xref: /openbmc/linux/drivers/mtd/spi-nor/sfdp.c (revision 867e6d38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 
20 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
21 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
22 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
23 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
24 #define SFDP_SCCR_MAP_ID	0xff87	/*
25 					 * Status, Control and Configuration
26 					 * Register Map.
27 					 */
28 
29 #define SFDP_SIGNATURE		0x50444653U
30 
31 struct sfdp_header {
32 	u32		signature; /* Ox50444653U <=> "SFDP" */
33 	u8		minor;
34 	u8		major;
35 	u8		nph; /* 0-base number of parameter headers */
36 	u8		unused;
37 
38 	/* Basic Flash Parameter Table. */
39 	struct sfdp_parameter_header	bfpt_header;
40 };
41 
42 /* Fast Read settings. */
43 struct sfdp_bfpt_read {
44 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
45 	u32			hwcaps;
46 
47 	/*
48 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
49 	 * whether the Fast Read x-y-z command is supported.
50 	 */
51 	u32			supported_dword;
52 	u32			supported_bit;
53 
54 	/*
55 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
56 	 * encodes the op code, the number of mode clocks and the number of wait
57 	 * states to be used by Fast Read x-y-z command.
58 	 */
59 	u32			settings_dword;
60 	u32			settings_shift;
61 
62 	/* The SPI protocol for this Fast Read x-y-z command. */
63 	enum spi_nor_protocol	proto;
64 };
65 
66 struct sfdp_bfpt_erase {
67 	/*
68 	 * The half-word at offset <shift> in DWORD <dword> encodes the
69 	 * op code and erase sector size to be used by Sector Erase commands.
70 	 */
71 	u32			dword;
72 	u32			shift;
73 };
74 
75 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
76 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
77 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
80 
81 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
82 #define SMPT_CMD_READ_DUMMY_SHIFT		16
83 #define SMPT_CMD_READ_DUMMY(_cmd) \
84 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
85 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
86 
87 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
88 #define SMPT_CMD_READ_DATA_SHIFT		24
89 #define SMPT_CMD_READ_DATA(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
91 
92 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
93 #define SMPT_CMD_OPCODE_SHIFT			8
94 #define SMPT_CMD_OPCODE(_cmd) \
95 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
96 
97 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
98 #define SMPT_MAP_REGION_COUNT_SHIFT		16
99 #define SMPT_MAP_REGION_COUNT(_header) \
100 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
101 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
102 
103 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
104 #define SMPT_MAP_ID_SHIFT			8
105 #define SMPT_MAP_ID(_header) \
106 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
107 
108 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
109 #define SMPT_MAP_REGION_SIZE_SHIFT		8
110 #define SMPT_MAP_REGION_SIZE(_region) \
111 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
112 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
113 
114 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
115 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
116 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
117 
118 #define SMPT_DESC_TYPE_MAP			BIT(1)
119 #define SMPT_DESC_END				BIT(0)
120 
121 #define SFDP_4BAIT_DWORD_MAX	2
122 
123 struct sfdp_4bait {
124 	/* The hardware capability. */
125 	u32		hwcaps;
126 
127 	/*
128 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
129 	 * the associated 4-byte address op code is supported.
130 	 */
131 	u32		supported_bit;
132 };
133 
134 /**
135  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
136  *			addr_width and read_dummy members of the struct spi_nor
137  *			should be previously
138  * set.
139  * @nor:	pointer to a 'struct spi_nor'
140  * @addr:	offset in the serial flash memory
141  * @len:	number of bytes to read
142  * @buf:	buffer where the data is copied into (dma-safe memory)
143  *
144  * Return: 0 on success, -errno otherwise.
145  */
146 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
147 {
148 	ssize_t ret;
149 
150 	while (len) {
151 		ret = spi_nor_read_data(nor, addr, len, buf);
152 		if (ret < 0)
153 			return ret;
154 		if (!ret || ret > len)
155 			return -EIO;
156 
157 		buf += ret;
158 		addr += ret;
159 		len -= ret;
160 	}
161 	return 0;
162 }
163 
164 /**
165  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
166  * @nor:	pointer to a 'struct spi_nor'
167  * @addr:	offset in the SFDP area to start reading data from
168  * @len:	number of bytes to read
169  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
170  *
171  * Whatever the actual numbers of bytes for address and dummy cycles are
172  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
173  * followed by a 3-byte address and 8 dummy clock cycles.
174  *
175  * Return: 0 on success, -errno otherwise.
176  */
177 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
178 			     size_t len, void *buf)
179 {
180 	u8 addr_width, read_opcode, read_dummy;
181 	int ret;
182 
183 	read_opcode = nor->read_opcode;
184 	addr_width = nor->addr_width;
185 	read_dummy = nor->read_dummy;
186 
187 	nor->read_opcode = SPINOR_OP_RDSFDP;
188 	nor->addr_width = 3;
189 	nor->read_dummy = 8;
190 
191 	ret = spi_nor_read_raw(nor, addr, len, buf);
192 
193 	nor->read_opcode = read_opcode;
194 	nor->addr_width = addr_width;
195 	nor->read_dummy = read_dummy;
196 
197 	return ret;
198 }
199 
200 /**
201  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
202  * @nor:	pointer to a 'struct spi_nor'
203  * @addr:	offset in the SFDP area to start reading data from
204  * @len:	number of bytes to read
205  * @buf:	buffer where the SFDP data are copied into
206  *
207  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
208  * guaranteed to be dma-safe.
209  *
210  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
211  *          otherwise.
212  */
213 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
214 					size_t len, void *buf)
215 {
216 	void *dma_safe_buf;
217 	int ret;
218 
219 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
220 	if (!dma_safe_buf)
221 		return -ENOMEM;
222 
223 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
224 	memcpy(buf, dma_safe_buf, len);
225 	kfree(dma_safe_buf);
226 
227 	return ret;
228 }
229 
230 static void
231 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
232 				    u16 half,
233 				    enum spi_nor_protocol proto)
234 {
235 	read->num_mode_clocks = (half >> 5) & 0x07;
236 	read->num_wait_states = (half >> 0) & 0x1f;
237 	read->opcode = (half >> 8) & 0xff;
238 	read->proto = proto;
239 }
240 
241 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
242 	/* Fast Read 1-1-2 */
243 	{
244 		SNOR_HWCAPS_READ_1_1_2,
245 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
246 		BFPT_DWORD(4), 0,	/* Settings */
247 		SNOR_PROTO_1_1_2,
248 	},
249 
250 	/* Fast Read 1-2-2 */
251 	{
252 		SNOR_HWCAPS_READ_1_2_2,
253 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
254 		BFPT_DWORD(4), 16,	/* Settings */
255 		SNOR_PROTO_1_2_2,
256 	},
257 
258 	/* Fast Read 2-2-2 */
259 	{
260 		SNOR_HWCAPS_READ_2_2_2,
261 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
262 		BFPT_DWORD(6), 16,	/* Settings */
263 		SNOR_PROTO_2_2_2,
264 	},
265 
266 	/* Fast Read 1-1-4 */
267 	{
268 		SNOR_HWCAPS_READ_1_1_4,
269 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
270 		BFPT_DWORD(3), 16,	/* Settings */
271 		SNOR_PROTO_1_1_4,
272 	},
273 
274 	/* Fast Read 1-4-4 */
275 	{
276 		SNOR_HWCAPS_READ_1_4_4,
277 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
278 		BFPT_DWORD(3), 0,	/* Settings */
279 		SNOR_PROTO_1_4_4,
280 	},
281 
282 	/* Fast Read 4-4-4 */
283 	{
284 		SNOR_HWCAPS_READ_4_4_4,
285 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
286 		BFPT_DWORD(7), 16,	/* Settings */
287 		SNOR_PROTO_4_4_4,
288 	},
289 };
290 
291 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
292 	/* Erase Type 1 in DWORD8 bits[15:0] */
293 	{BFPT_DWORD(8), 0},
294 
295 	/* Erase Type 2 in DWORD8 bits[31:16] */
296 	{BFPT_DWORD(8), 16},
297 
298 	/* Erase Type 3 in DWORD9 bits[15:0] */
299 	{BFPT_DWORD(9), 0},
300 
301 	/* Erase Type 4 in DWORD9 bits[31:16] */
302 	{BFPT_DWORD(9), 16},
303 };
304 
305 /**
306  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
307  * @erase:	pointer to a structure that describes a SPI NOR erase type
308  * @size:	the size of the sector/block erased by the erase type
309  * @opcode:	the SPI command op code to erase the sector/block
310  * @i:		erase type index as sorted in the Basic Flash Parameter Table
311  *
312  * The supported Erase Types will be sorted at init in ascending order, with
313  * the smallest Erase Type size being the first member in the erase_type array
314  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
315  * the Basic Flash Parameter Table since it will be used later on to
316  * synchronize with the supported Erase Types defined in SFDP optional tables.
317  */
318 static void
319 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
320 				     u32 size, u8 opcode, u8 i)
321 {
322 	erase->idx = i;
323 	spi_nor_set_erase_type(erase, size, opcode);
324 }
325 
326 /**
327  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
328  * @l:	member in the left half of the map's erase_type array
329  * @r:	member in the right half of the map's erase_type array
330  *
331  * Comparison function used in the sort() call to sort in ascending order the
332  * map's erase types, the smallest erase type size being the first member in the
333  * sorted erase_type array.
334  *
335  * Return: the result of @l->size - @r->size
336  */
337 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
338 {
339 	const struct spi_nor_erase_type *left = l, *right = r;
340 
341 	return left->size - right->size;
342 }
343 
344 /**
345  * spi_nor_sort_erase_mask() - sort erase mask
346  * @map:	the erase map of the SPI NOR
347  * @erase_mask:	the erase type mask to be sorted
348  *
349  * Replicate the sort done for the map's erase types in BFPT: sort the erase
350  * mask in ascending order with the smallest erase type size starting from
351  * BIT(0) in the sorted erase mask.
352  *
353  * Return: sorted erase mask.
354  */
355 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
356 {
357 	struct spi_nor_erase_type *erase_type = map->erase_type;
358 	int i;
359 	u8 sorted_erase_mask = 0;
360 
361 	if (!erase_mask)
362 		return 0;
363 
364 	/* Replicate the sort done for the map's erase types. */
365 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
366 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
367 			sorted_erase_mask |= BIT(i);
368 
369 	return sorted_erase_mask;
370 }
371 
372 /**
373  * spi_nor_regions_sort_erase_types() - sort erase types in each region
374  * @map:	the erase map of the SPI NOR
375  *
376  * Function assumes that the erase types defined in the erase map are already
377  * sorted in ascending order, with the smallest erase type size being the first
378  * member in the erase_type array. It replicates the sort done for the map's
379  * erase types. Each region's erase bitmask will indicate which erase types are
380  * supported from the sorted erase types defined in the erase map.
381  * Sort the all region's erase type at init in order to speed up the process of
382  * finding the best erase command at runtime.
383  */
384 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
385 {
386 	struct spi_nor_erase_region *region = map->regions;
387 	u8 region_erase_mask, sorted_erase_mask;
388 
389 	while (region) {
390 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
391 
392 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
393 							    region_erase_mask);
394 
395 		/* Overwrite erase mask. */
396 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
397 				 sorted_erase_mask;
398 
399 		region = spi_nor_region_next(region);
400 	}
401 }
402 
403 /**
404  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
405  * @nor:		pointer to a 'struct spi_nor'
406  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
407  *			the Basic Flash Parameter Table length and version
408  *
409  * The Basic Flash Parameter Table is the main and only mandatory table as
410  * defined by the SFDP (JESD216) specification.
411  * It provides us with the total size (memory density) of the data array and
412  * the number of address bytes for Fast Read, Page Program and Sector Erase
413  * commands.
414  * For Fast READ commands, it also gives the number of mode clock cycles and
415  * wait states (regrouped in the number of dummy clock cycles) for each
416  * supported instruction op code.
417  * For Page Program, the page size is now available since JESD216 rev A, however
418  * the supported instruction op codes are still not provided.
419  * For Sector Erase commands, this table stores the supported instruction op
420  * codes and the associated sector sizes.
421  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
422  * rev A. The QER bits encode the manufacturer dependent procedure to be
423  * executed to set the Quad Enable (QE) bit in some internal register of the
424  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
425  * sending any Quad SPI command to the memory. Actually, setting the QE bit
426  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
427  * and IO3 hence enabling 4 (Quad) I/O lines.
428  *
429  * Return: 0 on success, -errno otherwise.
430  */
431 static int spi_nor_parse_bfpt(struct spi_nor *nor,
432 			      const struct sfdp_parameter_header *bfpt_header)
433 {
434 	struct spi_nor_flash_parameter *params = nor->params;
435 	struct spi_nor_erase_map *map = &params->erase_map;
436 	struct spi_nor_erase_type *erase_type = map->erase_type;
437 	struct sfdp_bfpt bfpt;
438 	size_t len;
439 	int i, cmd, err;
440 	u32 addr, val;
441 	u16 half;
442 	u8 erase_mask;
443 
444 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
445 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
446 		return -EINVAL;
447 
448 	/* Read the Basic Flash Parameter Table. */
449 	len = min_t(size_t, sizeof(bfpt),
450 		    bfpt_header->length * sizeof(u32));
451 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
452 	memset(&bfpt, 0, sizeof(bfpt));
453 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
454 	if (err < 0)
455 		return err;
456 
457 	/* Fix endianness of the BFPT DWORDs. */
458 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
459 
460 	/* Number of address bytes. */
461 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
462 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
463 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
464 		nor->addr_width = 3;
465 		break;
466 
467 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
468 		nor->addr_width = 4;
469 		break;
470 
471 	default:
472 		break;
473 	}
474 
475 	/* Flash Memory Density (in bits). */
476 	val = bfpt.dwords[BFPT_DWORD(2)];
477 	if (val & BIT(31)) {
478 		val &= ~BIT(31);
479 
480 		/*
481 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
482 		 * bits is unlikely to exist so this error probably means
483 		 * the BFPT we are reading is corrupted/wrong.
484 		 */
485 		if (val > 63)
486 			return -EINVAL;
487 
488 		params->size = 1ULL << val;
489 	} else {
490 		params->size = val + 1;
491 	}
492 	params->size >>= 3; /* Convert to bytes. */
493 
494 	/* Fast Read settings. */
495 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
496 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
497 		struct spi_nor_read_command *read;
498 
499 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
500 			params->hwcaps.mask &= ~rd->hwcaps;
501 			continue;
502 		}
503 
504 		params->hwcaps.mask |= rd->hwcaps;
505 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
506 		read = &params->reads[cmd];
507 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
508 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
509 	}
510 
511 	/*
512 	 * Sector Erase settings. Reinitialize the uniform erase map using the
513 	 * Erase Types defined in the bfpt table.
514 	 */
515 	erase_mask = 0;
516 	memset(&params->erase_map, 0, sizeof(params->erase_map));
517 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
518 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
519 		u32 erasesize;
520 		u8 opcode;
521 
522 		half = bfpt.dwords[er->dword] >> er->shift;
523 		erasesize = half & 0xff;
524 
525 		/* erasesize == 0 means this Erase Type is not supported. */
526 		if (!erasesize)
527 			continue;
528 
529 		erasesize = 1U << erasesize;
530 		opcode = (half >> 8) & 0xff;
531 		erase_mask |= BIT(i);
532 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
533 						     opcode, i);
534 	}
535 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
536 	/*
537 	 * Sort all the map's Erase Types in ascending order with the smallest
538 	 * erase size being the first member in the erase_type array.
539 	 */
540 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
541 	     spi_nor_map_cmp_erase_type, NULL);
542 	/*
543 	 * Sort the erase types in the uniform region in order to update the
544 	 * uniform_erase_type bitmask. The bitmask will be used later on when
545 	 * selecting the uniform erase.
546 	 */
547 	spi_nor_regions_sort_erase_types(map);
548 	map->uniform_erase_type = map->uniform_region.offset &
549 				  SNOR_ERASE_TYPE_MASK;
550 
551 	/* Stop here if not JESD216 rev A or later. */
552 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
553 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
554 
555 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
556 	val = bfpt.dwords[BFPT_DWORD(11)];
557 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
558 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
559 	params->page_size = 1U << val;
560 
561 	/* Quad Enable Requirements. */
562 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
563 	case BFPT_DWORD15_QER_NONE:
564 		params->quad_enable = NULL;
565 		break;
566 
567 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
568 		/*
569 		 * Writing only one byte to the Status Register has the
570 		 * side-effect of clearing Status Register 2.
571 		 */
572 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
573 		/*
574 		 * Read Configuration Register (35h) instruction is not
575 		 * supported.
576 		 */
577 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
578 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
579 		break;
580 
581 	case BFPT_DWORD15_QER_SR1_BIT6:
582 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
583 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
584 		break;
585 
586 	case BFPT_DWORD15_QER_SR2_BIT7:
587 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
588 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
589 		break;
590 
591 	case BFPT_DWORD15_QER_SR2_BIT1:
592 		/*
593 		 * JESD216 rev B or later does not specify if writing only one
594 		 * byte to the Status Register clears or not the Status
595 		 * Register 2, so let's be cautious and keep the default
596 		 * assumption of a 16-bit Write Status (01h) command.
597 		 */
598 		nor->flags |= SNOR_F_HAS_16BIT_SR;
599 
600 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
601 		break;
602 
603 	default:
604 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
605 		break;
606 	}
607 
608 	/* Soft Reset support. */
609 	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
610 		nor->flags |= SNOR_F_SOFT_RESET;
611 
612 	/* Stop here if not JESD216 rev C or later. */
613 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
614 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
615 
616 	/* 8D-8D-8D command extension. */
617 	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
618 	case BFPT_DWORD18_CMD_EXT_REP:
619 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
620 		break;
621 
622 	case BFPT_DWORD18_CMD_EXT_INV:
623 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
624 		break;
625 
626 	case BFPT_DWORD18_CMD_EXT_RES:
627 		dev_dbg(nor->dev, "Reserved command extension used\n");
628 		break;
629 
630 	case BFPT_DWORD18_CMD_EXT_16B:
631 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
632 		return -EOPNOTSUPP;
633 	}
634 
635 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
636 }
637 
638 /**
639  * spi_nor_smpt_addr_width() - return the address width used in the
640  *			       configuration detection command.
641  * @nor:	pointer to a 'struct spi_nor'
642  * @settings:	configuration detection command descriptor, dword1
643  */
644 static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
645 {
646 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
647 	case SMPT_CMD_ADDRESS_LEN_0:
648 		return 0;
649 	case SMPT_CMD_ADDRESS_LEN_3:
650 		return 3;
651 	case SMPT_CMD_ADDRESS_LEN_4:
652 		return 4;
653 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
654 	default:
655 		return nor->addr_width;
656 	}
657 }
658 
659 /**
660  * spi_nor_smpt_read_dummy() - return the configuration detection command read
661  *			       latency, in clock cycles.
662  * @nor:	pointer to a 'struct spi_nor'
663  * @settings:	configuration detection command descriptor, dword1
664  *
665  * Return: the number of dummy cycles for an SMPT read
666  */
667 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
668 {
669 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
670 
671 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
672 		return nor->read_dummy;
673 	return read_dummy;
674 }
675 
676 /**
677  * spi_nor_get_map_in_use() - get the configuration map in use
678  * @nor:	pointer to a 'struct spi_nor'
679  * @smpt:	pointer to the sector map parameter table
680  * @smpt_len:	sector map parameter table length
681  *
682  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
683  */
684 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
685 					 u8 smpt_len)
686 {
687 	const u32 *ret;
688 	u8 *buf;
689 	u32 addr;
690 	int err;
691 	u8 i;
692 	u8 addr_width, read_opcode, read_dummy;
693 	u8 read_data_mask, map_id;
694 
695 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
696 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
697 	if (!buf)
698 		return ERR_PTR(-ENOMEM);
699 
700 	addr_width = nor->addr_width;
701 	read_dummy = nor->read_dummy;
702 	read_opcode = nor->read_opcode;
703 
704 	map_id = 0;
705 	/* Determine if there are any optional Detection Command Descriptors */
706 	for (i = 0; i < smpt_len; i += 2) {
707 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
708 			break;
709 
710 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
711 		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
712 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
713 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
714 		addr = smpt[i + 1];
715 
716 		err = spi_nor_read_raw(nor, addr, 1, buf);
717 		if (err) {
718 			ret = ERR_PTR(err);
719 			goto out;
720 		}
721 
722 		/*
723 		 * Build an index value that is used to select the Sector Map
724 		 * Configuration that is currently in use.
725 		 */
726 		map_id = map_id << 1 | !!(*buf & read_data_mask);
727 	}
728 
729 	/*
730 	 * If command descriptors are provided, they always precede map
731 	 * descriptors in the table. There is no need to start the iteration
732 	 * over smpt array all over again.
733 	 *
734 	 * Find the matching configuration map.
735 	 */
736 	ret = ERR_PTR(-EINVAL);
737 	while (i < smpt_len) {
738 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
739 			ret = smpt + i;
740 			break;
741 		}
742 
743 		/*
744 		 * If there are no more configuration map descriptors and no
745 		 * configuration ID matched the configuration identifier, the
746 		 * sector address map is unknown.
747 		 */
748 		if (smpt[i] & SMPT_DESC_END)
749 			break;
750 
751 		/* increment the table index to the next map */
752 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
753 	}
754 
755 	/* fall through */
756 out:
757 	kfree(buf);
758 	nor->addr_width = addr_width;
759 	nor->read_dummy = read_dummy;
760 	nor->read_opcode = read_opcode;
761 	return ret;
762 }
763 
764 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
765 {
766 	region->offset |= SNOR_LAST_REGION;
767 }
768 
769 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
770 {
771 	region->offset |= SNOR_OVERLAID_REGION;
772 }
773 
774 /**
775  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
776  * @region:	pointer to a structure that describes a SPI NOR erase region
777  * @erase:	pointer to a structure that describes a SPI NOR erase type
778  * @erase_type:	erase type bitmask
779  */
780 static void
781 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
782 			     const struct spi_nor_erase_type *erase,
783 			     const u8 erase_type)
784 {
785 	int i;
786 
787 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
788 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
789 			continue;
790 		if (region->size & erase[i].size_mask) {
791 			spi_nor_region_mark_overlay(region);
792 			return;
793 		}
794 	}
795 }
796 
797 /**
798  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
799  * @nor:	pointer to a 'struct spi_nor'
800  * @smpt:	pointer to the sector map parameter table
801  *
802  * Return: 0 on success, -errno otherwise.
803  */
804 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
805 					      const u32 *smpt)
806 {
807 	struct spi_nor_erase_map *map = &nor->params->erase_map;
808 	struct spi_nor_erase_type *erase = map->erase_type;
809 	struct spi_nor_erase_region *region;
810 	u64 offset;
811 	u32 region_count;
812 	int i, j;
813 	u8 uniform_erase_type, save_uniform_erase_type;
814 	u8 erase_type, regions_erase_type;
815 
816 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
817 	/*
818 	 * The regions will be freed when the driver detaches from the
819 	 * device.
820 	 */
821 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
822 			      GFP_KERNEL);
823 	if (!region)
824 		return -ENOMEM;
825 	map->regions = region;
826 
827 	uniform_erase_type = 0xff;
828 	regions_erase_type = 0;
829 	offset = 0;
830 	/* Populate regions. */
831 	for (i = 0; i < region_count; i++) {
832 		j = i + 1; /* index for the region dword */
833 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
834 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
835 		region[i].offset = offset | erase_type;
836 
837 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
838 
839 		/*
840 		 * Save the erase types that are supported in all regions and
841 		 * can erase the entire flash memory.
842 		 */
843 		uniform_erase_type &= erase_type;
844 
845 		/*
846 		 * regions_erase_type mask will indicate all the erase types
847 		 * supported in this configuration map.
848 		 */
849 		regions_erase_type |= erase_type;
850 
851 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
852 			 region[i].size;
853 	}
854 	spi_nor_region_mark_end(&region[i - 1]);
855 
856 	save_uniform_erase_type = map->uniform_erase_type;
857 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
858 							  uniform_erase_type);
859 
860 	if (!regions_erase_type) {
861 		/*
862 		 * Roll back to the previous uniform_erase_type mask, SMPT is
863 		 * broken.
864 		 */
865 		map->uniform_erase_type = save_uniform_erase_type;
866 		return -EINVAL;
867 	}
868 
869 	/*
870 	 * BFPT advertises all the erase types supported by all the possible
871 	 * map configurations. Mask out the erase types that are not supported
872 	 * by the current map configuration.
873 	 */
874 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
875 		if (!(regions_erase_type & BIT(erase[i].idx)))
876 			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
877 
878 	return 0;
879 }
880 
881 /**
882  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
883  * @nor:		pointer to a 'struct spi_nor'
884  * @smpt_header:	sector map parameter table header
885  *
886  * This table is optional, but when available, we parse it to identify the
887  * location and size of sectors within the main data array of the flash memory
888  * device and to identify which Erase Types are supported by each sector.
889  *
890  * Return: 0 on success, -errno otherwise.
891  */
892 static int spi_nor_parse_smpt(struct spi_nor *nor,
893 			      const struct sfdp_parameter_header *smpt_header)
894 {
895 	const u32 *sector_map;
896 	u32 *smpt;
897 	size_t len;
898 	u32 addr;
899 	int ret;
900 
901 	/* Read the Sector Map Parameter Table. */
902 	len = smpt_header->length * sizeof(*smpt);
903 	smpt = kmalloc(len, GFP_KERNEL);
904 	if (!smpt)
905 		return -ENOMEM;
906 
907 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
908 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
909 	if (ret)
910 		goto out;
911 
912 	/* Fix endianness of the SMPT DWORDs. */
913 	le32_to_cpu_array(smpt, smpt_header->length);
914 
915 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
916 	if (IS_ERR(sector_map)) {
917 		ret = PTR_ERR(sector_map);
918 		goto out;
919 	}
920 
921 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
922 	if (ret)
923 		goto out;
924 
925 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
926 	/* fall through */
927 out:
928 	kfree(smpt);
929 	return ret;
930 }
931 
932 /**
933  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
934  * @nor:		pointer to a 'struct spi_nor'.
935  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
936  *			the 4-Byte Address Instruction Table length and version.
937  *
938  * Return: 0 on success, -errno otherwise.
939  */
940 static int spi_nor_parse_4bait(struct spi_nor *nor,
941 			       const struct sfdp_parameter_header *param_header)
942 {
943 	static const struct sfdp_4bait reads[] = {
944 		{ SNOR_HWCAPS_READ,		BIT(0) },
945 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
946 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
947 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
948 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
949 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
950 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
951 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
952 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
953 	};
954 	static const struct sfdp_4bait programs[] = {
955 		{ SNOR_HWCAPS_PP,		BIT(6) },
956 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
957 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
958 	};
959 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
960 		{ 0u /* not used */,		BIT(9) },
961 		{ 0u /* not used */,		BIT(10) },
962 		{ 0u /* not used */,		BIT(11) },
963 		{ 0u /* not used */,		BIT(12) },
964 	};
965 	struct spi_nor_flash_parameter *params = nor->params;
966 	struct spi_nor_pp_command *params_pp = params->page_programs;
967 	struct spi_nor_erase_map *map = &params->erase_map;
968 	struct spi_nor_erase_type *erase_type = map->erase_type;
969 	u32 *dwords;
970 	size_t len;
971 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
972 	int i, ret;
973 
974 	if (param_header->major != SFDP_JESD216_MAJOR ||
975 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
976 		return -EINVAL;
977 
978 	/* Read the 4-byte Address Instruction Table. */
979 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
980 
981 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
982 	dwords = kmalloc(len, GFP_KERNEL);
983 	if (!dwords)
984 		return -ENOMEM;
985 
986 	addr = SFDP_PARAM_HEADER_PTP(param_header);
987 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
988 	if (ret)
989 		goto out;
990 
991 	/* Fix endianness of the 4BAIT DWORDs. */
992 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
993 
994 	/*
995 	 * Compute the subset of (Fast) Read commands for which the 4-byte
996 	 * version is supported.
997 	 */
998 	discard_hwcaps = 0;
999 	read_hwcaps = 0;
1000 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1001 		const struct sfdp_4bait *read = &reads[i];
1002 
1003 		discard_hwcaps |= read->hwcaps;
1004 		if ((params->hwcaps.mask & read->hwcaps) &&
1005 		    (dwords[0] & read->supported_bit))
1006 			read_hwcaps |= read->hwcaps;
1007 	}
1008 
1009 	/*
1010 	 * Compute the subset of Page Program commands for which the 4-byte
1011 	 * version is supported.
1012 	 */
1013 	pp_hwcaps = 0;
1014 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1015 		const struct sfdp_4bait *program = &programs[i];
1016 
1017 		/*
1018 		 * The 4 Byte Address Instruction (Optional) Table is the only
1019 		 * SFDP table that indicates support for Page Program Commands.
1020 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1021 		 * authority for specifying Page Program support.
1022 		 */
1023 		discard_hwcaps |= program->hwcaps;
1024 		if (dwords[0] & program->supported_bit)
1025 			pp_hwcaps |= program->hwcaps;
1026 	}
1027 
1028 	/*
1029 	 * Compute the subset of Sector Erase commands for which the 4-byte
1030 	 * version is supported.
1031 	 */
1032 	erase_mask = 0;
1033 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1034 		const struct sfdp_4bait *erase = &erases[i];
1035 
1036 		if (dwords[0] & erase->supported_bit)
1037 			erase_mask |= BIT(i);
1038 	}
1039 
1040 	/* Replicate the sort done for the map's erase types in BFPT. */
1041 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1042 
1043 	/*
1044 	 * We need at least one 4-byte op code per read, program and erase
1045 	 * operation; the .read(), .write() and .erase() hooks share the
1046 	 * nor->addr_width value.
1047 	 */
1048 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1049 		goto out;
1050 
1051 	/*
1052 	 * Discard all operations from the 4-byte instruction set which are
1053 	 * not supported by this memory.
1054 	 */
1055 	params->hwcaps.mask &= ~discard_hwcaps;
1056 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1057 
1058 	/* Use the 4-byte address instruction set. */
1059 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1060 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1061 
1062 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1063 	}
1064 
1065 	/* 4BAIT is the only SFDP table that indicates page program support. */
1066 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1067 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1068 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1069 		/*
1070 		 * Since xSPI Page Program opcode is backward compatible with
1071 		 * Legacy SPI, use Legacy SPI opcode there as well.
1072 		 */
1073 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1074 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1075 	}
1076 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1077 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1078 					SPINOR_OP_PP_1_1_4_4B,
1079 					SNOR_PROTO_1_1_4);
1080 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1081 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1082 					SPINOR_OP_PP_1_4_4_4B,
1083 					SNOR_PROTO_1_4_4);
1084 
1085 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1086 		if (erase_mask & BIT(i))
1087 			erase_type[i].opcode = (dwords[1] >>
1088 						erase_type[i].idx * 8) & 0xFF;
1089 		else
1090 			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1091 	}
1092 
1093 	/*
1094 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1095 	 * later because we already did the conversion to 4byte opcodes. Also,
1096 	 * this latest function implements a legacy quirk for the erase size of
1097 	 * Spansion memory. However this quirk is no longer needed with new
1098 	 * SFDP compliant memories.
1099 	 */
1100 	nor->addr_width = 4;
1101 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1102 
1103 	/* fall through */
1104 out:
1105 	kfree(dwords);
1106 	return ret;
1107 }
1108 
1109 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1110 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1111 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1112 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1113 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1114 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1115 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1116 
1117 /**
1118  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1119  * @nor:		pointer to a 'struct spi_nor'
1120  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1121  *			the Profile 1.0 Table length and version.
1122  *
1123  * Return: 0 on success, -errno otherwise.
1124  */
1125 static int spi_nor_parse_profile1(struct spi_nor *nor,
1126 				  const struct sfdp_parameter_header *profile1_header)
1127 {
1128 	u32 *dwords, addr;
1129 	size_t len;
1130 	int ret;
1131 	u8 dummy, opcode;
1132 
1133 	len = profile1_header->length * sizeof(*dwords);
1134 	dwords = kmalloc(len, GFP_KERNEL);
1135 	if (!dwords)
1136 		return -ENOMEM;
1137 
1138 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1139 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1140 	if (ret)
1141 		goto out;
1142 
1143 	le32_to_cpu_array(dwords, profile1_header->length);
1144 
1145 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1146 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1147 
1148 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1149 	if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1150 		nor->params->rdsr_dummy = 8;
1151 	else
1152 		nor->params->rdsr_dummy = 4;
1153 
1154 	if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1155 		nor->params->rdsr_addr_nbytes = 4;
1156 	else
1157 		nor->params->rdsr_addr_nbytes = 0;
1158 
1159 	/*
1160 	 * We don't know what speed the controller is running at. Find the
1161 	 * dummy cycles for the fastest frequency the flash can run at to be
1162 	 * sure we are never short of dummy cycles. A value of 0 means the
1163 	 * frequency is not supported.
1164 	 *
1165 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1166 	 * flashes set the correct value if needed in their fixup hooks.
1167 	 */
1168 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1169 	if (!dummy)
1170 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1171 	if (!dummy)
1172 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1173 	if (!dummy)
1174 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1175 	if (!dummy)
1176 		dev_dbg(nor->dev,
1177 			"Can't find dummy cycles from Profile 1.0 table\n");
1178 
1179 	/* Round up to an even value to avoid tripping controllers up. */
1180 	dummy = round_up(dummy, 2);
1181 
1182 	/* Update the fast read settings. */
1183 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1184 				  0, dummy, opcode,
1185 				  SNOR_PROTO_8_8_8_DTR);
1186 
1187 out:
1188 	kfree(dwords);
1189 	return ret;
1190 }
1191 
1192 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1193 
1194 /**
1195  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1196  *                        Map.
1197  * @nor:		pointer to a 'struct spi_nor'
1198  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1199  *			the SCCR Map table length and version.
1200  *
1201  * Return: 0 on success, -errno otherwise.
1202  */
1203 static int spi_nor_parse_sccr(struct spi_nor *nor,
1204 			      const struct sfdp_parameter_header *sccr_header)
1205 {
1206 	u32 *dwords, addr;
1207 	size_t len;
1208 	int ret;
1209 
1210 	len = sccr_header->length * sizeof(*dwords);
1211 	dwords = kmalloc(len, GFP_KERNEL);
1212 	if (!dwords)
1213 		return -ENOMEM;
1214 
1215 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1216 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1217 	if (ret)
1218 		goto out;
1219 
1220 	le32_to_cpu_array(dwords, sccr_header->length);
1221 
1222 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1223 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1224 
1225 out:
1226 	kfree(dwords);
1227 	return ret;
1228 }
1229 
1230 /**
1231  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1232  * @nor:		pointer to a 'struct spi_nor'
1233  *
1234  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1235  * specification. This is a standard which tends to supported by almost all
1236  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1237  * runtime the main parameters needed to perform basic SPI flash operations such
1238  * as Fast Read, Page Program or Sector Erase commands.
1239  *
1240  * Return: 0 on success, -errno otherwise.
1241  */
1242 int spi_nor_parse_sfdp(struct spi_nor *nor)
1243 {
1244 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1245 	struct sfdp_parameter_header *param_headers = NULL;
1246 	struct sfdp_header header;
1247 	struct device *dev = nor->dev;
1248 	size_t psize;
1249 	int i, err;
1250 
1251 	/* Get the SFDP header. */
1252 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1253 	if (err < 0)
1254 		return err;
1255 
1256 	/* Check the SFDP header version. */
1257 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1258 	    header.major != SFDP_JESD216_MAJOR)
1259 		return -EINVAL;
1260 
1261 	/*
1262 	 * Verify that the first and only mandatory parameter header is a
1263 	 * Basic Flash Parameter Table header as specified in JESD216.
1264 	 */
1265 	bfpt_header = &header.bfpt_header;
1266 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1267 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1268 		return -EINVAL;
1269 
1270 	/*
1271 	 * Allocate memory then read all parameter headers with a single
1272 	 * Read SFDP command. These parameter headers will actually be parsed
1273 	 * twice: a first time to get the latest revision of the basic flash
1274 	 * parameter table, then a second time to handle the supported optional
1275 	 * tables.
1276 	 * Hence we read the parameter headers once for all to reduce the
1277 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1278 	 * because we don't need to keep these parameter headers: the allocated
1279 	 * memory is always released with kfree() before exiting this function.
1280 	 */
1281 	if (header.nph) {
1282 		psize = header.nph * sizeof(*param_headers);
1283 
1284 		param_headers = kmalloc(psize, GFP_KERNEL);
1285 		if (!param_headers)
1286 			return -ENOMEM;
1287 
1288 		err = spi_nor_read_sfdp(nor, sizeof(header),
1289 					psize, param_headers);
1290 		if (err < 0) {
1291 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1292 			goto exit;
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * Check other parameter headers to get the latest revision of
1298 	 * the basic flash parameter table.
1299 	 */
1300 	for (i = 0; i < header.nph; i++) {
1301 		param_header = &param_headers[i];
1302 
1303 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1304 		    param_header->major == SFDP_JESD216_MAJOR &&
1305 		    (param_header->minor > bfpt_header->minor ||
1306 		     (param_header->minor == bfpt_header->minor &&
1307 		      param_header->length > bfpt_header->length)))
1308 			bfpt_header = param_header;
1309 	}
1310 
1311 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1312 	if (err)
1313 		goto exit;
1314 
1315 	/* Parse optional parameter tables. */
1316 	for (i = 0; i < header.nph; i++) {
1317 		param_header = &param_headers[i];
1318 
1319 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1320 		case SFDP_SECTOR_MAP_ID:
1321 			err = spi_nor_parse_smpt(nor, param_header);
1322 			break;
1323 
1324 		case SFDP_4BAIT_ID:
1325 			err = spi_nor_parse_4bait(nor, param_header);
1326 			break;
1327 
1328 		case SFDP_PROFILE1_ID:
1329 			err = spi_nor_parse_profile1(nor, param_header);
1330 			break;
1331 
1332 		case SFDP_SCCR_MAP_ID:
1333 			err = spi_nor_parse_sccr(nor, param_header);
1334 			break;
1335 
1336 		default:
1337 			break;
1338 		}
1339 
1340 		if (err) {
1341 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1342 				 SFDP_PARAM_HEADER_ID(param_header));
1343 			/*
1344 			 * Let's not drop all information we extracted so far
1345 			 * if optional table parsers fail. In case of failing,
1346 			 * each optional parser is responsible to roll back to
1347 			 * the previously known spi_nor data.
1348 			 */
1349 			err = 0;
1350 		}
1351 	}
1352 
1353 exit:
1354 	kfree(param_headers);
1355 	return err;
1356 }
1357