xref: /openbmc/linux/drivers/mtd/spi-nor/sfdp.c (revision 6726d552)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 
30 #define SFDP_SIGNATURE		0x50444653U
31 
32 struct sfdp_header {
33 	u32		signature; /* Ox50444653U <=> "SFDP" */
34 	u8		minor;
35 	u8		major;
36 	u8		nph; /* 0-base number of parameter headers */
37 	u8		unused;
38 
39 	/* Basic Flash Parameter Table. */
40 	struct sfdp_parameter_header	bfpt_header;
41 };
42 
43 /* Fast Read settings. */
44 struct sfdp_bfpt_read {
45 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
46 	u32			hwcaps;
47 
48 	/*
49 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
50 	 * whether the Fast Read x-y-z command is supported.
51 	 */
52 	u32			supported_dword;
53 	u32			supported_bit;
54 
55 	/*
56 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
57 	 * encodes the op code, the number of mode clocks and the number of wait
58 	 * states to be used by Fast Read x-y-z command.
59 	 */
60 	u32			settings_dword;
61 	u32			settings_shift;
62 
63 	/* The SPI protocol for this Fast Read x-y-z command. */
64 	enum spi_nor_protocol	proto;
65 };
66 
67 struct sfdp_bfpt_erase {
68 	/*
69 	 * The half-word at offset <shift> in DWORD <dword> encodes the
70 	 * op code and erase sector size to be used by Sector Erase commands.
71 	 */
72 	u32			dword;
73 	u32			shift;
74 };
75 
76 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
77 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
81 
82 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
83 #define SMPT_CMD_READ_DUMMY_SHIFT		16
84 #define SMPT_CMD_READ_DUMMY(_cmd) \
85 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
87 
88 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
89 #define SMPT_CMD_READ_DATA_SHIFT		24
90 #define SMPT_CMD_READ_DATA(_cmd) \
91 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
92 
93 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
94 #define SMPT_CMD_OPCODE_SHIFT			8
95 #define SMPT_CMD_OPCODE(_cmd) \
96 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
97 
98 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
99 #define SMPT_MAP_REGION_COUNT_SHIFT		16
100 #define SMPT_MAP_REGION_COUNT(_header) \
101 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
102 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
103 
104 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
105 #define SMPT_MAP_ID_SHIFT			8
106 #define SMPT_MAP_ID(_header) \
107 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
108 
109 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
110 #define SMPT_MAP_REGION_SIZE_SHIFT		8
111 #define SMPT_MAP_REGION_SIZE(_region) \
112 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
113 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
114 
115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
117 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
118 
119 #define SMPT_DESC_TYPE_MAP			BIT(1)
120 #define SMPT_DESC_END				BIT(0)
121 
122 #define SFDP_4BAIT_DWORD_MAX	2
123 
124 struct sfdp_4bait {
125 	/* The hardware capability. */
126 	u32		hwcaps;
127 
128 	/*
129 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
130 	 * the associated 4-byte address op code is supported.
131 	 */
132 	u32		supported_bit;
133 };
134 
135 /**
136  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
137  *			addr_nbytes and read_dummy members of the struct spi_nor
138  *			should be previously
139  * set.
140  * @nor:	pointer to a 'struct spi_nor'
141  * @addr:	offset in the serial flash memory
142  * @len:	number of bytes to read
143  * @buf:	buffer where the data is copied into (dma-safe memory)
144  *
145  * Return: 0 on success, -errno otherwise.
146  */
147 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
148 {
149 	ssize_t ret;
150 
151 	while (len) {
152 		ret = spi_nor_read_data(nor, addr, len, buf);
153 		if (ret < 0)
154 			return ret;
155 		if (!ret || ret > len)
156 			return -EIO;
157 
158 		buf += ret;
159 		addr += ret;
160 		len -= ret;
161 	}
162 	return 0;
163 }
164 
165 /**
166  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
167  * @nor:	pointer to a 'struct spi_nor'
168  * @addr:	offset in the SFDP area to start reading data from
169  * @len:	number of bytes to read
170  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
171  *
172  * Whatever the actual numbers of bytes for address and dummy cycles are
173  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
174  * followed by a 3-byte address and 8 dummy clock cycles.
175  *
176  * Return: 0 on success, -errno otherwise.
177  */
178 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
179 			     size_t len, void *buf)
180 {
181 	u8 addr_nbytes, read_opcode, read_dummy;
182 	int ret;
183 
184 	read_opcode = nor->read_opcode;
185 	addr_nbytes = nor->addr_nbytes;
186 	read_dummy = nor->read_dummy;
187 
188 	nor->read_opcode = SPINOR_OP_RDSFDP;
189 	nor->addr_nbytes = 3;
190 	nor->read_dummy = 8;
191 
192 	ret = spi_nor_read_raw(nor, addr, len, buf);
193 
194 	nor->read_opcode = read_opcode;
195 	nor->addr_nbytes = addr_nbytes;
196 	nor->read_dummy = read_dummy;
197 
198 	return ret;
199 }
200 
201 /**
202  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
203  * @nor:	pointer to a 'struct spi_nor'
204  * @addr:	offset in the SFDP area to start reading data from
205  * @len:	number of bytes to read
206  * @buf:	buffer where the SFDP data are copied into
207  *
208  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
209  * guaranteed to be dma-safe.
210  *
211  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
212  *          otherwise.
213  */
214 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
215 					size_t len, void *buf)
216 {
217 	void *dma_safe_buf;
218 	int ret;
219 
220 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
221 	if (!dma_safe_buf)
222 		return -ENOMEM;
223 
224 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
225 	memcpy(buf, dma_safe_buf, len);
226 	kfree(dma_safe_buf);
227 
228 	return ret;
229 }
230 
231 static void
232 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
233 				    u16 half,
234 				    enum spi_nor_protocol proto)
235 {
236 	read->num_mode_clocks = (half >> 5) & 0x07;
237 	read->num_wait_states = (half >> 0) & 0x1f;
238 	read->opcode = (half >> 8) & 0xff;
239 	read->proto = proto;
240 }
241 
242 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
243 	/* Fast Read 1-1-2 */
244 	{
245 		SNOR_HWCAPS_READ_1_1_2,
246 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
247 		BFPT_DWORD(4), 0,	/* Settings */
248 		SNOR_PROTO_1_1_2,
249 	},
250 
251 	/* Fast Read 1-2-2 */
252 	{
253 		SNOR_HWCAPS_READ_1_2_2,
254 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
255 		BFPT_DWORD(4), 16,	/* Settings */
256 		SNOR_PROTO_1_2_2,
257 	},
258 
259 	/* Fast Read 2-2-2 */
260 	{
261 		SNOR_HWCAPS_READ_2_2_2,
262 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
263 		BFPT_DWORD(6), 16,	/* Settings */
264 		SNOR_PROTO_2_2_2,
265 	},
266 
267 	/* Fast Read 1-1-4 */
268 	{
269 		SNOR_HWCAPS_READ_1_1_4,
270 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
271 		BFPT_DWORD(3), 16,	/* Settings */
272 		SNOR_PROTO_1_1_4,
273 	},
274 
275 	/* Fast Read 1-4-4 */
276 	{
277 		SNOR_HWCAPS_READ_1_4_4,
278 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
279 		BFPT_DWORD(3), 0,	/* Settings */
280 		SNOR_PROTO_1_4_4,
281 	},
282 
283 	/* Fast Read 4-4-4 */
284 	{
285 		SNOR_HWCAPS_READ_4_4_4,
286 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
287 		BFPT_DWORD(7), 16,	/* Settings */
288 		SNOR_PROTO_4_4_4,
289 	},
290 };
291 
292 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
293 	/* Erase Type 1 in DWORD8 bits[15:0] */
294 	{BFPT_DWORD(8), 0},
295 
296 	/* Erase Type 2 in DWORD8 bits[31:16] */
297 	{BFPT_DWORD(8), 16},
298 
299 	/* Erase Type 3 in DWORD9 bits[15:0] */
300 	{BFPT_DWORD(9), 0},
301 
302 	/* Erase Type 4 in DWORD9 bits[31:16] */
303 	{BFPT_DWORD(9), 16},
304 };
305 
306 /**
307  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
308  * @erase:	pointer to a structure that describes a SPI NOR erase type
309  * @size:	the size of the sector/block erased by the erase type
310  * @opcode:	the SPI command op code to erase the sector/block
311  * @i:		erase type index as sorted in the Basic Flash Parameter Table
312  *
313  * The supported Erase Types will be sorted at init in ascending order, with
314  * the smallest Erase Type size being the first member in the erase_type array
315  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
316  * the Basic Flash Parameter Table since it will be used later on to
317  * synchronize with the supported Erase Types defined in SFDP optional tables.
318  */
319 static void
320 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
321 				     u32 size, u8 opcode, u8 i)
322 {
323 	erase->idx = i;
324 	spi_nor_set_erase_type(erase, size, opcode);
325 }
326 
327 /**
328  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
329  * @l:	member in the left half of the map's erase_type array
330  * @r:	member in the right half of the map's erase_type array
331  *
332  * Comparison function used in the sort() call to sort in ascending order the
333  * map's erase types, the smallest erase type size being the first member in the
334  * sorted erase_type array.
335  *
336  * Return: the result of @l->size - @r->size
337  */
338 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
339 {
340 	const struct spi_nor_erase_type *left = l, *right = r;
341 
342 	return left->size - right->size;
343 }
344 
345 /**
346  * spi_nor_sort_erase_mask() - sort erase mask
347  * @map:	the erase map of the SPI NOR
348  * @erase_mask:	the erase type mask to be sorted
349  *
350  * Replicate the sort done for the map's erase types in BFPT: sort the erase
351  * mask in ascending order with the smallest erase type size starting from
352  * BIT(0) in the sorted erase mask.
353  *
354  * Return: sorted erase mask.
355  */
356 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
357 {
358 	struct spi_nor_erase_type *erase_type = map->erase_type;
359 	int i;
360 	u8 sorted_erase_mask = 0;
361 
362 	if (!erase_mask)
363 		return 0;
364 
365 	/* Replicate the sort done for the map's erase types. */
366 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
367 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
368 			sorted_erase_mask |= BIT(i);
369 
370 	return sorted_erase_mask;
371 }
372 
373 /**
374  * spi_nor_regions_sort_erase_types() - sort erase types in each region
375  * @map:	the erase map of the SPI NOR
376  *
377  * Function assumes that the erase types defined in the erase map are already
378  * sorted in ascending order, with the smallest erase type size being the first
379  * member in the erase_type array. It replicates the sort done for the map's
380  * erase types. Each region's erase bitmask will indicate which erase types are
381  * supported from the sorted erase types defined in the erase map.
382  * Sort the all region's erase type at init in order to speed up the process of
383  * finding the best erase command at runtime.
384  */
385 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
386 {
387 	struct spi_nor_erase_region *region = map->regions;
388 	u8 region_erase_mask, sorted_erase_mask;
389 
390 	while (region) {
391 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
392 
393 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
394 							    region_erase_mask);
395 
396 		/* Overwrite erase mask. */
397 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
398 				 sorted_erase_mask;
399 
400 		region = spi_nor_region_next(region);
401 	}
402 }
403 
404 /**
405  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
406  * @nor:		pointer to a 'struct spi_nor'
407  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
408  *			the Basic Flash Parameter Table length and version
409  *
410  * The Basic Flash Parameter Table is the main and only mandatory table as
411  * defined by the SFDP (JESD216) specification.
412  * It provides us with the total size (memory density) of the data array and
413  * the number of address bytes for Fast Read, Page Program and Sector Erase
414  * commands.
415  * For Fast READ commands, it also gives the number of mode clock cycles and
416  * wait states (regrouped in the number of dummy clock cycles) for each
417  * supported instruction op code.
418  * For Page Program, the page size is now available since JESD216 rev A, however
419  * the supported instruction op codes are still not provided.
420  * For Sector Erase commands, this table stores the supported instruction op
421  * codes and the associated sector sizes.
422  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
423  * rev A. The QER bits encode the manufacturer dependent procedure to be
424  * executed to set the Quad Enable (QE) bit in some internal register of the
425  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
426  * sending any Quad SPI command to the memory. Actually, setting the QE bit
427  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
428  * and IO3 hence enabling 4 (Quad) I/O lines.
429  *
430  * Return: 0 on success, -errno otherwise.
431  */
432 static int spi_nor_parse_bfpt(struct spi_nor *nor,
433 			      const struct sfdp_parameter_header *bfpt_header)
434 {
435 	struct spi_nor_flash_parameter *params = nor->params;
436 	struct spi_nor_erase_map *map = &params->erase_map;
437 	struct spi_nor_erase_type *erase_type = map->erase_type;
438 	struct sfdp_bfpt bfpt;
439 	size_t len;
440 	int i, cmd, err;
441 	u32 addr, val;
442 	u16 half;
443 	u8 erase_mask;
444 
445 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
446 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
447 		return -EINVAL;
448 
449 	/* Read the Basic Flash Parameter Table. */
450 	len = min_t(size_t, sizeof(bfpt),
451 		    bfpt_header->length * sizeof(u32));
452 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
453 	memset(&bfpt, 0, sizeof(bfpt));
454 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
455 	if (err < 0)
456 		return err;
457 
458 	/* Fix endianness of the BFPT DWORDs. */
459 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
460 
461 	/* Number of address bytes. */
462 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
463 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
464 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
465 		params->addr_nbytes = 3;
466 		params->addr_mode_nbytes = 3;
467 		break;
468 
469 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
470 		params->addr_nbytes = 4;
471 		params->addr_mode_nbytes = 4;
472 		break;
473 
474 	default:
475 		break;
476 	}
477 
478 	/* Flash Memory Density (in bits). */
479 	val = bfpt.dwords[BFPT_DWORD(2)];
480 	if (val & BIT(31)) {
481 		val &= ~BIT(31);
482 
483 		/*
484 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
485 		 * bits is unlikely to exist so this error probably means
486 		 * the BFPT we are reading is corrupted/wrong.
487 		 */
488 		if (val > 63)
489 			return -EINVAL;
490 
491 		params->size = 1ULL << val;
492 	} else {
493 		params->size = val + 1;
494 	}
495 	params->size >>= 3; /* Convert to bytes. */
496 
497 	/* Fast Read settings. */
498 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
499 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
500 		struct spi_nor_read_command *read;
501 
502 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
503 			params->hwcaps.mask &= ~rd->hwcaps;
504 			continue;
505 		}
506 
507 		params->hwcaps.mask |= rd->hwcaps;
508 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
509 		read = &params->reads[cmd];
510 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
511 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
512 	}
513 
514 	/*
515 	 * Sector Erase settings. Reinitialize the uniform erase map using the
516 	 * Erase Types defined in the bfpt table.
517 	 */
518 	erase_mask = 0;
519 	memset(&params->erase_map, 0, sizeof(params->erase_map));
520 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
521 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
522 		u32 erasesize;
523 		u8 opcode;
524 
525 		half = bfpt.dwords[er->dword] >> er->shift;
526 		erasesize = half & 0xff;
527 
528 		/* erasesize == 0 means this Erase Type is not supported. */
529 		if (!erasesize)
530 			continue;
531 
532 		erasesize = 1U << erasesize;
533 		opcode = (half >> 8) & 0xff;
534 		erase_mask |= BIT(i);
535 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
536 						     opcode, i);
537 	}
538 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
539 	/*
540 	 * Sort all the map's Erase Types in ascending order with the smallest
541 	 * erase size being the first member in the erase_type array.
542 	 */
543 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
544 	     spi_nor_map_cmp_erase_type, NULL);
545 	/*
546 	 * Sort the erase types in the uniform region in order to update the
547 	 * uniform_erase_type bitmask. The bitmask will be used later on when
548 	 * selecting the uniform erase.
549 	 */
550 	spi_nor_regions_sort_erase_types(map);
551 	map->uniform_erase_type = map->uniform_region.offset &
552 				  SNOR_ERASE_TYPE_MASK;
553 
554 	/* Stop here if not JESD216 rev A or later. */
555 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
556 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
557 
558 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 	val = bfpt.dwords[BFPT_DWORD(11)];
560 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562 	params->page_size = 1U << val;
563 
564 	/* Quad Enable Requirements. */
565 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566 	case BFPT_DWORD15_QER_NONE:
567 		params->quad_enable = NULL;
568 		break;
569 
570 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571 		/*
572 		 * Writing only one byte to the Status Register has the
573 		 * side-effect of clearing Status Register 2.
574 		 */
575 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576 		/*
577 		 * Read Configuration Register (35h) instruction is not
578 		 * supported.
579 		 */
580 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582 		break;
583 
584 	case BFPT_DWORD15_QER_SR1_BIT6:
585 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587 		break;
588 
589 	case BFPT_DWORD15_QER_SR2_BIT7:
590 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592 		break;
593 
594 	case BFPT_DWORD15_QER_SR2_BIT1:
595 		/*
596 		 * JESD216 rev B or later does not specify if writing only one
597 		 * byte to the Status Register clears or not the Status
598 		 * Register 2, so let's be cautious and keep the default
599 		 * assumption of a 16-bit Write Status (01h) command.
600 		 */
601 		nor->flags |= SNOR_F_HAS_16BIT_SR;
602 
603 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604 		break;
605 
606 	default:
607 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608 		break;
609 	}
610 
611 	/* Soft Reset support. */
612 	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
613 		nor->flags |= SNOR_F_SOFT_RESET;
614 
615 	/* Stop here if not JESD216 rev C or later. */
616 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
617 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
618 
619 	/* 8D-8D-8D command extension. */
620 	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
621 	case BFPT_DWORD18_CMD_EXT_REP:
622 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
623 		break;
624 
625 	case BFPT_DWORD18_CMD_EXT_INV:
626 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
627 		break;
628 
629 	case BFPT_DWORD18_CMD_EXT_RES:
630 		dev_dbg(nor->dev, "Reserved command extension used\n");
631 		break;
632 
633 	case BFPT_DWORD18_CMD_EXT_16B:
634 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
635 		return -EOPNOTSUPP;
636 	}
637 
638 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
639 }
640 
641 /**
642  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
643  *			       configuration detection command.
644  * @nor:	pointer to a 'struct spi_nor'
645  * @settings:	configuration detection command descriptor, dword1
646  */
647 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
648 {
649 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
650 	case SMPT_CMD_ADDRESS_LEN_0:
651 		return 0;
652 	case SMPT_CMD_ADDRESS_LEN_3:
653 		return 3;
654 	case SMPT_CMD_ADDRESS_LEN_4:
655 		return 4;
656 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
657 	default:
658 		return nor->params->addr_mode_nbytes;
659 	}
660 }
661 
662 /**
663  * spi_nor_smpt_read_dummy() - return the configuration detection command read
664  *			       latency, in clock cycles.
665  * @nor:	pointer to a 'struct spi_nor'
666  * @settings:	configuration detection command descriptor, dword1
667  *
668  * Return: the number of dummy cycles for an SMPT read
669  */
670 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
671 {
672 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
673 
674 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
675 		return nor->read_dummy;
676 	return read_dummy;
677 }
678 
679 /**
680  * spi_nor_get_map_in_use() - get the configuration map in use
681  * @nor:	pointer to a 'struct spi_nor'
682  * @smpt:	pointer to the sector map parameter table
683  * @smpt_len:	sector map parameter table length
684  *
685  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
686  */
687 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
688 					 u8 smpt_len)
689 {
690 	const u32 *ret;
691 	u8 *buf;
692 	u32 addr;
693 	int err;
694 	u8 i;
695 	u8 addr_nbytes, read_opcode, read_dummy;
696 	u8 read_data_mask, map_id;
697 
698 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
699 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
700 	if (!buf)
701 		return ERR_PTR(-ENOMEM);
702 
703 	addr_nbytes = nor->addr_nbytes;
704 	read_dummy = nor->read_dummy;
705 	read_opcode = nor->read_opcode;
706 
707 	map_id = 0;
708 	/* Determine if there are any optional Detection Command Descriptors */
709 	for (i = 0; i < smpt_len; i += 2) {
710 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
711 			break;
712 
713 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
714 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
715 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
716 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
717 		addr = smpt[i + 1];
718 
719 		err = spi_nor_read_raw(nor, addr, 1, buf);
720 		if (err) {
721 			ret = ERR_PTR(err);
722 			goto out;
723 		}
724 
725 		/*
726 		 * Build an index value that is used to select the Sector Map
727 		 * Configuration that is currently in use.
728 		 */
729 		map_id = map_id << 1 | !!(*buf & read_data_mask);
730 	}
731 
732 	/*
733 	 * If command descriptors are provided, they always precede map
734 	 * descriptors in the table. There is no need to start the iteration
735 	 * over smpt array all over again.
736 	 *
737 	 * Find the matching configuration map.
738 	 */
739 	ret = ERR_PTR(-EINVAL);
740 	while (i < smpt_len) {
741 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
742 			ret = smpt + i;
743 			break;
744 		}
745 
746 		/*
747 		 * If there are no more configuration map descriptors and no
748 		 * configuration ID matched the configuration identifier, the
749 		 * sector address map is unknown.
750 		 */
751 		if (smpt[i] & SMPT_DESC_END)
752 			break;
753 
754 		/* increment the table index to the next map */
755 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
756 	}
757 
758 	/* fall through */
759 out:
760 	kfree(buf);
761 	nor->addr_nbytes = addr_nbytes;
762 	nor->read_dummy = read_dummy;
763 	nor->read_opcode = read_opcode;
764 	return ret;
765 }
766 
767 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
768 {
769 	region->offset |= SNOR_LAST_REGION;
770 }
771 
772 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
773 {
774 	region->offset |= SNOR_OVERLAID_REGION;
775 }
776 
777 /**
778  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
779  * @region:	pointer to a structure that describes a SPI NOR erase region
780  * @erase:	pointer to a structure that describes a SPI NOR erase type
781  * @erase_type:	erase type bitmask
782  */
783 static void
784 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
785 			     const struct spi_nor_erase_type *erase,
786 			     const u8 erase_type)
787 {
788 	int i;
789 
790 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
791 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
792 			continue;
793 		if (region->size & erase[i].size_mask) {
794 			spi_nor_region_mark_overlay(region);
795 			return;
796 		}
797 	}
798 }
799 
800 /**
801  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
802  * @nor:	pointer to a 'struct spi_nor'
803  * @smpt:	pointer to the sector map parameter table
804  *
805  * Return: 0 on success, -errno otherwise.
806  */
807 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
808 					      const u32 *smpt)
809 {
810 	struct spi_nor_erase_map *map = &nor->params->erase_map;
811 	struct spi_nor_erase_type *erase = map->erase_type;
812 	struct spi_nor_erase_region *region;
813 	u64 offset;
814 	u32 region_count;
815 	int i, j;
816 	u8 uniform_erase_type, save_uniform_erase_type;
817 	u8 erase_type, regions_erase_type;
818 
819 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
820 	/*
821 	 * The regions will be freed when the driver detaches from the
822 	 * device.
823 	 */
824 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
825 			      GFP_KERNEL);
826 	if (!region)
827 		return -ENOMEM;
828 	map->regions = region;
829 
830 	uniform_erase_type = 0xff;
831 	regions_erase_type = 0;
832 	offset = 0;
833 	/* Populate regions. */
834 	for (i = 0; i < region_count; i++) {
835 		j = i + 1; /* index for the region dword */
836 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
837 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
838 		region[i].offset = offset | erase_type;
839 
840 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
841 
842 		/*
843 		 * Save the erase types that are supported in all regions and
844 		 * can erase the entire flash memory.
845 		 */
846 		uniform_erase_type &= erase_type;
847 
848 		/*
849 		 * regions_erase_type mask will indicate all the erase types
850 		 * supported in this configuration map.
851 		 */
852 		regions_erase_type |= erase_type;
853 
854 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
855 			 region[i].size;
856 	}
857 	spi_nor_region_mark_end(&region[i - 1]);
858 
859 	save_uniform_erase_type = map->uniform_erase_type;
860 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
861 							  uniform_erase_type);
862 
863 	if (!regions_erase_type) {
864 		/*
865 		 * Roll back to the previous uniform_erase_type mask, SMPT is
866 		 * broken.
867 		 */
868 		map->uniform_erase_type = save_uniform_erase_type;
869 		return -EINVAL;
870 	}
871 
872 	/*
873 	 * BFPT advertises all the erase types supported by all the possible
874 	 * map configurations. Mask out the erase types that are not supported
875 	 * by the current map configuration.
876 	 */
877 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
878 		if (!(regions_erase_type & BIT(erase[i].idx)))
879 			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
880 
881 	return 0;
882 }
883 
884 /**
885  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
886  * @nor:		pointer to a 'struct spi_nor'
887  * @smpt_header:	sector map parameter table header
888  *
889  * This table is optional, but when available, we parse it to identify the
890  * location and size of sectors within the main data array of the flash memory
891  * device and to identify which Erase Types are supported by each sector.
892  *
893  * Return: 0 on success, -errno otherwise.
894  */
895 static int spi_nor_parse_smpt(struct spi_nor *nor,
896 			      const struct sfdp_parameter_header *smpt_header)
897 {
898 	const u32 *sector_map;
899 	u32 *smpt;
900 	size_t len;
901 	u32 addr;
902 	int ret;
903 
904 	/* Read the Sector Map Parameter Table. */
905 	len = smpt_header->length * sizeof(*smpt);
906 	smpt = kmalloc(len, GFP_KERNEL);
907 	if (!smpt)
908 		return -ENOMEM;
909 
910 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
911 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
912 	if (ret)
913 		goto out;
914 
915 	/* Fix endianness of the SMPT DWORDs. */
916 	le32_to_cpu_array(smpt, smpt_header->length);
917 
918 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
919 	if (IS_ERR(sector_map)) {
920 		ret = PTR_ERR(sector_map);
921 		goto out;
922 	}
923 
924 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
925 	if (ret)
926 		goto out;
927 
928 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
929 	/* fall through */
930 out:
931 	kfree(smpt);
932 	return ret;
933 }
934 
935 /**
936  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
937  * @nor:		pointer to a 'struct spi_nor'.
938  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
939  *			the 4-Byte Address Instruction Table length and version.
940  *
941  * Return: 0 on success, -errno otherwise.
942  */
943 static int spi_nor_parse_4bait(struct spi_nor *nor,
944 			       const struct sfdp_parameter_header *param_header)
945 {
946 	static const struct sfdp_4bait reads[] = {
947 		{ SNOR_HWCAPS_READ,		BIT(0) },
948 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
949 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
950 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
951 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
952 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
953 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
954 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
955 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
956 	};
957 	static const struct sfdp_4bait programs[] = {
958 		{ SNOR_HWCAPS_PP,		BIT(6) },
959 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
960 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
961 	};
962 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
963 		{ 0u /* not used */,		BIT(9) },
964 		{ 0u /* not used */,		BIT(10) },
965 		{ 0u /* not used */,		BIT(11) },
966 		{ 0u /* not used */,		BIT(12) },
967 	};
968 	struct spi_nor_flash_parameter *params = nor->params;
969 	struct spi_nor_pp_command *params_pp = params->page_programs;
970 	struct spi_nor_erase_map *map = &params->erase_map;
971 	struct spi_nor_erase_type *erase_type = map->erase_type;
972 	u32 *dwords;
973 	size_t len;
974 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
975 	int i, ret;
976 
977 	if (param_header->major != SFDP_JESD216_MAJOR ||
978 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
979 		return -EINVAL;
980 
981 	/* Read the 4-byte Address Instruction Table. */
982 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
983 
984 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
985 	dwords = kmalloc(len, GFP_KERNEL);
986 	if (!dwords)
987 		return -ENOMEM;
988 
989 	addr = SFDP_PARAM_HEADER_PTP(param_header);
990 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
991 	if (ret)
992 		goto out;
993 
994 	/* Fix endianness of the 4BAIT DWORDs. */
995 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
996 
997 	/*
998 	 * Compute the subset of (Fast) Read commands for which the 4-byte
999 	 * version is supported.
1000 	 */
1001 	discard_hwcaps = 0;
1002 	read_hwcaps = 0;
1003 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1004 		const struct sfdp_4bait *read = &reads[i];
1005 
1006 		discard_hwcaps |= read->hwcaps;
1007 		if ((params->hwcaps.mask & read->hwcaps) &&
1008 		    (dwords[0] & read->supported_bit))
1009 			read_hwcaps |= read->hwcaps;
1010 	}
1011 
1012 	/*
1013 	 * Compute the subset of Page Program commands for which the 4-byte
1014 	 * version is supported.
1015 	 */
1016 	pp_hwcaps = 0;
1017 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1018 		const struct sfdp_4bait *program = &programs[i];
1019 
1020 		/*
1021 		 * The 4 Byte Address Instruction (Optional) Table is the only
1022 		 * SFDP table that indicates support for Page Program Commands.
1023 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1024 		 * authority for specifying Page Program support.
1025 		 */
1026 		discard_hwcaps |= program->hwcaps;
1027 		if (dwords[0] & program->supported_bit)
1028 			pp_hwcaps |= program->hwcaps;
1029 	}
1030 
1031 	/*
1032 	 * Compute the subset of Sector Erase commands for which the 4-byte
1033 	 * version is supported.
1034 	 */
1035 	erase_mask = 0;
1036 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1037 		const struct sfdp_4bait *erase = &erases[i];
1038 
1039 		if (dwords[0] & erase->supported_bit)
1040 			erase_mask |= BIT(i);
1041 	}
1042 
1043 	/* Replicate the sort done for the map's erase types in BFPT. */
1044 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1045 
1046 	/*
1047 	 * We need at least one 4-byte op code per read, program and erase
1048 	 * operation; the .read(), .write() and .erase() hooks share the
1049 	 * nor->addr_nbytes value.
1050 	 */
1051 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1052 		goto out;
1053 
1054 	/*
1055 	 * Discard all operations from the 4-byte instruction set which are
1056 	 * not supported by this memory.
1057 	 */
1058 	params->hwcaps.mask &= ~discard_hwcaps;
1059 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1060 
1061 	/* Use the 4-byte address instruction set. */
1062 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1063 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1064 
1065 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1066 	}
1067 
1068 	/* 4BAIT is the only SFDP table that indicates page program support. */
1069 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1070 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1071 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1072 		/*
1073 		 * Since xSPI Page Program opcode is backward compatible with
1074 		 * Legacy SPI, use Legacy SPI opcode there as well.
1075 		 */
1076 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1077 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1078 	}
1079 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1080 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1081 					SPINOR_OP_PP_1_1_4_4B,
1082 					SNOR_PROTO_1_1_4);
1083 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1084 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1085 					SPINOR_OP_PP_1_4_4_4B,
1086 					SNOR_PROTO_1_4_4);
1087 
1088 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1089 		if (erase_mask & BIT(i))
1090 			erase_type[i].opcode = (dwords[1] >>
1091 						erase_type[i].idx * 8) & 0xFF;
1092 		else
1093 			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1094 	}
1095 
1096 	/*
1097 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1098 	 * later because we already did the conversion to 4byte opcodes. Also,
1099 	 * this latest function implements a legacy quirk for the erase size of
1100 	 * Spansion memory. However this quirk is no longer needed with new
1101 	 * SFDP compliant memories.
1102 	 */
1103 	params->addr_nbytes = 4;
1104 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1105 
1106 	/* fall through */
1107 out:
1108 	kfree(dwords);
1109 	return ret;
1110 }
1111 
1112 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1113 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1114 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1115 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1116 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1117 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1118 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1119 
1120 /**
1121  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1122  * @nor:		pointer to a 'struct spi_nor'
1123  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1124  *			the Profile 1.0 Table length and version.
1125  *
1126  * Return: 0 on success, -errno otherwise.
1127  */
1128 static int spi_nor_parse_profile1(struct spi_nor *nor,
1129 				  const struct sfdp_parameter_header *profile1_header)
1130 {
1131 	u32 *dwords, addr;
1132 	size_t len;
1133 	int ret;
1134 	u8 dummy, opcode;
1135 
1136 	len = profile1_header->length * sizeof(*dwords);
1137 	dwords = kmalloc(len, GFP_KERNEL);
1138 	if (!dwords)
1139 		return -ENOMEM;
1140 
1141 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1142 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1143 	if (ret)
1144 		goto out;
1145 
1146 	le32_to_cpu_array(dwords, profile1_header->length);
1147 
1148 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1149 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1150 
1151 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1152 	if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1153 		nor->params->rdsr_dummy = 8;
1154 	else
1155 		nor->params->rdsr_dummy = 4;
1156 
1157 	if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1158 		nor->params->rdsr_addr_nbytes = 4;
1159 	else
1160 		nor->params->rdsr_addr_nbytes = 0;
1161 
1162 	/*
1163 	 * We don't know what speed the controller is running at. Find the
1164 	 * dummy cycles for the fastest frequency the flash can run at to be
1165 	 * sure we are never short of dummy cycles. A value of 0 means the
1166 	 * frequency is not supported.
1167 	 *
1168 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1169 	 * flashes set the correct value if needed in their fixup hooks.
1170 	 */
1171 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1172 	if (!dummy)
1173 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1174 	if (!dummy)
1175 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1176 	if (!dummy)
1177 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1178 	if (!dummy)
1179 		dev_dbg(nor->dev,
1180 			"Can't find dummy cycles from Profile 1.0 table\n");
1181 
1182 	/* Round up to an even value to avoid tripping controllers up. */
1183 	dummy = round_up(dummy, 2);
1184 
1185 	/* Update the fast read settings. */
1186 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1187 				  0, dummy, opcode,
1188 				  SNOR_PROTO_8_8_8_DTR);
1189 
1190 out:
1191 	kfree(dwords);
1192 	return ret;
1193 }
1194 
1195 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1196 
1197 /**
1198  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1199  *                        Map.
1200  * @nor:		pointer to a 'struct spi_nor'
1201  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1202  *			the SCCR Map table length and version.
1203  *
1204  * Return: 0 on success, -errno otherwise.
1205  */
1206 static int spi_nor_parse_sccr(struct spi_nor *nor,
1207 			      const struct sfdp_parameter_header *sccr_header)
1208 {
1209 	u32 *dwords, addr;
1210 	size_t len;
1211 	int ret;
1212 
1213 	len = sccr_header->length * sizeof(*dwords);
1214 	dwords = kmalloc(len, GFP_KERNEL);
1215 	if (!dwords)
1216 		return -ENOMEM;
1217 
1218 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1219 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1220 	if (ret)
1221 		goto out;
1222 
1223 	le32_to_cpu_array(dwords, sccr_header->length);
1224 
1225 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1226 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1227 
1228 out:
1229 	kfree(dwords);
1230 	return ret;
1231 }
1232 
1233 /**
1234  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1235  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1236  * tables.
1237  * @nor:	pointer to a 'struct spi_nor'
1238  *
1239  * Used to tweak various flash parameters when information provided by the SFDP
1240  * tables are wrong.
1241  */
1242 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1243 {
1244 	if (nor->manufacturer && nor->manufacturer->fixups &&
1245 	    nor->manufacturer->fixups->post_sfdp)
1246 		nor->manufacturer->fixups->post_sfdp(nor);
1247 
1248 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1249 		nor->info->fixups->post_sfdp(nor);
1250 }
1251 
1252 /**
1253  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1254  * @nor:		pointer to a 'struct spi_nor'
1255  *
1256  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1257  * specification. This is a standard which tends to supported by almost all
1258  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1259  * runtime the main parameters needed to perform basic SPI flash operations such
1260  * as Fast Read, Page Program or Sector Erase commands.
1261  *
1262  * Return: 0 on success, -errno otherwise.
1263  */
1264 int spi_nor_parse_sfdp(struct spi_nor *nor)
1265 {
1266 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1267 	struct sfdp_parameter_header *param_headers = NULL;
1268 	struct sfdp_header header;
1269 	struct device *dev = nor->dev;
1270 	struct sfdp *sfdp;
1271 	size_t sfdp_size;
1272 	size_t psize;
1273 	int i, err;
1274 
1275 	/* Get the SFDP header. */
1276 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1277 	if (err < 0)
1278 		return err;
1279 
1280 	/* Check the SFDP header version. */
1281 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1282 	    header.major != SFDP_JESD216_MAJOR)
1283 		return -EINVAL;
1284 
1285 	/*
1286 	 * Verify that the first and only mandatory parameter header is a
1287 	 * Basic Flash Parameter Table header as specified in JESD216.
1288 	 */
1289 	bfpt_header = &header.bfpt_header;
1290 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1291 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1292 		return -EINVAL;
1293 
1294 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1295 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1296 
1297 	/*
1298 	 * Allocate memory then read all parameter headers with a single
1299 	 * Read SFDP command. These parameter headers will actually be parsed
1300 	 * twice: a first time to get the latest revision of the basic flash
1301 	 * parameter table, then a second time to handle the supported optional
1302 	 * tables.
1303 	 * Hence we read the parameter headers once for all to reduce the
1304 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1305 	 * because we don't need to keep these parameter headers: the allocated
1306 	 * memory is always released with kfree() before exiting this function.
1307 	 */
1308 	if (header.nph) {
1309 		psize = header.nph * sizeof(*param_headers);
1310 
1311 		param_headers = kmalloc(psize, GFP_KERNEL);
1312 		if (!param_headers)
1313 			return -ENOMEM;
1314 
1315 		err = spi_nor_read_sfdp(nor, sizeof(header),
1316 					psize, param_headers);
1317 		if (err < 0) {
1318 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1319 			goto exit;
1320 		}
1321 	}
1322 
1323 	/*
1324 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1325 	 * SFDP after probe time and we need it for the sysfs access.
1326 	 */
1327 	for (i = 0; i < header.nph; i++) {
1328 		param_header = &param_headers[i];
1329 		sfdp_size = max_t(size_t, sfdp_size,
1330 				  SFDP_PARAM_HEADER_PTP(param_header) +
1331 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1332 	}
1333 
1334 	/*
1335 	 * Limit the total size to a reasonable value to avoid allocating too
1336 	 * much memory just of because the flash returned some insane values.
1337 	 */
1338 	if (sfdp_size > PAGE_SIZE) {
1339 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1340 			sfdp_size);
1341 		sfdp_size = PAGE_SIZE;
1342 	}
1343 
1344 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1345 	if (!sfdp) {
1346 		err = -ENOMEM;
1347 		goto exit;
1348 	}
1349 
1350 	/*
1351 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1352 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1353 	 * is not spec compliant, make sure that we have enough space to store
1354 	 * the complete SFDP data.
1355 	 */
1356 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1357 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1358 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1359 	if (!sfdp->dwords) {
1360 		err = -ENOMEM;
1361 		devm_kfree(dev, sfdp);
1362 		goto exit;
1363 	}
1364 
1365 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1366 	if (err < 0) {
1367 		dev_dbg(dev, "failed to read SFDP data\n");
1368 		devm_kfree(dev, sfdp->dwords);
1369 		devm_kfree(dev, sfdp);
1370 		goto exit;
1371 	}
1372 
1373 	nor->sfdp = sfdp;
1374 
1375 	/*
1376 	 * Check other parameter headers to get the latest revision of
1377 	 * the basic flash parameter table.
1378 	 */
1379 	for (i = 0; i < header.nph; i++) {
1380 		param_header = &param_headers[i];
1381 
1382 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1383 		    param_header->major == SFDP_JESD216_MAJOR &&
1384 		    (param_header->minor > bfpt_header->minor ||
1385 		     (param_header->minor == bfpt_header->minor &&
1386 		      param_header->length > bfpt_header->length)))
1387 			bfpt_header = param_header;
1388 	}
1389 
1390 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1391 	if (err)
1392 		goto exit;
1393 
1394 	/* Parse optional parameter tables. */
1395 	for (i = 0; i < header.nph; i++) {
1396 		param_header = &param_headers[i];
1397 
1398 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1399 		case SFDP_SECTOR_MAP_ID:
1400 			err = spi_nor_parse_smpt(nor, param_header);
1401 			break;
1402 
1403 		case SFDP_4BAIT_ID:
1404 			err = spi_nor_parse_4bait(nor, param_header);
1405 			break;
1406 
1407 		case SFDP_PROFILE1_ID:
1408 			err = spi_nor_parse_profile1(nor, param_header);
1409 			break;
1410 
1411 		case SFDP_SCCR_MAP_ID:
1412 			err = spi_nor_parse_sccr(nor, param_header);
1413 			break;
1414 
1415 		default:
1416 			break;
1417 		}
1418 
1419 		if (err) {
1420 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1421 				 SFDP_PARAM_HEADER_ID(param_header));
1422 			/*
1423 			 * Let's not drop all information we extracted so far
1424 			 * if optional table parsers fail. In case of failing,
1425 			 * each optional parser is responsible to roll back to
1426 			 * the previously known spi_nor data.
1427 			 */
1428 			err = 0;
1429 		}
1430 	}
1431 
1432 	spi_nor_post_sfdp_fixups(nor);
1433 exit:
1434 	kfree(param_headers);
1435 	return err;
1436 }
1437