struct spi_nor'
400  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
401  *			the Basic Flash Parameter Table length and version
402  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
403  *			filled
404  *
405  * The Basic Flash Parameter Table is the main and only mandatory table as
406  * defined by the SFDP (JESD216) specification.
407  * It provides us with the total size (memory density) of the data array and
408  * the number of address bytes for Fast Read, Page Program and Sector Erase
409  * commands.
410  * For Fast READ commands, it also gives the number of mode clock cycles and
411  * wait states (regrouped in the number of dummy clock cycles) for each
412  * supported instruction op code.
413  * For Page Program, the page size is now available since JESD216 rev A, however
414  * the supported instruction op codes are still not provided.
415  * For Sector Erase commands, this table stores the supported instruction op
416  * codes and the associated sector sizes.
417  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
418  * rev A. The QER bits encode the manufacturer dependent procedure to be
419  * executed to set the Quad Enable (QE) bit in some internal register of the
420  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
421  * sending any Quad SPI command to the memory. Actually, setting the QE bit
422  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
423  * and IO3 hence enabling 4 (Quad) I/O lines.
424  *
425  * Return: 0 on success, -errno otherwise.
426  */
427 static int spi_nor_parse_bfpt(struct spi_nor *nor,
428 			      const struct sfdp_parameter_header *bfpt_header,
429 			      struct spi_nor_flash_parameter *params)
430 {
431 	struct spi_nor_erase_map *map = &params->erase_map;
432 	struct spi_nor_erase_type *erase_type = map->erase_type;
433 	struct sfdp_bfpt bfpt;
434 	size_t len;
435 	int i, cmd, err;
436 	u32 addr, val;
437 	u16 half;
438 	u8 erase_mask;
439 
440 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
441 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
442 		return -EINVAL;
443 
444 	/* Read the Basic Flash Parameter Table. */
445 	len = min_t(size_t, sizeof(bfpt),
446 		    bfpt_header->length * sizeof(u32));
447 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
448 	memset(&bfpt, 0, sizeof(bfpt));
449 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
450 	if (err < 0)
451 		return err;
452 
453 	/* Fix endianness of the BFPT DWORDs. */
454 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
455 
456 	/* Number of address bytes. */
457 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
458 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
459 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
460 		nor->addr_width = 3;
461 		break;
462 
463 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
464 		nor->addr_width = 4;
465 		break;
466 
467 	default:
468 		break;
469 	}
470 
471 	/* Flash Memory Density (in bits). */
472 	val = bfpt.dwords[BFPT_DWORD(2)];
473 	if (val & BIT(31)) {
474 		val &= ~BIT(31);
475 
476 		/*
477 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
478 		 * bits is unlikely to exist so this error probably means
479 		 * the BFPT we are reading is corrupted/wrong.
480 		 */
481 		if (val > 63)
482 			return -EINVAL;
483 
484 		params->size = 1ULL << val;
485 	} else {
486 		params->size = val + 1;
487 	}
488 	params->size >>= 3; /* Convert to bytes. */
489 
490 	/* Fast Read settings. */
491 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
492 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
493 		struct spi_nor_read_command *read;
494 
495 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
496 			params->hwcaps.mask &= ~rd->hwcaps;
497 			continue;
498 		}
499 
500 		params->hwcaps.mask |= rd->hwcaps;
501 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
502 		read = &params->reads[cmd];
503 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
504 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
505 	}
506 
507 	/*
508 	 * Sector Erase settings. Reinitialize the uniform erase map using the
509 	 * Erase Types defined in the bfpt table.
510 	 */
511 	erase_mask = 0;
512 	memset(&params->erase_map, 0, sizeof(params->erase_map));
513 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
514 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
515 		u32 erasesize;
516 		u8 opcode;
517 
518 		half = bfpt.dwords[er->dword] >> er->shift;
519 		erasesize = half & 0xff;
520 
521 		/* erasesize == 0 means this Erase Type is not supported. */
522 		if (!erasesize)
523 			continue;
524 
525 		erasesize = 1U << erasesize;
526 		opcode = (half >> 8) & 0xff;
527 		erase_mask |= BIT(i);
528 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
529 						     opcode, i);
530 	}
531 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
532 	/*
533 	 * Sort all the map's Erase Types in ascending order with the smallest
534 	 * erase size being the first member in the erase_type array.
535 	 */
536 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
537 	     spi_nor_map_cmp_erase_type, NULL);
538 	/*
539 	 * Sort the erase types in the uniform region in order to update the
540 	 * uniform_erase_type bitmask. The bitmask will be used later on when
541 	 * selecting the uniform erase.
542 	 */
543 	spi_nor_regions_sort_erase_types(map);
544 	map->uniform_erase_type = map->uniform_region.offset &
545 				  SNOR_ERASE_TYPE_MASK;
546 
547 	/* Stop here if not JESD216 rev A or later. */
548 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
549 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
550 						params);
551 
552 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
553 	val = bfpt.dwords[BFPT_DWORD(11)];
554 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
555 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
556 	params->page_size = 1U << val;
557 
558 	/* Quad Enable Requirements. */
559 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
560 	case BFPT_DWORD15_QER_NONE:
561 		params->quad_enable = NULL;
562 		break;
563 
564 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
565 		/*
566 		 * Writing only one byte to the Status Register has the
567 		 * side-effect of clearing Status Register 2.
568 		 */
569 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
570 		/*
571 		 * Read Configuration Register (35h) instruction is not
572 		 * supported.
573 		 */
574 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
575 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
576 		break;
577 
578 	case BFPT_DWORD15_QER_SR1_BIT6:
579 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
580 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
581 		break;
582 
583 	case BFPT_DWORD15_QER_SR2_BIT7:
584 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
585 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
586 		break;
587 
588 	case BFPT_DWORD15_QER_SR2_BIT1:
589 		/*
590 		 * JESD216 rev B or later does not specify if writing only one
591 		 * byte to the Status Register clears or not the Status
592 		 * Register 2, so let's be cautious and keep the default
593 		 * assumption of a 16-bit Write Status (01h) command.
594 		 */
595 		nor->flags |= SNOR_F_HAS_16BIT_SR;
596 
597 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
598 		break;
599 
600 	default:
601 		return -EINVAL;
602 	}
603 
604 	/* Stop here if not JESD216 rev C or later. */
605 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
606 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
607 						params);
608 
609 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
610 }
611 
612 /**
613  * spi_nor_smpt_addr_width() - return the address width used in the
614  *			       configuration detection command.
615  * @nor:	pointer to a 'struct spi_nor'
616  * @settings:	configuration detection command descriptor, dword1
617  */
618 static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
619 {
620 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
621 	case SMPT_CMD_ADDRESS_LEN_0:
622 		return 0;
623 	case SMPT_CMD_ADDRESS_LEN_3:
624 		return 3;
625 	case SMPT_CMD_ADDRESS_LEN_4:
626 		return 4;
627 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
628 	default:
629 		return nor->addr_width;
630 	}
631 }
632 
633 /**
634  * spi_nor_smpt_read_dummy() - return the configuration detection command read
635  *			       latency, in clock cycles.
636  * @nor:	pointer to a 'struct spi_nor'
637  * @settings:	configuration detection command descriptor, dword1
638  *
639  * Return: the number of dummy cycles for an SMPT read
640  */
641 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
642 {
643 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
644 
645 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
646 		return nor->read_dummy;
647 	return read_dummy;
648 }
649 
650 /**
651  * spi_nor_get_map_in_use() - get the configuration map in use
652  * @nor:	pointer to a 'struct spi_nor'
653  * @smpt:	pointer to the sector map parameter table
654  * @smpt_len:	sector map parameter table length
655  *
656  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
657  */
658 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
659 					 u8 smpt_len)
660 {
661 	const u32 *ret;
662 	u8 *buf;
663 	u32 addr;
664 	int err;
665 	u8 i;
666 	u8 addr_width, read_opcode, read_dummy;
667 	u8 read_data_mask, map_id;
668 
669 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
670 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
671 	if (!buf)
672 		return ERR_PTR(-ENOMEM);
673 
674 	addr_width = nor->addr_width;
675 	read_dummy = nor->read_dummy;
676 	read_opcode = nor->read_opcode;
677 
678 	map_id = 0;
679 	/* Determine if there are any optional Detection Command Descriptors */
680 	for (i = 0; i < smpt_len; i += 2) {
681 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
682 			break;
683 
684 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
685 		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
686 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
687 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
688 		addr = smpt[i + 1];
689 
690 		err = spi_nor_read_raw(nor, addr, 1, buf);
691 		if (err) {
692 			ret = ERR_PTR(err);
693 			goto out;
694 		}
695 
696 		/*
697 		 * Build an index value that is used to select the Sector Map
698 		 * Configuration that is currently in use.
699 		 */
700 		map_id = map_id << 1 | !!(*buf & read_data_mask);
701 	}
702 
703 	/*
704 	 * If command descriptors are provided, they always precede map
705 	 * descriptors in the table. There is no need to start the iteration
706 	 * over smpt array all over again.
707 	 *
708 	 * Find the matching configuration map.
709 	 */
710 	ret = ERR_PTR(-EINVAL);
711 	while (i < smpt_len) {
712 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
713 			ret = smpt + i;
714 			break;
715 		}
716 
717 		/*
718 		 * If there are no more configuration map descriptors and no
719 		 * configuration ID matched the configuration identifier, the
720 		 * sector address map is unknown.
721 		 */
722 		if (smpt[i] & SMPT_DESC_END)
723 			break;
724 
725 		/* increment the table index to the next map */
726 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
727 	}
728 
729 	/* fall through */
730 out:
731 	kfree(buf);
732 	nor->addr_width = addr_width;
733 	nor->read_dummy = read_dummy;
734 	nor->read_opcode = read_opcode;
735 	return ret;
736 }
737 
738 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
739 {
740 	region->offset |= SNOR_LAST_REGION;
741 }
742 
743 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
744 {
745 	region->offset |= SNOR_OVERLAID_REGION;
746 }
747 
748 /**
749  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
750  * @region:	pointer to a structure that describes a SPI NOR erase region
751  * @erase:	pointer to a structure that describes a SPI NOR erase type
752  * @erase_type:	erase type bitmask
753  */
754 static void
755 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
756 			     const struct spi_nor_erase_type *erase,
757 			     const u8 erase_type)
758 {
759 	int i;
760 
761 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
762 		if (!(erase_type & BIT(i)))
763 			continue;
764 		if (region->size & erase[i].size_mask) {
765 			spi_nor_region_mark_overlay(region);
766 			return;
767 		}
768 	}
769 }
770 
771 /**
772  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
773  * @nor:	pointer to a 'struct spi_nor'
774  * @params:     pointer to a duplicate 'struct spi_nor_flash_parameter' that is
775  *              used for storing SFDP parsed data
776  * @smpt:	pointer to the sector map parameter table
777  *
778  * Return: 0 on success, -errno otherwise.
779  */
780 static int
781 spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
782 				   struct spi_nor_flash_parameter *params,
783 				   const u32 *smpt)
784 {
785 	struct spi_nor_erase_map *map = &params->erase_map;
786 	struct spi_nor_erase_type *erase = map->erase_type;
787 	struct spi_nor_erase_region *region;
788 	u64 offset;
789 	u32 region_count;
790 	int i, j;
791 	u8 uniform_erase_type, save_uniform_erase_type;
792 	u8 erase_type, regions_erase_type;
793 
794 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
795 	/*
796 	 * The regions will be freed when the driver detaches from the
797 	 * device.
798 	 */
799 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
800 			      GFP_KERNEL);
801 	if (!region)
802 		return -ENOMEM;
803 	map->regions = region;
804 
805 	uniform_erase_type = 0xff;
806 	regions_erase_type = 0;
807 	offset = 0;
808 	/* Populate regions. */
809 	for (i = 0; i < region_count; i++) {
810 		j = i + 1; /* index for the region dword */
811 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
812 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
813 		region[i].offset = offset | erase_type;
814 
815 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
816 
817 		/*
818 		 * Save the erase types that are supported in all regions and
819 		 * can erase the entire flash memory.
820 		 */
821 		uniform_erase_type &= erase_type;
822 
823 		/*
824 		 * regions_erase_type mask will indicate all the erase types
825 		 * supported in this configuration map.
826 		 */
827 		regions_erase_type |= erase_type;
828 
829 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
830 			 region[i].size;
831 	}
832 
833 	save_uniform_erase_type = map->uniform_erase_type;
834 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
835 							  uniform_erase_type);
836 
837 	if (!regions_erase_type) {
838 		/*
839 		 * Roll back to the previous uniform_erase_type mask, SMPT is
840 		 * broken.
841 		 */
842 		map->uniform_erase_type = save_uniform_erase_type;
843 		return -EINVAL;
844 	}
845 
846 	/*
847 	 * BFPT advertises all the erase types supported by all the possible
848 	 * map configurations. Mask out the erase types that are not supported
849 	 * by the current map configuration.
850 	 */
851 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
852 		if (!(regions_erase_type & BIT(erase[i].idx)))
853 			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
854 
855 	spi_nor_region_mark_end(&region[i - 1]);
856 
857 	return 0;
858 }
859 
860 /**
861  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
862  * @nor:		pointer to a 'struct spi_nor'
863  * @smpt_header:	sector map parameter table header
864  * @params:		pointer to a duplicate 'struct spi_nor_flash_parameter'
865  *                      that is used for storing SFDP parsed data
866  *
867  * This table is optional, but when available, we parse it to identify the
868  * location and size of sectors within the main data array of the flash memory
869  * device and to identify which Erase Types are supported by each sector.
870  *
871  * Return: 0 on success, -errno otherwise.
872  */
873 static int spi_nor_parse_smpt(struct spi_nor *nor,
874 			      const struct sfdp_parameter_header *smpt_header,
875 			      struct spi_nor_flash_parameter *params)
876 {
877 	const u32 *sector_map;
878 	u32 *smpt;
879 	size_t len;
880 	u32 addr;
881 	int ret;
882 
883 	/* Read the Sector Map Parameter Table. */
884 	len = smpt_header->length * sizeof(*smpt);
885 	smpt = kmalloc(len, GFP_KERNEL);
886 	if (!smpt)
887 		return -ENOMEM;
888 
889 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
890 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
891 	if (ret)
892 		goto out;
893 
894 	/* Fix endianness of the SMPT DWORDs. */
895 	le32_to_cpu_array(smpt, smpt_header->length);
896 
897 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
898 	if (IS_ERR(sector_map)) {
899 		ret = PTR_ERR(sector_map);
900 		goto out;
901 	}
902 
903 	ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
904 	if (ret)
905 		goto out;
906 
907 	spi_nor_regions_sort_erase_types(&params->erase_map);
908 	/* fall through */
909 out:
910 	kfree(smpt);
911 	return ret;
912 }
913 
914 /**
915  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
916  * @nor:		pointer to a 'struct spi_nor'.
917  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
918  *			the 4-Byte Address Instruction Table length and version.
919  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
920  *
921  * Return: 0 on success, -errno otherwise.
922  */
923 static int spi_nor_parse_4bait(struct spi_nor *nor,
924 			       const struct sfdp_parameter_header *param_header,
925 			       struct spi_nor_flash_parameter *params)
926 {
927 	static const struct sfdp_4bait reads[] = {
928 		{ SNOR_HWCAPS_READ,		BIT(0) },
929 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
930 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
931 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
932 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
933 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
934 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
935 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
936 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
937 	};
938 	static const struct sfdp_4bait programs[] = {
939 		{ SNOR_HWCAPS_PP,		BIT(6) },
940 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
941 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
942 	};
943 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
944 		{ 0u /* not used */,		BIT(9) },
945 		{ 0u /* not used */,		BIT(10) },
946 		{ 0u /* not used */,		BIT(11) },
947 		{ 0u /* not used */,		BIT(12) },
948 	};
949 	struct spi_nor_pp_command *params_pp = params->page_programs;
950 	struct spi_nor_erase_map *map = &params->erase_map;
951 	struct spi_nor_erase_type *erase_type = map->erase_type;
952 	u32 *dwords;
953 	size_t len;
954 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
955 	int i, ret;
956 
957 	if (param_header->major != SFDP_JESD216_MAJOR ||
958 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
959 		return -EINVAL;
960 
961 	/* Read the 4-byte Address Instruction Table. */
962 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
963 
964 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
965 	dwords = kmalloc(len, GFP_KERNEL);
966 	if (!dwords)
967 		return -ENOMEM;
968 
969 	addr = SFDP_PARAM_HEADER_PTP(param_header);
970 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
971 	if (ret)
972 		goto out;
973 
974 	/* Fix endianness of the 4BAIT DWORDs. */
975 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
976 
977 	/*
978 	 * Compute the subset of (Fast) Read commands for which the 4-byte
979 	 * version is supported.
980 	 */
981 	discard_hwcaps = 0;
982 	read_hwcaps = 0;
983 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
984 		const struct sfdp_4bait *read = &reads[i];
985 
986 		discard_hwcaps |= read->hwcaps;
987 		if ((params->hwcaps.mask & read->hwcaps) &&
988 		    (dwords[0] & read->supported_bit))
989 			read_hwcaps |= read->hwcaps;
990 	}
991 
992 	/*
993 	 * Compute the subset of Page Program commands for which the 4-byte
994 	 * version is supported.
995 	 */
996 	pp_hwcaps = 0;
997 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
998 		const struct sfdp_4bait *program = &programs[i];
999 
1000 		/*
1001 		 * The 4 Byte Address Instruction (Optional) Table is the only
1002 		 * SFDP table that indicates support for Page Program Commands.
1003 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1004 		 * authority for specifying Page Program support.
1005 		 */
1006 		discard_hwcaps |= program->hwcaps;
1007 		if (dwords[0] & program->supported_bit)
1008 			pp_hwcaps |= program->hwcaps;
1009 	}
1010 
1011 	/*
1012 	 * Compute the subset of Sector Erase commands for which the 4-byte
1013 	 * version is supported.
1014 	 */
1015 	erase_mask = 0;
1016 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1017 		const struct sfdp_4bait *erase = &erases[i];
1018 
1019 		if (dwords[0] & erase->supported_bit)
1020 			erase_mask |= BIT(i);
1021 	}
1022 
1023 	/* Replicate the sort done for the map's erase types in BFPT. */
1024 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1025 
1026 	/*
1027 	 * We need at least one 4-byte op code per read, program and erase
1028 	 * operation; the .read(), .write() and .erase() hooks share the
1029 	 * nor->addr_width value.
1030 	 */
1031 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1032 		goto out;
1033 
1034 	/*
1035 	 * Discard all operations from the 4-byte instruction set which are
1036 	 * not supported by this memory.
1037 	 */
1038 	params->hwcaps.mask &= ~discard_hwcaps;
1039 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1040 
1041 	/* Use the 4-byte address instruction set. */
1042 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1043 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1044 
1045 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1046 	}
1047 
1048 	/* 4BAIT is the only SFDP table that indicates page program support. */
1049 	if (pp_hwcaps & SNOR_HWCAPS_PP)
1050 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1051 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1052 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1053 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1054 					SPINOR_OP_PP_1_1_4_4B,
1055 					SNOR_PROTO_1_1_4);
1056 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1057 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1058 					SPINOR_OP_PP_1_4_4_4B,
1059 					SNOR_PROTO_1_4_4);
1060 
1061 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1062 		if (erase_mask & BIT(i))
1063 			erase_type[i].opcode = (dwords[1] >>
1064 						erase_type[i].idx * 8) & 0xFF;
1065 		else
1066 			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1067 	}
1068 
1069 	/*
1070 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1071 	 * later because we already did the conversion to 4byte opcodes. Also,
1072 	 * this latest function implements a legacy quirk for the erase size of
1073 	 * Spansion memory. However this quirk is no longer needed with new
1074 	 * SFDP compliant memories.
1075 	 */
1076 	nor->addr_width = 4;
1077 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1078 
1079 	/* fall through */
1080 out:
1081 	kfree(dwords);
1082 	return ret;
1083 }
1084 
1085 /**
1086  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1087  * @nor:		pointer to a 'struct spi_nor'
1088  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1089  *			filled
1090  *
1091  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1092  * specification. This is a standard which tends to supported by almost all
1093  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1094  * runtime the main parameters needed to perform basic SPI flash operations such
1095  * as Fast Read, Page Program or Sector Erase commands.
1096  *
1097  * Return: 0 on success, -errno otherwise.
1098  */
1099 int spi_nor_parse_sfdp(struct spi_nor *nor,
1100 		       struct spi_nor_flash_parameter *params)
1101 {
1102 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1103 	struct sfdp_parameter_header *param_headers = NULL;
1104 	struct sfdp_header header;
1105 	struct device *dev = nor->dev;
1106 	size_t psize;
1107 	int i, err;
1108 
1109 	/* Get the SFDP header. */
1110 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1111 	if (err < 0)
1112 		return err;
1113 
1114 	/* Check the SFDP header version. */
1115 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1116 	    header.major != SFDP_JESD216_MAJOR)
1117 		return -EINVAL;
1118 
1119 	/*
1120 	 * Verify that the first and only mandatory parameter header is a
1121 	 * Basic Flash Parameter Table header as specified in JESD216.
1122 	 */
1123 	bfpt_header = &header.bfpt_header;
1124 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1125 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1126 		return -EINVAL;
1127 
1128 	/*
1129 	 * Allocate memory then read all parameter headers with a single
1130 	 * Read SFDP command. These parameter headers will actually be parsed
1131 	 * twice: a first time to get the latest revision of the basic flash
1132 	 * parameter table, then a second time to handle the supported optional
1133 	 * tables.
1134 	 * Hence we read the parameter headers once for all to reduce the
1135 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1136 	 * because we don't need to keep these parameter headers: the allocated
1137 	 * memory is always released with kfree() before exiting this function.
1138 	 */
1139 	if (header.nph) {
1140 		psize = header.nph * sizeof(*param_headers);
1141 
1142 		param_headers = kmalloc(psize, GFP_KERNEL);
1143 		if (!param_headers)
1144 			return -ENOMEM;
1145 
1146 		err = spi_nor_read_sfdp(nor, sizeof(header),
1147 					psize, param_headers);
1148 		if (err < 0) {
1149 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1150 			goto exit;
1151 		}
1152 	}
1153 
1154 	/*
1155 	 * Check other parameter headers to get the latest revision of
1156 	 * the basic flash parameter table.
1157 	 */
1158 	for (i = 0; i < header.nph; i++) {
1159 		param_header = &param_headers[i];
1160 
1161 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1162 		    param_header->major == SFDP_JESD216_MAJOR &&
1163 		    (param_header->minor > bfpt_header->minor ||
1164 		     (param_header->minor == bfpt_header->minor &&
1165 		      param_header->length > bfpt_header->length)))
1166 			bfpt_header = param_header;
1167 	}
1168 
1169 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
1170 	if (err)
1171 		goto exit;
1172 
1173 	/* Parse optional parameter tables. */
1174 	for (i = 0; i < header.nph; i++) {
1175 		param_header = &param_headers[i];
1176 
1177 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1178 		case SFDP_SECTOR_MAP_ID:
1179 			err = spi_nor_parse_smpt(nor, param_header, params);
1180 			break;
1181 
1182 		case SFDP_4BAIT_ID:
1183 			err = spi_nor_parse_4bait(nor, param_header, params);
1184 			break;
1185 
1186 		default:
1187 			break;
1188 		}
1189 
1190 		if (err) {
1191 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1192 				 SFDP_PARAM_HEADER_ID(param_header));
1193 			/*
1194 			 * Let's not drop all information we extracted so far
1195 			 * if optional table parsers fail. In case of failing,
1196 			 * each optional parser is responsible to roll back to
1197 			 * the previously known spi_nor data.
1198 			 */
1199 			err = 0;
1200 		}
1201 	}
1202 
1203 exit:
1204 	kfree(param_headers);
1205 	return err;
1206 }
1207