1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2005, Intec Automation Inc. 4 * Copyright (C) 2014, Freescale Semiconductor, Inc. 5 */ 6 7 #include <linux/bitfield.h> 8 #include <linux/slab.h> 9 #include <linux/sort.h> 10 #include <linux/mtd/spi-nor.h> 11 12 #include "core.h" 13 14 #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) 15 #define SFDP_PARAM_HEADER_PTP(p) \ 16 (((p)->parameter_table_pointer[2] << 16) | \ 17 ((p)->parameter_table_pointer[1] << 8) | \ 18 ((p)->parameter_table_pointer[0] << 0)) 19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) 20 21 #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ 22 #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ 23 #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ 24 #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ 25 #define SFDP_SCCR_MAP_ID 0xff87 /* 26 * Status, Control and Configuration 27 * Register Map. 28 */ 29 30 #define SFDP_SIGNATURE 0x50444653U 31 32 struct sfdp_header { 33 u32 signature; /* Ox50444653U <=> "SFDP" */ 34 u8 minor; 35 u8 major; 36 u8 nph; /* 0-base number of parameter headers */ 37 u8 unused; 38 39 /* Basic Flash Parameter Table. */ 40 struct sfdp_parameter_header bfpt_header; 41 }; 42 43 /* Fast Read settings. */ 44 struct sfdp_bfpt_read { 45 /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ 46 u32 hwcaps; 47 48 /* 49 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us 50 * whether the Fast Read x-y-z command is supported. 51 */ 52 u32 supported_dword; 53 u32 supported_bit; 54 55 /* 56 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD 57 * encodes the op code, the number of mode clocks and the number of wait 58 * states to be used by Fast Read x-y-z command. 59 */ 60 u32 settings_dword; 61 u32 settings_shift; 62 63 /* The SPI protocol for this Fast Read x-y-z command. */ 64 enum spi_nor_protocol proto; 65 }; 66 67 struct sfdp_bfpt_erase { 68 /* 69 * The half-word at offset <shift> in DWORD <dword> encodes the 70 * op code and erase sector size to be used by Sector Erase commands. 71 */ 72 u32 dword; 73 u32 shift; 74 }; 75 76 #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) 77 #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) 78 #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) 79 #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) 80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) 81 82 #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) 83 #define SMPT_CMD_READ_DUMMY_SHIFT 16 84 #define SMPT_CMD_READ_DUMMY(_cmd) \ 85 (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) 86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL 87 88 #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) 89 #define SMPT_CMD_READ_DATA_SHIFT 24 90 #define SMPT_CMD_READ_DATA(_cmd) \ 91 (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) 92 93 #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) 94 #define SMPT_CMD_OPCODE_SHIFT 8 95 #define SMPT_CMD_OPCODE(_cmd) \ 96 (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) 97 98 #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) 99 #define SMPT_MAP_REGION_COUNT_SHIFT 16 100 #define SMPT_MAP_REGION_COUNT(_header) \ 101 ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ 102 SMPT_MAP_REGION_COUNT_SHIFT) + 1) 103 104 #define SMPT_MAP_ID_MASK GENMASK(15, 8) 105 #define SMPT_MAP_ID_SHIFT 8 106 #define SMPT_MAP_ID(_header) \ 107 (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) 108 109 #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) 110 #define SMPT_MAP_REGION_SIZE_SHIFT 8 111 #define SMPT_MAP_REGION_SIZE(_region) \ 112 (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ 113 SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) 114 115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) 116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ 117 ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) 118 119 #define SMPT_DESC_TYPE_MAP BIT(1) 120 #define SMPT_DESC_END BIT(0) 121 122 #define SFDP_4BAIT_DWORD_MAX 2 123 124 struct sfdp_4bait { 125 /* The hardware capability. */ 126 u32 hwcaps; 127 128 /* 129 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether 130 * the associated 4-byte address op code is supported. 131 */ 132 u32 supported_bit; 133 }; 134 135 /** 136 * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, 137 * addr_width and read_dummy members of the struct spi_nor 138 * should be previously 139 * set. 140 * @nor: pointer to a 'struct spi_nor' 141 * @addr: offset in the serial flash memory 142 * @len: number of bytes to read 143 * @buf: buffer where the data is copied into (dma-safe memory) 144 * 145 * Return: 0 on success, -errno otherwise. 146 */ 147 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) 148 { 149 ssize_t ret; 150 151 while (len) { 152 ret = spi_nor_read_data(nor, addr, len, buf); 153 if (ret < 0) 154 return ret; 155 if (!ret || ret > len) 156 return -EIO; 157 158 buf += ret; 159 addr += ret; 160 len -= ret; 161 } 162 return 0; 163 } 164 165 /** 166 * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. 167 * @nor: pointer to a 'struct spi_nor' 168 * @addr: offset in the SFDP area to start reading data from 169 * @len: number of bytes to read 170 * @buf: buffer where the SFDP data are copied into (dma-safe memory) 171 * 172 * Whatever the actual numbers of bytes for address and dummy cycles are 173 * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always 174 * followed by a 3-byte address and 8 dummy clock cycles. 175 * 176 * Return: 0 on success, -errno otherwise. 177 */ 178 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, 179 size_t len, void *buf) 180 { 181 u8 addr_width, read_opcode, read_dummy; 182 int ret; 183 184 read_opcode = nor->read_opcode; 185 addr_width = nor->addr_width; 186 read_dummy = nor->read_dummy; 187 188 nor->read_opcode = SPINOR_OP_RDSFDP; 189 nor->addr_width = 3; 190 nor->read_dummy = 8; 191 192 ret = spi_nor_read_raw(nor, addr, len, buf); 193 194 nor->read_opcode = read_opcode; 195 nor->addr_width = addr_width; 196 nor->read_dummy = read_dummy; 197 198 return ret; 199 } 200 201 /** 202 * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. 203 * @nor: pointer to a 'struct spi_nor' 204 * @addr: offset in the SFDP area to start reading data from 205 * @len: number of bytes to read 206 * @buf: buffer where the SFDP data are copied into 207 * 208 * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not 209 * guaranteed to be dma-safe. 210 * 211 * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() 212 * otherwise. 213 */ 214 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, 215 size_t len, void *buf) 216 { 217 void *dma_safe_buf; 218 int ret; 219 220 dma_safe_buf = kmalloc(len, GFP_KERNEL); 221 if (!dma_safe_buf) 222 return -ENOMEM; 223 224 ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); 225 memcpy(buf, dma_safe_buf, len); 226 kfree(dma_safe_buf); 227 228 return ret; 229 } 230 231 static void 232 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, 233 u16 half, 234 enum spi_nor_protocol proto) 235 { 236 read->num_mode_clocks = (half >> 5) & 0x07; 237 read->num_wait_states = (half >> 0) & 0x1f; 238 read->opcode = (half >> 8) & 0xff; 239 read->proto = proto; 240 } 241 242 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { 243 /* Fast Read 1-1-2 */ 244 { 245 SNOR_HWCAPS_READ_1_1_2, 246 BFPT_DWORD(1), BIT(16), /* Supported bit */ 247 BFPT_DWORD(4), 0, /* Settings */ 248 SNOR_PROTO_1_1_2, 249 }, 250 251 /* Fast Read 1-2-2 */ 252 { 253 SNOR_HWCAPS_READ_1_2_2, 254 BFPT_DWORD(1), BIT(20), /* Supported bit */ 255 BFPT_DWORD(4), 16, /* Settings */ 256 SNOR_PROTO_1_2_2, 257 }, 258 259 /* Fast Read 2-2-2 */ 260 { 261 SNOR_HWCAPS_READ_2_2_2, 262 BFPT_DWORD(5), BIT(0), /* Supported bit */ 263 BFPT_DWORD(6), 16, /* Settings */ 264 SNOR_PROTO_2_2_2, 265 }, 266 267 /* Fast Read 1-1-4 */ 268 { 269 SNOR_HWCAPS_READ_1_1_4, 270 BFPT_DWORD(1), BIT(22), /* Supported bit */ 271 BFPT_DWORD(3), 16, /* Settings */ 272 SNOR_PROTO_1_1_4, 273 }, 274 275 /* Fast Read 1-4-4 */ 276 { 277 SNOR_HWCAPS_READ_1_4_4, 278 BFPT_DWORD(1), BIT(21), /* Supported bit */ 279 BFPT_DWORD(3), 0, /* Settings */ 280 SNOR_PROTO_1_4_4, 281 }, 282 283 /* Fast Read 4-4-4 */ 284 { 285 SNOR_HWCAPS_READ_4_4_4, 286 BFPT_DWORD(5), BIT(4), /* Supported bit */ 287 BFPT_DWORD(7), 16, /* Settings */ 288 SNOR_PROTO_4_4_4, 289 }, 290 }; 291 292 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { 293 /* Erase Type 1 in DWORD8 bits[15:0] */ 294 {BFPT_DWORD(8), 0}, 295 296 /* Erase Type 2 in DWORD8 bits[31:16] */ 297 {BFPT_DWORD(8), 16}, 298 299 /* Erase Type 3 in DWORD9 bits[15:0] */ 300 {BFPT_DWORD(9), 0}, 301 302 /* Erase Type 4 in DWORD9 bits[31:16] */ 303 {BFPT_DWORD(9), 16}, 304 }; 305 306 /** 307 * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT 308 * @erase: pointer to a structure that describes a SPI NOR erase type 309 * @size: the size of the sector/block erased by the erase type 310 * @opcode: the SPI command op code to erase the sector/block 311 * @i: erase type index as sorted in the Basic Flash Parameter Table 312 * 313 * The supported Erase Types will be sorted at init in ascending order, with 314 * the smallest Erase Type size being the first member in the erase_type array 315 * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in 316 * the Basic Flash Parameter Table since it will be used later on to 317 * synchronize with the supported Erase Types defined in SFDP optional tables. 318 */ 319 static void 320 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, 321 u32 size, u8 opcode, u8 i) 322 { 323 erase->idx = i; 324 spi_nor_set_erase_type(erase, size, opcode); 325 } 326 327 /** 328 * spi_nor_map_cmp_erase_type() - compare the map's erase types by size 329 * @l: member in the left half of the map's erase_type array 330 * @r: member in the right half of the map's erase_type array 331 * 332 * Comparison function used in the sort() call to sort in ascending order the 333 * map's erase types, the smallest erase type size being the first member in the 334 * sorted erase_type array. 335 * 336 * Return: the result of @l->size - @r->size 337 */ 338 static int spi_nor_map_cmp_erase_type(const void *l, const void *r) 339 { 340 const struct spi_nor_erase_type *left = l, *right = r; 341 342 return left->size - right->size; 343 } 344 345 /** 346 * spi_nor_sort_erase_mask() - sort erase mask 347 * @map: the erase map of the SPI NOR 348 * @erase_mask: the erase type mask to be sorted 349 * 350 * Replicate the sort done for the map's erase types in BFPT: sort the erase 351 * mask in ascending order with the smallest erase type size starting from 352 * BIT(0) in the sorted erase mask. 353 * 354 * Return: sorted erase mask. 355 */ 356 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) 357 { 358 struct spi_nor_erase_type *erase_type = map->erase_type; 359 int i; 360 u8 sorted_erase_mask = 0; 361 362 if (!erase_mask) 363 return 0; 364 365 /* Replicate the sort done for the map's erase types. */ 366 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 367 if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) 368 sorted_erase_mask |= BIT(i); 369 370 return sorted_erase_mask; 371 } 372 373 /** 374 * spi_nor_regions_sort_erase_types() - sort erase types in each region 375 * @map: the erase map of the SPI NOR 376 * 377 * Function assumes that the erase types defined in the erase map are already 378 * sorted in ascending order, with the smallest erase type size being the first 379 * member in the erase_type array. It replicates the sort done for the map's 380 * erase types. Each region's erase bitmask will indicate which erase types are 381 * supported from the sorted erase types defined in the erase map. 382 * Sort the all region's erase type at init in order to speed up the process of 383 * finding the best erase command at runtime. 384 */ 385 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) 386 { 387 struct spi_nor_erase_region *region = map->regions; 388 u8 region_erase_mask, sorted_erase_mask; 389 390 while (region) { 391 region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 392 393 sorted_erase_mask = spi_nor_sort_erase_mask(map, 394 region_erase_mask); 395 396 /* Overwrite erase mask. */ 397 region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) | 398 sorted_erase_mask; 399 400 region = spi_nor_region_next(region); 401 } 402 } 403 404 /** 405 * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. 406 * @nor: pointer to a 'struct spi_nor' 407 * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing 408 * the Basic Flash Parameter Table length and version 409 * 410 * The Basic Flash Parameter Table is the main and only mandatory table as 411 * defined by the SFDP (JESD216) specification. 412 * It provides us with the total size (memory density) of the data array and 413 * the number of address bytes for Fast Read, Page Program and Sector Erase 414 * commands. 415 * For Fast READ commands, it also gives the number of mode clock cycles and 416 * wait states (regrouped in the number of dummy clock cycles) for each 417 * supported instruction op code. 418 * For Page Program, the page size is now available since JESD216 rev A, however 419 * the supported instruction op codes are still not provided. 420 * For Sector Erase commands, this table stores the supported instruction op 421 * codes and the associated sector sizes. 422 * Finally, the Quad Enable Requirements (QER) are also available since JESD216 423 * rev A. The QER bits encode the manufacturer dependent procedure to be 424 * executed to set the Quad Enable (QE) bit in some internal register of the 425 * Quad SPI memory. Indeed the QE bit, when it exists, must be set before 426 * sending any Quad SPI command to the memory. Actually, setting the QE bit 427 * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 428 * and IO3 hence enabling 4 (Quad) I/O lines. 429 * 430 * Return: 0 on success, -errno otherwise. 431 */ 432 static int spi_nor_parse_bfpt(struct spi_nor *nor, 433 const struct sfdp_parameter_header *bfpt_header) 434 { 435 struct spi_nor_flash_parameter *params = nor->params; 436 struct spi_nor_erase_map *map = ¶ms->erase_map; 437 struct spi_nor_erase_type *erase_type = map->erase_type; 438 struct sfdp_bfpt bfpt; 439 size_t len; 440 int i, cmd, err; 441 u32 addr, val; 442 u16 half; 443 u8 erase_mask; 444 445 /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ 446 if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) 447 return -EINVAL; 448 449 /* Read the Basic Flash Parameter Table. */ 450 len = min_t(size_t, sizeof(bfpt), 451 bfpt_header->length * sizeof(u32)); 452 addr = SFDP_PARAM_HEADER_PTP(bfpt_header); 453 memset(&bfpt, 0, sizeof(bfpt)); 454 err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); 455 if (err < 0) 456 return err; 457 458 /* Fix endianness of the BFPT DWORDs. */ 459 le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); 460 461 /* Number of address bytes. */ 462 switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { 463 case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: 464 case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: 465 nor->addr_width = 3; 466 break; 467 468 case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: 469 nor->addr_width = 4; 470 break; 471 472 default: 473 break; 474 } 475 476 /* Flash Memory Density (in bits). */ 477 val = bfpt.dwords[BFPT_DWORD(2)]; 478 if (val & BIT(31)) { 479 val &= ~BIT(31); 480 481 /* 482 * Prevent overflows on params->size. Anyway, a NOR of 2^64 483 * bits is unlikely to exist so this error probably means 484 * the BFPT we are reading is corrupted/wrong. 485 */ 486 if (val > 63) 487 return -EINVAL; 488 489 params->size = 1ULL << val; 490 } else { 491 params->size = val + 1; 492 } 493 params->size >>= 3; /* Convert to bytes. */ 494 495 /* Fast Read settings. */ 496 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { 497 const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; 498 struct spi_nor_read_command *read; 499 500 if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { 501 params->hwcaps.mask &= ~rd->hwcaps; 502 continue; 503 } 504 505 params->hwcaps.mask |= rd->hwcaps; 506 cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); 507 read = ¶ms->reads[cmd]; 508 half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; 509 spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); 510 } 511 512 /* 513 * Sector Erase settings. Reinitialize the uniform erase map using the 514 * Erase Types defined in the bfpt table. 515 */ 516 erase_mask = 0; 517 memset(¶ms->erase_map, 0, sizeof(params->erase_map)); 518 for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { 519 const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; 520 u32 erasesize; 521 u8 opcode; 522 523 half = bfpt.dwords[er->dword] >> er->shift; 524 erasesize = half & 0xff; 525 526 /* erasesize == 0 means this Erase Type is not supported. */ 527 if (!erasesize) 528 continue; 529 530 erasesize = 1U << erasesize; 531 opcode = (half >> 8) & 0xff; 532 erase_mask |= BIT(i); 533 spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, 534 opcode, i); 535 } 536 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 537 /* 538 * Sort all the map's Erase Types in ascending order with the smallest 539 * erase size being the first member in the erase_type array. 540 */ 541 sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), 542 spi_nor_map_cmp_erase_type, NULL); 543 /* 544 * Sort the erase types in the uniform region in order to update the 545 * uniform_erase_type bitmask. The bitmask will be used later on when 546 * selecting the uniform erase. 547 */ 548 spi_nor_regions_sort_erase_types(map); 549 map->uniform_erase_type = map->uniform_region.offset & 550 SNOR_ERASE_TYPE_MASK; 551 552 /* Stop here if not JESD216 rev A or later. */ 553 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) 554 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 555 556 /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ 557 val = bfpt.dwords[BFPT_DWORD(11)]; 558 val &= BFPT_DWORD11_PAGE_SIZE_MASK; 559 val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; 560 params->page_size = 1U << val; 561 562 /* Quad Enable Requirements. */ 563 switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) { 564 case BFPT_DWORD15_QER_NONE: 565 params->quad_enable = NULL; 566 break; 567 568 case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: 569 /* 570 * Writing only one byte to the Status Register has the 571 * side-effect of clearing Status Register 2. 572 */ 573 case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: 574 /* 575 * Read Configuration Register (35h) instruction is not 576 * supported. 577 */ 578 nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; 579 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 580 break; 581 582 case BFPT_DWORD15_QER_SR1_BIT6: 583 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 584 params->quad_enable = spi_nor_sr1_bit6_quad_enable; 585 break; 586 587 case BFPT_DWORD15_QER_SR2_BIT7: 588 nor->flags &= ~SNOR_F_HAS_16BIT_SR; 589 params->quad_enable = spi_nor_sr2_bit7_quad_enable; 590 break; 591 592 case BFPT_DWORD15_QER_SR2_BIT1: 593 /* 594 * JESD216 rev B or later does not specify if writing only one 595 * byte to the Status Register clears or not the Status 596 * Register 2, so let's be cautious and keep the default 597 * assumption of a 16-bit Write Status (01h) command. 598 */ 599 nor->flags |= SNOR_F_HAS_16BIT_SR; 600 601 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 602 break; 603 604 default: 605 dev_dbg(nor->dev, "BFPT QER reserved value used\n"); 606 break; 607 } 608 609 /* Soft Reset support. */ 610 if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) 611 nor->flags |= SNOR_F_SOFT_RESET; 612 613 /* Stop here if not JESD216 rev C or later. */ 614 if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) 615 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 616 617 /* 8D-8D-8D command extension. */ 618 switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { 619 case BFPT_DWORD18_CMD_EXT_REP: 620 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; 621 break; 622 623 case BFPT_DWORD18_CMD_EXT_INV: 624 nor->cmd_ext_type = SPI_NOR_EXT_INVERT; 625 break; 626 627 case BFPT_DWORD18_CMD_EXT_RES: 628 dev_dbg(nor->dev, "Reserved command extension used\n"); 629 break; 630 631 case BFPT_DWORD18_CMD_EXT_16B: 632 dev_dbg(nor->dev, "16-bit opcodes not supported\n"); 633 return -EOPNOTSUPP; 634 } 635 636 return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); 637 } 638 639 /** 640 * spi_nor_smpt_addr_width() - return the address width used in the 641 * configuration detection command. 642 * @nor: pointer to a 'struct spi_nor' 643 * @settings: configuration detection command descriptor, dword1 644 */ 645 static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings) 646 { 647 switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { 648 case SMPT_CMD_ADDRESS_LEN_0: 649 return 0; 650 case SMPT_CMD_ADDRESS_LEN_3: 651 return 3; 652 case SMPT_CMD_ADDRESS_LEN_4: 653 return 4; 654 case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: 655 default: 656 return nor->addr_width; 657 } 658 } 659 660 /** 661 * spi_nor_smpt_read_dummy() - return the configuration detection command read 662 * latency, in clock cycles. 663 * @nor: pointer to a 'struct spi_nor' 664 * @settings: configuration detection command descriptor, dword1 665 * 666 * Return: the number of dummy cycles for an SMPT read 667 */ 668 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) 669 { 670 u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); 671 672 if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) 673 return nor->read_dummy; 674 return read_dummy; 675 } 676 677 /** 678 * spi_nor_get_map_in_use() - get the configuration map in use 679 * @nor: pointer to a 'struct spi_nor' 680 * @smpt: pointer to the sector map parameter table 681 * @smpt_len: sector map parameter table length 682 * 683 * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. 684 */ 685 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, 686 u8 smpt_len) 687 { 688 const u32 *ret; 689 u8 *buf; 690 u32 addr; 691 int err; 692 u8 i; 693 u8 addr_width, read_opcode, read_dummy; 694 u8 read_data_mask, map_id; 695 696 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 697 buf = kmalloc(sizeof(*buf), GFP_KERNEL); 698 if (!buf) 699 return ERR_PTR(-ENOMEM); 700 701 addr_width = nor->addr_width; 702 read_dummy = nor->read_dummy; 703 read_opcode = nor->read_opcode; 704 705 map_id = 0; 706 /* Determine if there are any optional Detection Command Descriptors */ 707 for (i = 0; i < smpt_len; i += 2) { 708 if (smpt[i] & SMPT_DESC_TYPE_MAP) 709 break; 710 711 read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); 712 nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]); 713 nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); 714 nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); 715 addr = smpt[i + 1]; 716 717 err = spi_nor_read_raw(nor, addr, 1, buf); 718 if (err) { 719 ret = ERR_PTR(err); 720 goto out; 721 } 722 723 /* 724 * Build an index value that is used to select the Sector Map 725 * Configuration that is currently in use. 726 */ 727 map_id = map_id << 1 | !!(*buf & read_data_mask); 728 } 729 730 /* 731 * If command descriptors are provided, they always precede map 732 * descriptors in the table. There is no need to start the iteration 733 * over smpt array all over again. 734 * 735 * Find the matching configuration map. 736 */ 737 ret = ERR_PTR(-EINVAL); 738 while (i < smpt_len) { 739 if (SMPT_MAP_ID(smpt[i]) == map_id) { 740 ret = smpt + i; 741 break; 742 } 743 744 /* 745 * If there are no more configuration map descriptors and no 746 * configuration ID matched the configuration identifier, the 747 * sector address map is unknown. 748 */ 749 if (smpt[i] & SMPT_DESC_END) 750 break; 751 752 /* increment the table index to the next map */ 753 i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; 754 } 755 756 /* fall through */ 757 out: 758 kfree(buf); 759 nor->addr_width = addr_width; 760 nor->read_dummy = read_dummy; 761 nor->read_opcode = read_opcode; 762 return ret; 763 } 764 765 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region) 766 { 767 region->offset |= SNOR_LAST_REGION; 768 } 769 770 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region) 771 { 772 region->offset |= SNOR_OVERLAID_REGION; 773 } 774 775 /** 776 * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid 777 * @region: pointer to a structure that describes a SPI NOR erase region 778 * @erase: pointer to a structure that describes a SPI NOR erase type 779 * @erase_type: erase type bitmask 780 */ 781 static void 782 spi_nor_region_check_overlay(struct spi_nor_erase_region *region, 783 const struct spi_nor_erase_type *erase, 784 const u8 erase_type) 785 { 786 int i; 787 788 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 789 if (!(erase[i].size && erase_type & BIT(erase[i].idx))) 790 continue; 791 if (region->size & erase[i].size_mask) { 792 spi_nor_region_mark_overlay(region); 793 return; 794 } 795 } 796 } 797 798 /** 799 * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map 800 * @nor: pointer to a 'struct spi_nor' 801 * @smpt: pointer to the sector map parameter table 802 * 803 * Return: 0 on success, -errno otherwise. 804 */ 805 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, 806 const u32 *smpt) 807 { 808 struct spi_nor_erase_map *map = &nor->params->erase_map; 809 struct spi_nor_erase_type *erase = map->erase_type; 810 struct spi_nor_erase_region *region; 811 u64 offset; 812 u32 region_count; 813 int i, j; 814 u8 uniform_erase_type, save_uniform_erase_type; 815 u8 erase_type, regions_erase_type; 816 817 region_count = SMPT_MAP_REGION_COUNT(*smpt); 818 /* 819 * The regions will be freed when the driver detaches from the 820 * device. 821 */ 822 region = devm_kcalloc(nor->dev, region_count, sizeof(*region), 823 GFP_KERNEL); 824 if (!region) 825 return -ENOMEM; 826 map->regions = region; 827 828 uniform_erase_type = 0xff; 829 regions_erase_type = 0; 830 offset = 0; 831 /* Populate regions. */ 832 for (i = 0; i < region_count; i++) { 833 j = i + 1; /* index for the region dword */ 834 region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); 835 erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); 836 region[i].offset = offset | erase_type; 837 838 spi_nor_region_check_overlay(®ion[i], erase, erase_type); 839 840 /* 841 * Save the erase types that are supported in all regions and 842 * can erase the entire flash memory. 843 */ 844 uniform_erase_type &= erase_type; 845 846 /* 847 * regions_erase_type mask will indicate all the erase types 848 * supported in this configuration map. 849 */ 850 regions_erase_type |= erase_type; 851 852 offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) + 853 region[i].size; 854 } 855 spi_nor_region_mark_end(®ion[i - 1]); 856 857 save_uniform_erase_type = map->uniform_erase_type; 858 map->uniform_erase_type = spi_nor_sort_erase_mask(map, 859 uniform_erase_type); 860 861 if (!regions_erase_type) { 862 /* 863 * Roll back to the previous uniform_erase_type mask, SMPT is 864 * broken. 865 */ 866 map->uniform_erase_type = save_uniform_erase_type; 867 return -EINVAL; 868 } 869 870 /* 871 * BFPT advertises all the erase types supported by all the possible 872 * map configurations. Mask out the erase types that are not supported 873 * by the current map configuration. 874 */ 875 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) 876 if (!(regions_erase_type & BIT(erase[i].idx))) 877 spi_nor_set_erase_type(&erase[i], 0, 0xFF); 878 879 return 0; 880 } 881 882 /** 883 * spi_nor_parse_smpt() - parse Sector Map Parameter Table 884 * @nor: pointer to a 'struct spi_nor' 885 * @smpt_header: sector map parameter table header 886 * 887 * This table is optional, but when available, we parse it to identify the 888 * location and size of sectors within the main data array of the flash memory 889 * device and to identify which Erase Types are supported by each sector. 890 * 891 * Return: 0 on success, -errno otherwise. 892 */ 893 static int spi_nor_parse_smpt(struct spi_nor *nor, 894 const struct sfdp_parameter_header *smpt_header) 895 { 896 const u32 *sector_map; 897 u32 *smpt; 898 size_t len; 899 u32 addr; 900 int ret; 901 902 /* Read the Sector Map Parameter Table. */ 903 len = smpt_header->length * sizeof(*smpt); 904 smpt = kmalloc(len, GFP_KERNEL); 905 if (!smpt) 906 return -ENOMEM; 907 908 addr = SFDP_PARAM_HEADER_PTP(smpt_header); 909 ret = spi_nor_read_sfdp(nor, addr, len, smpt); 910 if (ret) 911 goto out; 912 913 /* Fix endianness of the SMPT DWORDs. */ 914 le32_to_cpu_array(smpt, smpt_header->length); 915 916 sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); 917 if (IS_ERR(sector_map)) { 918 ret = PTR_ERR(sector_map); 919 goto out; 920 } 921 922 ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); 923 if (ret) 924 goto out; 925 926 spi_nor_regions_sort_erase_types(&nor->params->erase_map); 927 /* fall through */ 928 out: 929 kfree(smpt); 930 return ret; 931 } 932 933 /** 934 * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table 935 * @nor: pointer to a 'struct spi_nor'. 936 * @param_header: pointer to the 'struct sfdp_parameter_header' describing 937 * the 4-Byte Address Instruction Table length and version. 938 * 939 * Return: 0 on success, -errno otherwise. 940 */ 941 static int spi_nor_parse_4bait(struct spi_nor *nor, 942 const struct sfdp_parameter_header *param_header) 943 { 944 static const struct sfdp_4bait reads[] = { 945 { SNOR_HWCAPS_READ, BIT(0) }, 946 { SNOR_HWCAPS_READ_FAST, BIT(1) }, 947 { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, 948 { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, 949 { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, 950 { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, 951 { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, 952 { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, 953 { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, 954 }; 955 static const struct sfdp_4bait programs[] = { 956 { SNOR_HWCAPS_PP, BIT(6) }, 957 { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, 958 { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, 959 }; 960 static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { 961 { 0u /* not used */, BIT(9) }, 962 { 0u /* not used */, BIT(10) }, 963 { 0u /* not used */, BIT(11) }, 964 { 0u /* not used */, BIT(12) }, 965 }; 966 struct spi_nor_flash_parameter *params = nor->params; 967 struct spi_nor_pp_command *params_pp = params->page_programs; 968 struct spi_nor_erase_map *map = ¶ms->erase_map; 969 struct spi_nor_erase_type *erase_type = map->erase_type; 970 u32 *dwords; 971 size_t len; 972 u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; 973 int i, ret; 974 975 if (param_header->major != SFDP_JESD216_MAJOR || 976 param_header->length < SFDP_4BAIT_DWORD_MAX) 977 return -EINVAL; 978 979 /* Read the 4-byte Address Instruction Table. */ 980 len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; 981 982 /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ 983 dwords = kmalloc(len, GFP_KERNEL); 984 if (!dwords) 985 return -ENOMEM; 986 987 addr = SFDP_PARAM_HEADER_PTP(param_header); 988 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 989 if (ret) 990 goto out; 991 992 /* Fix endianness of the 4BAIT DWORDs. */ 993 le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); 994 995 /* 996 * Compute the subset of (Fast) Read commands for which the 4-byte 997 * version is supported. 998 */ 999 discard_hwcaps = 0; 1000 read_hwcaps = 0; 1001 for (i = 0; i < ARRAY_SIZE(reads); i++) { 1002 const struct sfdp_4bait *read = &reads[i]; 1003 1004 discard_hwcaps |= read->hwcaps; 1005 if ((params->hwcaps.mask & read->hwcaps) && 1006 (dwords[0] & read->supported_bit)) 1007 read_hwcaps |= read->hwcaps; 1008 } 1009 1010 /* 1011 * Compute the subset of Page Program commands for which the 4-byte 1012 * version is supported. 1013 */ 1014 pp_hwcaps = 0; 1015 for (i = 0; i < ARRAY_SIZE(programs); i++) { 1016 const struct sfdp_4bait *program = &programs[i]; 1017 1018 /* 1019 * The 4 Byte Address Instruction (Optional) Table is the only 1020 * SFDP table that indicates support for Page Program Commands. 1021 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest 1022 * authority for specifying Page Program support. 1023 */ 1024 discard_hwcaps |= program->hwcaps; 1025 if (dwords[0] & program->supported_bit) 1026 pp_hwcaps |= program->hwcaps; 1027 } 1028 1029 /* 1030 * Compute the subset of Sector Erase commands for which the 4-byte 1031 * version is supported. 1032 */ 1033 erase_mask = 0; 1034 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1035 const struct sfdp_4bait *erase = &erases[i]; 1036 1037 if (dwords[0] & erase->supported_bit) 1038 erase_mask |= BIT(i); 1039 } 1040 1041 /* Replicate the sort done for the map's erase types in BFPT. */ 1042 erase_mask = spi_nor_sort_erase_mask(map, erase_mask); 1043 1044 /* 1045 * We need at least one 4-byte op code per read, program and erase 1046 * operation; the .read(), .write() and .erase() hooks share the 1047 * nor->addr_width value. 1048 */ 1049 if (!read_hwcaps || !pp_hwcaps || !erase_mask) 1050 goto out; 1051 1052 /* 1053 * Discard all operations from the 4-byte instruction set which are 1054 * not supported by this memory. 1055 */ 1056 params->hwcaps.mask &= ~discard_hwcaps; 1057 params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); 1058 1059 /* Use the 4-byte address instruction set. */ 1060 for (i = 0; i < SNOR_CMD_READ_MAX; i++) { 1061 struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; 1062 1063 read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); 1064 } 1065 1066 /* 4BAIT is the only SFDP table that indicates page program support. */ 1067 if (pp_hwcaps & SNOR_HWCAPS_PP) { 1068 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], 1069 SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); 1070 /* 1071 * Since xSPI Page Program opcode is backward compatible with 1072 * Legacy SPI, use Legacy SPI opcode there as well. 1073 */ 1074 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], 1075 SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); 1076 } 1077 if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) 1078 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], 1079 SPINOR_OP_PP_1_1_4_4B, 1080 SNOR_PROTO_1_1_4); 1081 if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) 1082 spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], 1083 SPINOR_OP_PP_1_4_4_4B, 1084 SNOR_PROTO_1_4_4); 1085 1086 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1087 if (erase_mask & BIT(i)) 1088 erase_type[i].opcode = (dwords[1] >> 1089 erase_type[i].idx * 8) & 0xFF; 1090 else 1091 spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF); 1092 } 1093 1094 /* 1095 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() 1096 * later because we already did the conversion to 4byte opcodes. Also, 1097 * this latest function implements a legacy quirk for the erase size of 1098 * Spansion memory. However this quirk is no longer needed with new 1099 * SFDP compliant memories. 1100 */ 1101 nor->addr_width = 4; 1102 nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; 1103 1104 /* fall through */ 1105 out: 1106 kfree(dwords); 1107 return ret; 1108 } 1109 1110 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) 1111 #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) 1112 #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) 1113 #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) 1114 #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) 1115 #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) 1116 #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) 1117 1118 /** 1119 * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table 1120 * @nor: pointer to a 'struct spi_nor' 1121 * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing 1122 * the Profile 1.0 Table length and version. 1123 * 1124 * Return: 0 on success, -errno otherwise. 1125 */ 1126 static int spi_nor_parse_profile1(struct spi_nor *nor, 1127 const struct sfdp_parameter_header *profile1_header) 1128 { 1129 u32 *dwords, addr; 1130 size_t len; 1131 int ret; 1132 u8 dummy, opcode; 1133 1134 len = profile1_header->length * sizeof(*dwords); 1135 dwords = kmalloc(len, GFP_KERNEL); 1136 if (!dwords) 1137 return -ENOMEM; 1138 1139 addr = SFDP_PARAM_HEADER_PTP(profile1_header); 1140 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1141 if (ret) 1142 goto out; 1143 1144 le32_to_cpu_array(dwords, profile1_header->length); 1145 1146 /* Get 8D-8D-8D fast read opcode and dummy cycles. */ 1147 opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]); 1148 1149 /* Set the Read Status Register dummy cycles and dummy address bytes. */ 1150 if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY) 1151 nor->params->rdsr_dummy = 8; 1152 else 1153 nor->params->rdsr_dummy = 4; 1154 1155 if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) 1156 nor->params->rdsr_addr_nbytes = 4; 1157 else 1158 nor->params->rdsr_addr_nbytes = 0; 1159 1160 /* 1161 * We don't know what speed the controller is running at. Find the 1162 * dummy cycles for the fastest frequency the flash can run at to be 1163 * sure we are never short of dummy cycles. A value of 0 means the 1164 * frequency is not supported. 1165 * 1166 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let 1167 * flashes set the correct value if needed in their fixup hooks. 1168 */ 1169 dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]); 1170 if (!dummy) 1171 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]); 1172 if (!dummy) 1173 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]); 1174 if (!dummy) 1175 dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]); 1176 if (!dummy) 1177 dev_dbg(nor->dev, 1178 "Can't find dummy cycles from Profile 1.0 table\n"); 1179 1180 /* Round up to an even value to avoid tripping controllers up. */ 1181 dummy = round_up(dummy, 2); 1182 1183 /* Update the fast read settings. */ 1184 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 1185 0, dummy, opcode, 1186 SNOR_PROTO_8_8_8_DTR); 1187 1188 out: 1189 kfree(dwords); 1190 return ret; 1191 } 1192 1193 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) 1194 1195 /** 1196 * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register 1197 * Map. 1198 * @nor: pointer to a 'struct spi_nor' 1199 * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing 1200 * the SCCR Map table length and version. 1201 * 1202 * Return: 0 on success, -errno otherwise. 1203 */ 1204 static int spi_nor_parse_sccr(struct spi_nor *nor, 1205 const struct sfdp_parameter_header *sccr_header) 1206 { 1207 u32 *dwords, addr; 1208 size_t len; 1209 int ret; 1210 1211 len = sccr_header->length * sizeof(*dwords); 1212 dwords = kmalloc(len, GFP_KERNEL); 1213 if (!dwords) 1214 return -ENOMEM; 1215 1216 addr = SFDP_PARAM_HEADER_PTP(sccr_header); 1217 ret = spi_nor_read_sfdp(nor, addr, len, dwords); 1218 if (ret) 1219 goto out; 1220 1221 le32_to_cpu_array(dwords, sccr_header->length); 1222 1223 if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22])) 1224 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 1225 1226 out: 1227 kfree(dwords); 1228 return ret; 1229 } 1230 1231 /** 1232 * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. 1233 * @nor: pointer to a 'struct spi_nor' 1234 * 1235 * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 1236 * specification. This is a standard which tends to supported by almost all 1237 * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at 1238 * runtime the main parameters needed to perform basic SPI flash operations such 1239 * as Fast Read, Page Program or Sector Erase commands. 1240 * 1241 * Return: 0 on success, -errno otherwise. 1242 */ 1243 int spi_nor_parse_sfdp(struct spi_nor *nor) 1244 { 1245 const struct sfdp_parameter_header *param_header, *bfpt_header; 1246 struct sfdp_parameter_header *param_headers = NULL; 1247 struct sfdp_header header; 1248 struct device *dev = nor->dev; 1249 struct sfdp *sfdp; 1250 size_t sfdp_size; 1251 size_t psize; 1252 int i, err; 1253 1254 /* Get the SFDP header. */ 1255 err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); 1256 if (err < 0) 1257 return err; 1258 1259 /* Check the SFDP header version. */ 1260 if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || 1261 header.major != SFDP_JESD216_MAJOR) 1262 return -EINVAL; 1263 1264 /* 1265 * Verify that the first and only mandatory parameter header is a 1266 * Basic Flash Parameter Table header as specified in JESD216. 1267 */ 1268 bfpt_header = &header.bfpt_header; 1269 if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || 1270 bfpt_header->major != SFDP_JESD216_MAJOR) 1271 return -EINVAL; 1272 1273 sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + 1274 SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); 1275 1276 /* 1277 * Allocate memory then read all parameter headers with a single 1278 * Read SFDP command. These parameter headers will actually be parsed 1279 * twice: a first time to get the latest revision of the basic flash 1280 * parameter table, then a second time to handle the supported optional 1281 * tables. 1282 * Hence we read the parameter headers once for all to reduce the 1283 * processing time. Also we use kmalloc() instead of devm_kmalloc() 1284 * because we don't need to keep these parameter headers: the allocated 1285 * memory is always released with kfree() before exiting this function. 1286 */ 1287 if (header.nph) { 1288 psize = header.nph * sizeof(*param_headers); 1289 1290 param_headers = kmalloc(psize, GFP_KERNEL); 1291 if (!param_headers) 1292 return -ENOMEM; 1293 1294 err = spi_nor_read_sfdp(nor, sizeof(header), 1295 psize, param_headers); 1296 if (err < 0) { 1297 dev_dbg(dev, "failed to read SFDP parameter headers\n"); 1298 goto exit; 1299 } 1300 } 1301 1302 /* 1303 * Cache the complete SFDP data. It is not (easily) possible to fetch 1304 * SFDP after probe time and we need it for the sysfs access. 1305 */ 1306 for (i = 0; i < header.nph; i++) { 1307 param_header = ¶m_headers[i]; 1308 sfdp_size = max_t(size_t, sfdp_size, 1309 SFDP_PARAM_HEADER_PTP(param_header) + 1310 SFDP_PARAM_HEADER_PARAM_LEN(param_header)); 1311 } 1312 1313 /* 1314 * Limit the total size to a reasonable value to avoid allocating too 1315 * much memory just of because the flash returned some insane values. 1316 */ 1317 if (sfdp_size > PAGE_SIZE) { 1318 dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", 1319 sfdp_size); 1320 sfdp_size = PAGE_SIZE; 1321 } 1322 1323 sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); 1324 if (!sfdp) { 1325 err = -ENOMEM; 1326 goto exit; 1327 } 1328 1329 /* 1330 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the 1331 * sfdp_size should be a multiple of DWORDs. But in case a flash 1332 * is not spec compliant, make sure that we have enough space to store 1333 * the complete SFDP data. 1334 */ 1335 sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); 1336 sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, 1337 sizeof(*sfdp->dwords), GFP_KERNEL); 1338 if (!sfdp->dwords) { 1339 err = -ENOMEM; 1340 devm_kfree(dev, sfdp); 1341 goto exit; 1342 } 1343 1344 err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); 1345 if (err < 0) { 1346 dev_dbg(dev, "failed to read SFDP data\n"); 1347 devm_kfree(dev, sfdp->dwords); 1348 devm_kfree(dev, sfdp); 1349 goto exit; 1350 } 1351 1352 nor->sfdp = sfdp; 1353 1354 /* 1355 * Check other parameter headers to get the latest revision of 1356 * the basic flash parameter table. 1357 */ 1358 for (i = 0; i < header.nph; i++) { 1359 param_header = ¶m_headers[i]; 1360 1361 if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && 1362 param_header->major == SFDP_JESD216_MAJOR && 1363 (param_header->minor > bfpt_header->minor || 1364 (param_header->minor == bfpt_header->minor && 1365 param_header->length > bfpt_header->length))) 1366 bfpt_header = param_header; 1367 } 1368 1369 err = spi_nor_parse_bfpt(nor, bfpt_header); 1370 if (err) 1371 goto exit; 1372 1373 /* Parse optional parameter tables. */ 1374 for (i = 0; i < header.nph; i++) { 1375 param_header = ¶m_headers[i]; 1376 1377 switch (SFDP_PARAM_HEADER_ID(param_header)) { 1378 case SFDP_SECTOR_MAP_ID: 1379 err = spi_nor_parse_smpt(nor, param_header); 1380 break; 1381 1382 case SFDP_4BAIT_ID: 1383 err = spi_nor_parse_4bait(nor, param_header); 1384 break; 1385 1386 case SFDP_PROFILE1_ID: 1387 err = spi_nor_parse_profile1(nor, param_header); 1388 break; 1389 1390 case SFDP_SCCR_MAP_ID: 1391 err = spi_nor_parse_sccr(nor, param_header); 1392 break; 1393 1394 default: 1395 break; 1396 } 1397 1398 if (err) { 1399 dev_warn(dev, "Failed to parse optional parameter table: %04x\n", 1400 SFDP_PARAM_HEADER_ID(param_header)); 1401 /* 1402 * Let's not drop all information we extracted so far 1403 * if optional table parsers fail. In case of failing, 1404 * each optional parser is responsible to roll back to 1405 * the previously known spi_nor data. 1406 */ 1407 err = 0; 1408 } 1409 } 1410 1411 exit: 1412 kfree(param_headers); 1413 return err; 1414 } 1415