1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/slab.h> 9 #include <linux/sort.h> 10 #include <linux/mtd/spi-nor.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 30 #define SFDP_SIGNATURE 0x50444653U 31 32 struct sfdp_header { 33 u32 signature; /* Ox50444653U <=> "SFDP" */ 34 u8 minor; 35 u8 major; 36 u8 nph; /* 0-base number of parameter headers */ 37 u8 unused; 38 39 /* Basic Flash Parameter Table. */ 40 struct sfdp_parameter_header bfpt_header; 41 }; 42 43 /* Fast Read settings. */ 44 struct sfdp_bfpt_read { 45 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 46 u32 hwcaps; 47 48 /* 49 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 50 * whether the Fast Read x-y-z command is supported. 51 */ 52 u32 supported_dword; 53 u32 supported_bit; 54 55 /* 56 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 57 * encodes the op code, the number of mode clocks and the number of wait 58 * states to be used by Fast Read x-y-z command. 59 */ 60 u32 settings_dword; 61 u32 settings_shift; 62 63 /* The SPI protocol for this Fast Read x-y-z command. */ 64 enum spi_nor_protocol proto; 65 }; 66 67 struct sfdp_bfpt_erase { 68 /* 69 * The half-word at offset <shift> in DWORD <dword> encodes the 70 * op code and erase sector size to be used by Sector Erase commands. 71 */ 72 u32 dword; 73 u32 shift; 74 }; 75 76 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 77 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 78 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 79 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 81 82 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 83 #define SMPT_CMD_READ_DUMMY_SHIFT 16 84 #define SMPT_CMD_READ_DUMMY(_cmd) \ 85 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 87 88 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 89 #define SMPT_CMD_READ_DATA_SHIFT 24 90 #define SMPT_CMD_READ_DATA(_cmd) \ 91 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 92 93 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 94 #define SMPT_CMD_OPCODE_SHIFT 8 95 #define SMPT_CMD_OPCODE(_cmd) \ 96 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 97 98 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 99 #define SMPT_MAP_REGION_COUNT_SHIFT 16 100 #define SMPT_MAP_REGION_COUNT(_header) \ 101 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 102 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 103 104 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 105 #define SMPT_MAP_ID_SHIFT 8 106 #define SMPT_MAP_ID(_header) \ 107 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 108 109 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 110 #define SMPT_MAP_REGION_SIZE_SHIFT 8 111 #define SMPT_MAP_REGION_SIZE(_region) \ 112 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 113 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 114 115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 117 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 118 119 #define SMPT_DESC_TYPE_MAP BIT(1) 120 #define SMPT_DESC_END BIT(0) 121 122 #define SFDP_4BAIT_DWORD_MAX 2 123 124 struct sfdp_4bait { 125 /* The hardware capability. */ 126 u32 hwcaps; 127 128 /* 129 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 130 * the associated 4-byte address op code is supported. 131 */ 132 u32 supported_bit; 133 }; 134 135 /** 136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 137 * addr_nbytes and read_dummy members of the struct spi_nor 138 * should be previously set. 139 * @nor: pointer to a 'struct spi_nor' 140 * @addr: offset in the serial flash memory 141 * @len: number of bytes to read 142 * @buf: buffer where the data is copied into (dma-safe memory) 143 * 144 * Return: 0 on success, -errno otherwise. 145 */ 146 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 147 { 148 ssize_t ret; 149 150 while (len) { 151 ret = spi_nor_read_data(nor, addr, len, buf); 152 if (ret < 0) 153 return ret; 154 if (!ret || ret > len) 155 return -EIO; 156 157 buf += ret; 158 addr += ret; 159 len -= ret; 160 } 161 return 0; 162 } 163 164 /** 165 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 166 * @nor: pointer to a 'struct spi_nor' 167 * @addr: offset in the SFDP area to start reading data from 168 * @len: number of bytes to read 169 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 170 * 171 * Whatever the actual numbers of bytes for address and dummy cycles are 172 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 173 * followed by a 3-byte address and 8 dummy clock cycles. 174 * 175 * Return: 0 on success, -errno otherwise. 176 */ 177 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 178 size_t len, void *buf) 179 { 180 u8 addr_nbytes, read_opcode, read_dummy; 181 int ret; 182 183 read_opcode = nor->read_opcode; 184 addr_nbytes = nor->addr_nbytes; 185 read_dummy = nor->read_dummy; 186 187 nor->read_opcode = SPINOR_OP_RDSFDP; 188 nor->addr_nbytes = 3; 189 nor->read_dummy = 8; 190 191 ret = spi_nor_read_raw(nor, addr, len, buf); 192 193 nor->read_opcode = read_opcode; 194 nor->addr_nbytes = addr_nbytes; 195 nor->read_dummy = read_dummy; 196 197 return ret; 198 } 199 200 /** 201 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 202 * @nor: pointer to a 'struct spi_nor' 203 * @addr: offset in the SFDP area to start reading data from 204 * @len: number of bytes to read 205 * @buf: buffer where the SFDP data are copied into 206 * 207 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 208 * guaranteed to be dma-safe. 209 * 210 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 211 * otherwise. 212 */ 213 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 214 size_t len, void *buf) 215 { 216 void *dma_safe_buf; 217 int ret; 218 219 dma_safe_buf = kmalloc(len, GFP_KERNEL); 220 if (!dma_safe_buf) 221 return -ENOMEM; 222 223 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 224 memcpy(buf, dma_safe_buf, len); 225 kfree(dma_safe_buf); 226 227 return ret; 228 } 229 230 static void 231 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 232 u16 half, 233 enum spi_nor_protocol proto) 234 { 235 read->num_mode_clocks = (half >> 5) & 0x07; 236 read->num_wait_states = (half >> 0) & 0x1f; 237 read->opcode = (half >> 8) & 0xff; 238 read->proto = proto; 239 } 240 241 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 242 /* Fast Read 1-1-2 */ 243 { 244 SNOR_HWCAPS_READ_1_1_2, 245 BFPT_DWORD(1), BIT(16), /* Supported bit */ 246 BFPT_DWORD(4), 0, /* Settings */ 247 SNOR_PROTO_1_1_2, 248 }, 249 250 /* Fast Read 1-2-2 */ 251 { 252 SNOR_HWCAPS_READ_1_2_2, 253 BFPT_DWORD(1), BIT(20), /* Supported bit */ 254 BFPT_DWORD(4), 16, /* Settings */ 255 SNOR_PROTO_1_2_2, 256 }, 257 258 /* Fast Read 2-2-2 */ 259 { 260 SNOR_HWCAPS_READ_2_2_2, 261 BFPT_DWORD(5), BIT(0), /* Supported bit */ 262 BFPT_DWORD(6), 16, /* Settings */ 263 SNOR_PROTO_2_2_2, 264 }, 265 266 /* Fast Read 1-1-4 */ 267 { 268 SNOR_HWCAPS_READ_1_1_4, 269 BFPT_DWORD(1), BIT(22), /* Supported bit */ 270 BFPT_DWORD(3), 16, /* Settings */ 271 SNOR_PROTO_1_1_4, 272 }, 273 274 /* Fast Read 1-4-4 */ 275 { 276 SNOR_HWCAPS_READ_1_4_4, 277 BFPT_DWORD(1), BIT(21), /* Supported bit */ 278 BFPT_DWORD(3), 0, /* Settings */ 279 SNOR_PROTO_1_4_4, 280 }, 281 282 /* Fast Read 4-4-4 */ 283 { 284 SNOR_HWCAPS_READ_4_4_4, 285 BFPT_DWORD(5), BIT(4), /* Supported bit */ 286 BFPT_DWORD(7), 16, /* Settings */ 287 SNOR_PROTO_4_4_4, 288 }, 289 }; 290 291 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 292 /* Erase Type 1 in DWORD8 bits[15:0] */ 293 {BFPT_DWORD(8), 0}, 294 295 /* Erase Type 2 in DWORD8 bits[31:16] */ 296 {BFPT_DWORD(8), 16}, 297 298 /* Erase Type 3 in DWORD9 bits[15:0] */ 299 {BFPT_DWORD(9), 0}, 300 301 /* Erase Type 4 in DWORD9 bits[31:16] */ 302 {BFPT_DWORD(9), 16}, 303 }; 304 305 /** 306 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 307 * @erase: pointer to a structure that describes a SPI NOR erase type 308 * @size: the size of the sector/block erased by the erase type 309 * @opcode: the SPI command op code to erase the sector/block 310 * @i: erase type index as sorted in the Basic Flash Parameter Table 311 * 312 * The supported Erase Types will be sorted at init in ascending order, with 313 * the smallest Erase Type size being the first member in the erase_type array 314 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 315 * the Basic Flash Parameter Table since it will be used later on to 316 * synchronize with the supported Erase Types defined in SFDP optional tables. 317 */ 318 static void 319 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 320 u32 size, u8 opcode, u8 i) 321 { 322 erase->idx = i; 323 spi_nor_set_erase_type(erase, size, opcode); 324 } 325 326 /** 327 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 328 * @l: member in the left half of the map's erase_type array 329 * @r: member in the right half of the map's erase_type array 330 * 331 * Comparison function used in the sort() call to sort in ascending order the 332 * map's erase types, the smallest erase type size being the first member in the 333 * sorted erase_type array. 334 * 335 * Return: the result of @l->size - @r->size 336 */ 337 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 338 { 339 const struct spi_nor_erase_type *left = l, *right = r; 340 341 return left->size - right->size; 342 } 343 344 /** 345 * spi_nor_sort_erase_mask() - sort erase mask 346 * @map: the erase map of the SPI NOR 347 * @erase_mask: the erase type mask to be sorted 348 * 349 * Replicate the sort done for the map's erase types in BFPT: sort the erase 350 * mask in ascending order with the smallest erase type size starting from 351 * BIT(0) in the sorted erase mask. 352 * 353 * Return: sorted erase mask. 354 */ 355 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 356 { 357 struct spi_nor_erase_type *erase_type = map->erase_type; 358 int i; 359 u8 sorted_erase_mask = 0; 360 361 if (!erase_mask) 362 return 0; 363 364 /* Replicate the sort done for the map's erase types. */ 365 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 366 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 367 sorted_erase_mask |= BIT(i); 368 369 return sorted_erase_mask; 370 } 371 372 /** 373 * spi_nor_regions_sort_erase_types() - sort erase types in each region 374 * @map: the erase map of the SPI NOR 375 * 376 * Function assumes that the erase types defined in the erase map are already 377 * sorted in ascending order, with the smallest erase type size being the first 378 * member in the erase_type array. It replicates the sort done for the map's 379 * erase types. Each region's erase bitmask will indicate which erase types are 380 * supported from the sorted erase types defined in the erase map. 381 * Sort the all region's erase type at init in order to speed up the process of 382 * finding the best erase command at runtime. 383 */ 384 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 385 { 386 struct spi_nor_erase_region *region = map->regions; 387 u8 region_erase_mask, sorted_erase_mask; 388 389 while (region) { 390 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 391 392 sorted_erase_mask = spi_nor_sort_erase_mask(map, 393 region_erase_mask); 394 395 /* Overwrite erase mask. */ 396 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | 397 sorted_erase_mask; 398 399 region = spi_nor_region_next(region); 400 } 401 } 402 403 /** 404 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 405 * @nor: pointer to a 'struct spi_nor' 406 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 407 * the Basic Flash Parameter Table length and version 408 * 409 * The Basic Flash Parameter Table is the main and only mandatory table as 410 * defined by the SFDP (JESD216) specification. 411 * It provides us with the total size (memory density) of the data array and 412 * the number of address bytes for Fast Read, Page Program and Sector Erase 413 * commands. 414 * For Fast READ commands, it also gives the number of mode clock cycles and 415 * wait states (regrouped in the number of dummy clock cycles) for each 416 * supported instruction op code. 417 * For Page Program, the page size is now available since JESD216 rev A, however 418 * the supported instruction op codes are still not provided. 419 * For Sector Erase commands, this table stores the supported instruction op 420 * codes and the associated sector sizes. 421 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 422 * rev A. The QER bits encode the manufacturer dependent procedure to be 423 * executed to set the Quad Enable (QE) bit in some internal register of the 424 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 425 * sending any Quad SPI command to the memory. Actually, setting the QE bit 426 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 427 * and IO3 hence enabling 4 (Quad) I/O lines. 428 * 429 * Return: 0 on success, -errno otherwise. 430 */ 431 static int spi_nor_parse_bfpt(struct spi_nor *nor, 432 const struct sfdp_parameter_header *bfpt_header) 433 { 434 struct spi_nor_flash_parameter *params = nor->params; 435 struct spi_nor_erase_map *map = ¶ms->erase_map; 436 struct spi_nor_erase_type *erase_type = map->erase_type; 437 struct sfdp_bfpt bfpt; 438 size_t len; 439 int i, cmd, err; 440 u32 addr, val; 441 u16 half; 442 u8 erase_mask; 443 444 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 445 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 446 return -EINVAL; 447 448 /* Read the Basic Flash Parameter Table. */ 449 len = min_t(size_t, sizeof(bfpt), 450 bfpt_header->length * sizeof(u32)); 451 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 452 memset(&bfpt, 0, sizeof(bfpt)); 453 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 454 if (err < 0) 455 return err; 456 457 /* Fix endianness of the BFPT DWORDs. */ 458 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 459 460 /* Number of address bytes. */ 461 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 462 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 463 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 464 params->addr_nbytes = 3; 465 params->addr_mode_nbytes = 3; 466 break; 467 468 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 469 params->addr_nbytes = 4; 470 params->addr_mode_nbytes = 4; 471 break; 472 473 default: 474 break; 475 } 476 477 /* Flash Memory Density (in bits). */ 478 val = bfpt.dwords[BFPT_DWORD(2)]; 479 if (val & BIT(31)) { 480 val &= ~BIT(31); 481 482 /* 483 * Prevent overflows on params->size. Anyway, a NOR of 2^64 484 * bits is unlikely to exist so this error probably means 485 * the BFPT we are reading is corrupted/wrong. 486 */ 487 if (val > 63) 488 return -EINVAL; 489 490 params->size = 1ULL << val; 491 } else { 492 params->size = val + 1; 493 } 494 params->size >>= 3; /* Convert to bytes. */ 495 496 /* Fast Read settings. */ 497 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 498 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 499 struct spi_nor_read_command *read; 500 501 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 502 params->hwcaps.mask &= ~rd->hwcaps; 503 continue; 504 } 505 506 params->hwcaps.mask |= rd->hwcaps; 507 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 508 read = ¶ms->reads[cmd]; 509 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 510 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 511 } 512 513 /* 514 * Sector Erase settings. Reinitialize the uniform erase map using the 515 * Erase Types defined in the bfpt table. 516 */ 517 erase_mask = 0; 518 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 519 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 520 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 521 u32 erasesize; 522 u8 opcode; 523 524 half = bfpt.dwords[er->dword] >> er->shift; 525 erasesize = half & 0xff; 526 527 /* erasesize == 0 means this Erase Type is not supported. */ 528 if (!erasesize) 529 continue; 530 531 erasesize = 1U << erasesize; 532 opcode = (half >> 8) & 0xff; 533 erase_mask |= BIT(i); 534 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 535 opcode, i); 536 } 537 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 538 /* 539 * Sort all the map's Erase Types in ascending order with the smallest 540 * erase size being the first member in the erase_type array. 541 */ 542 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 543 spi_nor_map_cmp_erase_type, NULL); 544 /* 545 * Sort the erase types in the uniform region in order to update the 546 * uniform_erase_type bitmask. The bitmask will be used later on when 547 * selecting the uniform erase. 548 */ 549 spi_nor_regions_sort_erase_types(map); 550 map->uniform_erase_type = map->uniform_region.offset & 551 SNOR_ERASE_TYPE_MASK; 552 553 /* Stop here if not JESD216 rev A or later. */ 554 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 555 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 556 557 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 558 val = bfpt.dwords[BFPT_DWORD(11)]; 559 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 560 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 561 params->page_size = 1U << val; 562 563 /* Quad Enable Requirements. */ 564 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 565 case BFPT_DWORD15_QER_NONE: 566 params->quad_enable = NULL; 567 break; 568 569 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 570 /* 571 * Writing only one byte to the Status Register has the 572 * side-effect of clearing Status Register 2. 573 */ 574 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 575 /* 576 * Read Configuration Register (35h) instruction is not 577 * supported. 578 */ 579 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 580 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 581 break; 582 583 case BFPT_DWORD15_QER_SR1_BIT6: 584 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 585 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 586 break; 587 588 case BFPT_DWORD15_QER_SR2_BIT7: 589 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 590 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 591 break; 592 593 case BFPT_DWORD15_QER_SR2_BIT1: 594 /* 595 * JESD216 rev B or later does not specify if writing only one 596 * byte to the Status Register clears or not the Status 597 * Register 2, so let's be cautious and keep the default 598 * assumption of a 16-bit Write Status (01h) command. 599 */ 600 nor->flags |= SNOR_F_HAS_16BIT_SR; 601 602 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 603 break; 604 605 default: 606 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 607 break; 608 } 609 610 /* Soft Reset support. */ 611 if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 612 nor->flags |= SNOR_F_SOFT_RESET; 613 614 /* Stop here if not JESD216 rev C or later. */ 615 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 616 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 617 618 /* 8D-8D-8D command extension. */ 619 switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 620 case BFPT_DWORD18_CMD_EXT_REP: 621 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 622 break; 623 624 case BFPT_DWORD18_CMD_EXT_INV: 625 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 626 break; 627 628 case BFPT_DWORD18_CMD_EXT_RES: 629 dev_dbg(nor->dev, "Reserved command extension used\n"); 630 break; 631 632 case BFPT_DWORD18_CMD_EXT_16B: 633 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 634 return -EOPNOTSUPP; 635 } 636 637 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 638 } 639 640 /** 641 * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the 642 * configuration detection command. 643 * @nor: pointer to a 'struct spi_nor' 644 * @settings: configuration detection command descriptor, dword1 645 */ 646 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) 647 { 648 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 649 case SMPT_CMD_ADDRESS_LEN_0: 650 return 0; 651 case SMPT_CMD_ADDRESS_LEN_3: 652 return 3; 653 case SMPT_CMD_ADDRESS_LEN_4: 654 return 4; 655 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 656 default: 657 return nor->params->addr_mode_nbytes; 658 } 659 } 660 661 /** 662 * spi_nor_smpt_read_dummy() - return the configuration detection command read 663 * latency, in clock cycles. 664 * @nor: pointer to a 'struct spi_nor' 665 * @settings: configuration detection command descriptor, dword1 666 * 667 * Return: the number of dummy cycles for an SMPT read 668 */ 669 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 670 { 671 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 672 673 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 674 return nor->read_dummy; 675 return read_dummy; 676 } 677 678 /** 679 * spi_nor_get_map_in_use() - get the configuration map in use 680 * @nor: pointer to a 'struct spi_nor' 681 * @smpt: pointer to the sector map parameter table 682 * @smpt_len: sector map parameter table length 683 * 684 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 685 */ 686 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 687 u8 smpt_len) 688 { 689 const u32 *ret; 690 u8 *buf; 691 u32 addr; 692 int err; 693 u8 i; 694 u8 addr_nbytes, read_opcode, read_dummy; 695 u8 read_data_mask, map_id; 696 697 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 698 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 699 if (!buf) 700 return ERR_PTR(-ENOMEM); 701 702 addr_nbytes = nor->addr_nbytes; 703 read_dummy = nor->read_dummy; 704 read_opcode = nor->read_opcode; 705 706 map_id = 0; 707 /* Determine if there are any optional Detection Command Descriptors */ 708 for (i = 0; i < smpt_len; i += 2) { 709 if (smpt[i] & SMPT_DESC_TYPE_MAP) 710 break; 711 712 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 713 nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); 714 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 715 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 716 addr = smpt[i + 1]; 717 718 err = spi_nor_read_raw(nor, addr, 1, buf); 719 if (err) { 720 ret = ERR_PTR(err); 721 goto out; 722 } 723 724 /* 725 * Build an index value that is used to select the Sector Map 726 * Configuration that is currently in use. 727 */ 728 map_id = map_id << 1 | !!(*buf & read_data_mask); 729 } 730 731 /* 732 * If command descriptors are provided, they always precede map 733 * descriptors in the table. There is no need to start the iteration 734 * over smpt array all over again. 735 * 736 * Find the matching configuration map. 737 */ 738 ret = ERR_PTR(-EINVAL); 739 while (i < smpt_len) { 740 if (SMPT_MAP_ID(smpt[i]) == map_id) { 741 ret = smpt + i; 742 break; 743 } 744 745 /* 746 * If there are no more configuration map descriptors and no 747 * configuration ID matched the configuration identifier, the 748 * sector address map is unknown. 749 */ 750 if (smpt[i] & SMPT_DESC_END) 751 break; 752 753 /* increment the table index to the next map */ 754 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 755 } 756 757 /* fall through */ 758 out: 759 kfree(buf); 760 nor->addr_nbytes = addr_nbytes; 761 nor->read_dummy = read_dummy; 762 nor->read_opcode = read_opcode; 763 return ret; 764 } 765 766 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) 767 { 768 region->offset |= SNOR_LAST_REGION; 769 } 770 771 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) 772 { 773 region->offset |= SNOR_OVERLAID_REGION; 774 } 775 776 /** 777 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 778 * @region: pointer to a structure that describes a SPI NOR erase region 779 * @erase: pointer to a structure that describes a SPI NOR erase type 780 * @erase_type: erase type bitmask 781 */ 782 static void 783 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 784 const struct spi_nor_erase_type *erase, 785 const u8 erase_type) 786 { 787 int i; 788 789 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 790 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 791 continue; 792 if (region->size & erase[i].size_mask) { 793 spi_nor_region_mark_overlay(region); 794 return; 795 } 796 } 797 } 798 799 /** 800 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 801 * @nor: pointer to a 'struct spi_nor' 802 * @smpt: pointer to the sector map parameter table 803 * 804 * Return: 0 on success, -errno otherwise. 805 */ 806 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 807 const u32 *smpt) 808 { 809 struct spi_nor_erase_map *map = &nor->params->erase_map; 810 struct spi_nor_erase_type *erase = map->erase_type; 811 struct spi_nor_erase_region *region; 812 u64 offset; 813 u32 region_count; 814 int i, j; 815 u8 uniform_erase_type, save_uniform_erase_type; 816 u8 erase_type, regions_erase_type; 817 818 region_count = SMPT_MAP_REGION_COUNT(*smpt); 819 /* 820 * The regions will be freed when the driver detaches from the 821 * device. 822 */ 823 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 824 GFP_KERNEL); 825 if (!region) 826 return -ENOMEM; 827 map->regions = region; 828 829 uniform_erase_type = 0xff; 830 regions_erase_type = 0; 831 offset = 0; 832 /* Populate regions. */ 833 for (i = 0; i < region_count; i++) { 834 j = i + 1; /* index for the region dword */ 835 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 836 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 837 region[i].offset = offset | erase_type; 838 839 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 840 841 /* 842 * Save the erase types that are supported in all regions and 843 * can erase the entire flash memory. 844 */ 845 uniform_erase_type &= erase_type; 846 847 /* 848 * regions_erase_type mask will indicate all the erase types 849 * supported in this configuration map. 850 */ 851 regions_erase_type |= erase_type; 852 853 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + 854 region[i].size; 855 } 856 spi_nor_region_mark_end(®ion[i - 1]); 857 858 save_uniform_erase_type = map->uniform_erase_type; 859 map->uniform_erase_type = spi_nor_sort_erase_mask(map, 860 uniform_erase_type); 861 862 if (!regions_erase_type) { 863 /* 864 * Roll back to the previous uniform_erase_type mask, SMPT is 865 * broken. 866 */ 867 map->uniform_erase_type = save_uniform_erase_type; 868 return -EINVAL; 869 } 870 871 /* 872 * BFPT advertises all the erase types supported by all the possible 873 * map configurations. Mask out the erase types that are not supported 874 * by the current map configuration. 875 */ 876 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 877 if (!(regions_erase_type & BIT(erase[i].idx))) 878 spi_nor_set_erase_type(&erase[i], 0, 0xFF); 879 880 return 0; 881 } 882 883 /** 884 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 885 * @nor: pointer to a 'struct spi_nor' 886 * @smpt_header: sector map parameter table header 887 * 888 * This table is optional, but when available, we parse it to identify the 889 * location and size of sectors within the main data array of the flash memory 890 * device and to identify which Erase Types are supported by each sector. 891 * 892 * Return: 0 on success, -errno otherwise. 893 */ 894 static int spi_nor_parse_smpt(struct spi_nor *nor, 895 const struct sfdp_parameter_header *smpt_header) 896 { 897 const u32 *sector_map; 898 u32 *smpt; 899 size_t len; 900 u32 addr; 901 int ret; 902 903 /* Read the Sector Map Parameter Table. */ 904 len = smpt_header->length * sizeof(*smpt); 905 smpt = kmalloc(len, GFP_KERNEL); 906 if (!smpt) 907 return -ENOMEM; 908 909 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 910 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 911 if (ret) 912 goto out; 913 914 /* Fix endianness of the SMPT DWORDs. */ 915 le32_to_cpu_array(smpt, smpt_header->length); 916 917 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 918 if (IS_ERR(sector_map)) { 919 ret = PTR_ERR(sector_map); 920 goto out; 921 } 922 923 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 924 if (ret) 925 goto out; 926 927 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 928 /* fall through */ 929 out: 930 kfree(smpt); 931 return ret; 932 } 933 934 /** 935 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 936 * @nor: pointer to a 'struct spi_nor'. 937 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 938 * the 4-Byte Address Instruction Table length and version. 939 * 940 * Return: 0 on success, -errno otherwise. 941 */ 942 static int spi_nor_parse_4bait(struct spi_nor *nor, 943 const struct sfdp_parameter_header *param_header) 944 { 945 static const struct sfdp_4bait reads[] = { 946 { SNOR_HWCAPS_READ, BIT(0) }, 947 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 948 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 949 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 950 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 951 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 952 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 953 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 954 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 955 }; 956 static const struct sfdp_4bait programs[] = { 957 { SNOR_HWCAPS_PP, BIT(6) }, 958 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 959 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 960 }; 961 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 962 { 0u /* not used */, BIT(9) }, 963 { 0u /* not used */, BIT(10) }, 964 { 0u /* not used */, BIT(11) }, 965 { 0u /* not used */, BIT(12) }, 966 }; 967 struct spi_nor_flash_parameter *params = nor->params; 968 struct spi_nor_pp_command *params_pp = params->page_programs; 969 struct spi_nor_erase_map *map = ¶ms->erase_map; 970 struct spi_nor_erase_type *erase_type = map->erase_type; 971 u32 *dwords; 972 size_t len; 973 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 974 int i, ret; 975 976 if (param_header->major != SFDP_JESD216_MAJOR || 977 param_header->length < SFDP_4BAIT_DWORD_MAX) 978 return -EINVAL; 979 980 /* Read the 4-byte Address Instruction Table. */ 981 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 982 983 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 984 dwords = kmalloc(len, GFP_KERNEL); 985 if (!dwords) 986 return -ENOMEM; 987 988 addr = SFDP_PARAM_HEADER_PTP(param_header); 989 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 990 if (ret) 991 goto out; 992 993 /* Fix endianness of the 4BAIT DWORDs. */ 994 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 995 996 /* 997 * Compute the subset of (Fast) Read commands for which the 4-byte 998 * version is supported. 999 */ 1000 discard_hwcaps = 0; 1001 read_hwcaps = 0; 1002 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1003 const struct sfdp_4bait *read = &reads[i]; 1004 1005 discard_hwcaps |= read->hwcaps; 1006 if ((params->hwcaps.mask & read->hwcaps) && 1007 (dwords[0] & read->supported_bit)) 1008 read_hwcaps |= read->hwcaps; 1009 } 1010 1011 /* 1012 * Compute the subset of Page Program commands for which the 4-byte 1013 * version is supported. 1014 */ 1015 pp_hwcaps = 0; 1016 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1017 const struct sfdp_4bait *program = &programs[i]; 1018 1019 /* 1020 * The 4 Byte Address Instruction (Optional) Table is the only 1021 * SFDP table that indicates support for Page Program Commands. 1022 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1023 * authority for specifying Page Program support. 1024 */ 1025 discard_hwcaps |= program->hwcaps; 1026 if (dwords[0] & program->supported_bit) 1027 pp_hwcaps |= program->hwcaps; 1028 } 1029 1030 /* 1031 * Compute the subset of Sector Erase commands for which the 4-byte 1032 * version is supported. 1033 */ 1034 erase_mask = 0; 1035 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1036 const struct sfdp_4bait *erase = &erases[i]; 1037 1038 if (dwords[0] & erase->supported_bit) 1039 erase_mask |= BIT(i); 1040 } 1041 1042 /* Replicate the sort done for the map's erase types in BFPT. */ 1043 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1044 1045 /* 1046 * We need at least one 4-byte op code per read, program and erase 1047 * operation; the .read(), .write() and .erase() hooks share the 1048 * nor->addr_nbytes value. 1049 */ 1050 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1051 goto out; 1052 1053 /* 1054 * Discard all operations from the 4-byte instruction set which are 1055 * not supported by this memory. 1056 */ 1057 params->hwcaps.mask &= ~discard_hwcaps; 1058 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1059 1060 /* Use the 4-byte address instruction set. */ 1061 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1062 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1063 1064 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1065 } 1066 1067 /* 4BAIT is the only SFDP table that indicates page program support. */ 1068 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1069 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1070 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1071 /* 1072 * Since xSPI Page Program opcode is backward compatible with 1073 * Legacy SPI, use Legacy SPI opcode there as well. 1074 */ 1075 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1076 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1077 } 1078 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1079 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1080 SPINOR_OP_PP_1_1_4_4B, 1081 SNOR_PROTO_1_1_4); 1082 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1083 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1084 SPINOR_OP_PP_1_4_4_4B, 1085 SNOR_PROTO_1_4_4); 1086 1087 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1088 if (erase_mask & BIT(i)) 1089 erase_type[i].opcode = (dwords[1] >> 1090 erase_type[i].idx * 8) & 0xFF; 1091 else 1092 spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); 1093 } 1094 1095 /* 1096 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1097 * later because we already did the conversion to 4byte opcodes. Also, 1098 * this latest function implements a legacy quirk for the erase size of 1099 * Spansion memory. However this quirk is no longer needed with new 1100 * SFDP compliant memories. 1101 */ 1102 params->addr_nbytes = 4; 1103 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1104 1105 /* fall through */ 1106 out: 1107 kfree(dwords); 1108 return ret; 1109 } 1110 1111 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1112 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1113 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1114 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1115 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1116 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1117 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1118 1119 /** 1120 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1121 * @nor: pointer to a 'struct spi_nor' 1122 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1123 * the Profile 1.0 Table length and version. 1124 * 1125 * Return: 0 on success, -errno otherwise. 1126 */ 1127 static int spi_nor_parse_profile1(struct spi_nor *nor, 1128 const struct sfdp_parameter_header *profile1_header) 1129 { 1130 u32 *dwords, addr; 1131 size_t len; 1132 int ret; 1133 u8 dummy, opcode; 1134 1135 len = profile1_header->length * sizeof(*dwords); 1136 dwords = kmalloc(len, GFP_KERNEL); 1137 if (!dwords) 1138 return -ENOMEM; 1139 1140 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1141 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1142 if (ret) 1143 goto out; 1144 1145 le32_to_cpu_array(dwords, profile1_header->length); 1146 1147 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1148 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]); 1149 1150 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1151 if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY) 1152 nor->params->rdsr_dummy = 8; 1153 else 1154 nor->params->rdsr_dummy = 4; 1155 1156 if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1157 nor->params->rdsr_addr_nbytes = 4; 1158 else 1159 nor->params->rdsr_addr_nbytes = 0; 1160 1161 /* 1162 * We don't know what speed the controller is running at. Find the 1163 * dummy cycles for the fastest frequency the flash can run at to be 1164 * sure we are never short of dummy cycles. A value of 0 means the 1165 * frequency is not supported. 1166 * 1167 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1168 * flashes set the correct value if needed in their fixup hooks. 1169 */ 1170 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]); 1171 if (!dummy) 1172 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]); 1173 if (!dummy) 1174 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]); 1175 if (!dummy) 1176 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]); 1177 if (!dummy) 1178 dev_dbg(nor->dev, 1179 "Can't find dummy cycles from Profile 1.0 table\n"); 1180 1181 /* Round up to an even value to avoid tripping controllers up. */ 1182 dummy = round_up(dummy, 2); 1183 1184 /* Update the fast read settings. */ 1185 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 1186 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1187 0, dummy, opcode, 1188 SNOR_PROTO_8_8_8_DTR); 1189 1190 /* 1191 * Page Program is "Required Command" in the xSPI Profile 1.0. Update 1192 * the params->hwcaps.mask here. 1193 */ 1194 nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 1195 1196 out: 1197 kfree(dwords); 1198 return ret; 1199 } 1200 1201 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1202 1203 /** 1204 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1205 * Map. 1206 * @nor: pointer to a 'struct spi_nor' 1207 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1208 * the SCCR Map table length and version. 1209 * 1210 * Return: 0 on success, -errno otherwise. 1211 */ 1212 static int spi_nor_parse_sccr(struct spi_nor *nor, 1213 const struct sfdp_parameter_header *sccr_header) 1214 { 1215 u32 *dwords, addr; 1216 size_t len; 1217 int ret; 1218 1219 len = sccr_header->length * sizeof(*dwords); 1220 dwords = kmalloc(len, GFP_KERNEL); 1221 if (!dwords) 1222 return -ENOMEM; 1223 1224 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1225 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1226 if (ret) 1227 goto out; 1228 1229 le32_to_cpu_array(dwords, sccr_header->length); 1230 1231 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22])) 1232 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1233 1234 out: 1235 kfree(dwords); 1236 return ret; 1237 } 1238 1239 /** 1240 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings 1241 * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP 1242 * tables. 1243 * @nor: pointer to a 'struct spi_nor' 1244 * 1245 * Used to tweak various flash parameters when information provided by the SFDP 1246 * tables are wrong. 1247 */ 1248 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor) 1249 { 1250 if (nor->manufacturer && nor->manufacturer->fixups && 1251 nor->manufacturer->fixups->post_sfdp) 1252 nor->manufacturer->fixups->post_sfdp(nor); 1253 1254 if (nor->info->fixups && nor->info->fixups->post_sfdp) 1255 nor->info->fixups->post_sfdp(nor); 1256 } 1257 1258 /** 1259 * spi_nor_check_sfdp_signature() - check for a valid SFDP signature 1260 * @nor: pointer to a 'struct spi_nor' 1261 * 1262 * Used to detect if the flash supports the RDSFDP command as well as the 1263 * presence of a valid SFDP table. 1264 * 1265 * Return: 0 on success, -errno otherwise. 1266 */ 1267 int spi_nor_check_sfdp_signature(struct spi_nor *nor) 1268 { 1269 u32 signature; 1270 int err; 1271 1272 /* Get the SFDP header. */ 1273 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), 1274 &signature); 1275 if (err < 0) 1276 return err; 1277 1278 /* Check the SFDP signature. */ 1279 if (le32_to_cpu(signature) != SFDP_SIGNATURE) 1280 return -EINVAL; 1281 1282 return 0; 1283 } 1284 1285 /** 1286 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1287 * @nor: pointer to a 'struct spi_nor' 1288 * 1289 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1290 * specification. This is a standard which tends to supported by almost all 1291 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1292 * runtime the main parameters needed to perform basic SPI flash operations such 1293 * as Fast Read, Page Program or Sector Erase commands. 1294 * 1295 * Return: 0 on success, -errno otherwise. 1296 */ 1297 int spi_nor_parse_sfdp(struct spi_nor *nor) 1298 { 1299 const struct sfdp_parameter_header *param_header, *bfpt_header; 1300 struct sfdp_parameter_header *param_headers = NULL; 1301 struct sfdp_header header; 1302 struct device *dev = nor->dev; 1303 struct sfdp *sfdp; 1304 size_t sfdp_size; 1305 size_t psize; 1306 int i, err; 1307 1308 /* Get the SFDP header. */ 1309 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1310 if (err < 0) 1311 return err; 1312 1313 /* Check the SFDP header version. */ 1314 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1315 header.major != SFDP_JESD216_MAJOR) 1316 return -EINVAL; 1317 1318 /* 1319 * Verify that the first and only mandatory parameter header is a 1320 * Basic Flash Parameter Table header as specified in JESD216. 1321 */ 1322 bfpt_header = &header.bfpt_header; 1323 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1324 bfpt_header->major != SFDP_JESD216_MAJOR) 1325 return -EINVAL; 1326 1327 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1328 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1329 1330 /* 1331 * Allocate memory then read all parameter headers with a single 1332 * Read SFDP command. These parameter headers will actually be parsed 1333 * twice: a first time to get the latest revision of the basic flash 1334 * parameter table, then a second time to handle the supported optional 1335 * tables. 1336 * Hence we read the parameter headers once for all to reduce the 1337 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1338 * because we don't need to keep these parameter headers: the allocated 1339 * memory is always released with kfree() before exiting this function. 1340 */ 1341 if (header.nph) { 1342 psize = header.nph * sizeof(*param_headers); 1343 1344 param_headers = kmalloc(psize, GFP_KERNEL); 1345 if (!param_headers) 1346 return -ENOMEM; 1347 1348 err = spi_nor_read_sfdp(nor, sizeof(header), 1349 psize, param_headers); 1350 if (err < 0) { 1351 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1352 goto exit; 1353 } 1354 } 1355 1356 /* 1357 * Cache the complete SFDP data. It is not (easily) possible to fetch 1358 * SFDP after probe time and we need it for the sysfs access. 1359 */ 1360 for (i = 0; i < header.nph; i++) { 1361 param_header = ¶m_headers[i]; 1362 sfdp_size = max_t(size_t, sfdp_size, 1363 SFDP_PARAM_HEADER_PTP(param_header) + 1364 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1365 } 1366 1367 /* 1368 * Limit the total size to a reasonable value to avoid allocating too 1369 * much memory just of because the flash returned some insane values. 1370 */ 1371 if (sfdp_size > PAGE_SIZE) { 1372 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1373 sfdp_size); 1374 sfdp_size = PAGE_SIZE; 1375 } 1376 1377 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1378 if (!sfdp) { 1379 err = -ENOMEM; 1380 goto exit; 1381 } 1382 1383 /* 1384 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1385 * sfdp_size should be a multiple of DWORDs. But in case a flash 1386 * is not spec compliant, make sure that we have enough space to store 1387 * the complete SFDP data. 1388 */ 1389 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1390 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1391 sizeof(*sfdp->dwords), GFP_KERNEL); 1392 if (!sfdp->dwords) { 1393 err = -ENOMEM; 1394 devm_kfree(dev, sfdp); 1395 goto exit; 1396 } 1397 1398 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1399 if (err < 0) { 1400 dev_dbg(dev, "failed to read SFDP data\n"); 1401 devm_kfree(dev, sfdp->dwords); 1402 devm_kfree(dev, sfdp); 1403 goto exit; 1404 } 1405 1406 nor->sfdp = sfdp; 1407 1408 /* 1409 * Check other parameter headers to get the latest revision of 1410 * the basic flash parameter table. 1411 */ 1412 for (i = 0; i < header.nph; i++) { 1413 param_header = ¶m_headers[i]; 1414 1415 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1416 param_header->major == SFDP_JESD216_MAJOR && 1417 (param_header->minor > bfpt_header->minor || 1418 (param_header->minor == bfpt_header->minor && 1419 param_header->length > bfpt_header->length))) 1420 bfpt_header = param_header; 1421 } 1422 1423 err = spi_nor_parse_bfpt(nor, bfpt_header); 1424 if (err) 1425 goto exit; 1426 1427 /* Parse optional parameter tables. */ 1428 for (i = 0; i < header.nph; i++) { 1429 param_header = ¶m_headers[i]; 1430 1431 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1432 case SFDP_SECTOR_MAP_ID: 1433 err = spi_nor_parse_smpt(nor, param_header); 1434 break; 1435 1436 case SFDP_4BAIT_ID: 1437 err = spi_nor_parse_4bait(nor, param_header); 1438 break; 1439 1440 case SFDP_PROFILE1_ID: 1441 err = spi_nor_parse_profile1(nor, param_header); 1442 break; 1443 1444 case SFDP_SCCR_MAP_ID: 1445 err = spi_nor_parse_sccr(nor, param_header); 1446 break; 1447 1448 default: 1449 break; 1450 } 1451 1452 if (err) { 1453 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1454 SFDP_PARAM_HEADER_ID(param_header)); 1455 /* 1456 * Let's not drop all information we extracted so far 1457 * if optional table parsers fail. In case of failing, 1458 * each optional parser is responsible to roll back to 1459 * the previously known spi_nor data. 1460 */ 1461 err = 0; 1462 } 1463 } 1464 1465 spi_nor_post_sfdp_fixups(nor); 1466 exit: 1467 kfree(param_headers); 1468 return err; 1469 } 1470