xref: /openbmc/linux/drivers/mtd/spi-nor/micron-st.c (revision f4356947)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR		BIT(0)
13 
14 #define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
15 #define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
16 #define SPINOR_OP_MT_DTR_RD	0xfd	/* Fast Read opcode in DTR mode */
17 #define SPINOR_OP_MT_RD_ANY_REG	0x85	/* Read volatile register */
18 #define SPINOR_OP_MT_WR_ANY_REG	0x81	/* Write volatile register */
19 #define SPINOR_REG_MT_CFR0V	0x00	/* For setting octal DTR mode */
20 #define SPINOR_REG_MT_CFR1V	0x01	/* For setting dummy cycles */
21 #define SPINOR_REG_MT_CFR1V_DEF	0x1f	/* Default dummy cycles */
22 #define SPINOR_MT_OCT_DTR	0xe7	/* Enable Octal DTR. */
23 #define SPINOR_MT_EXSPI		0xff	/* Enable Extended SPI (default) */
24 
25 /* Flag Status Register bits */
26 #define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
27 #define FSR_E_ERR		BIT(5)	/* Erase operation status */
28 #define FSR_P_ERR		BIT(4)	/* Program operation status */
29 #define FSR_PT_ERR		BIT(1)	/* Protection error bit */
30 
31 /* Micron ST SPI NOR flash operations. */
32 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
33 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0),		\
34 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
35 		   SPI_MEM_OP_NO_DUMMY,					\
36 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
37 
38 #define MICRON_ST_RDFSR_OP(buf)						\
39 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),			\
40 		   SPI_MEM_OP_NO_ADDR,					\
41 		   SPI_MEM_OP_NO_DUMMY,					\
42 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
43 
44 #define MICRON_ST_CLFSR_OP						\
45 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),			\
46 		   SPI_MEM_OP_NO_ADDR,					\
47 		   SPI_MEM_OP_NO_DUMMY,					\
48 		   SPI_MEM_OP_NO_DATA)
49 
50 static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
51 {
52 	struct spi_mem_op op;
53 	u8 *buf = nor->bouncebuf;
54 	int ret;
55 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
56 
57 	/* Use 20 dummy cycles for memory array reads. */
58 	*buf = 20;
59 	op = (struct spi_mem_op)
60 		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
61 					    SPINOR_REG_MT_CFR1V, 1, buf);
62 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
63 	if (ret)
64 		return ret;
65 
66 	buf[0] = SPINOR_MT_OCT_DTR;
67 	op = (struct spi_mem_op)
68 		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
69 					    SPINOR_REG_MT_CFR0V, 1, buf);
70 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
71 	if (ret)
72 		return ret;
73 
74 	/* Read flash ID to make sure the switch was successful. */
75 	ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
76 	if (ret) {
77 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
78 		return ret;
79 	}
80 
81 	if (memcmp(buf, nor->info->id, nor->info->id_len))
82 		return -EINVAL;
83 
84 	return 0;
85 }
86 
87 static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
88 {
89 	struct spi_mem_op op;
90 	u8 *buf = nor->bouncebuf;
91 	int ret;
92 
93 	/*
94 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
95 	 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
96 	 * register. Since the transaction needs to be at least 2 bytes wide,
97 	 * set the next register to its default value. This also makes sense
98 	 * because the value was changed when enabling 8D-8D-8D mode, it should
99 	 * be reset when disabling.
100 	 */
101 	buf[0] = SPINOR_MT_EXSPI;
102 	buf[1] = SPINOR_REG_MT_CFR1V_DEF;
103 	op = (struct spi_mem_op)
104 		MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
105 					    SPINOR_REG_MT_CFR0V, 2, buf);
106 	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
107 	if (ret)
108 		return ret;
109 
110 	/* Read flash ID to make sure the switch was successful. */
111 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
112 	if (ret) {
113 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
114 		return ret;
115 	}
116 
117 	if (memcmp(buf, nor->info->id, nor->info->id_len))
118 		return -EINVAL;
119 
120 	return 0;
121 }
122 
123 static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
124 {
125 	return enable ? micron_st_nor_octal_dtr_en(nor) :
126 			micron_st_nor_octal_dtr_dis(nor);
127 }
128 
129 static void mt35xu512aba_default_init(struct spi_nor *nor)
130 {
131 	nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
132 }
133 
134 static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
135 {
136 	/* Set the Fast Read settings. */
137 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
138 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
139 				  0, 20, SPINOR_OP_MT_DTR_RD,
140 				  SNOR_PROTO_8_8_8_DTR);
141 
142 	nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
143 	nor->params->rdsr_dummy = 8;
144 	nor->params->rdsr_addr_nbytes = 0;
145 
146 	/*
147 	 * The BFPT quad enable field is set to a reserved value so the quad
148 	 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
149 	 * disable it.
150 	 */
151 	nor->params->quad_enable = NULL;
152 
153 	return 0;
154 }
155 
156 static const struct spi_nor_fixups mt35xu512aba_fixups = {
157 	.default_init = mt35xu512aba_default_init,
158 	.post_sfdp = mt35xu512aba_post_sfdp_fixup,
159 };
160 
161 static const struct flash_info micron_nor_parts[] = {
162 	{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
163 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
164 			   SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
165 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
166 		MFR_FLAGS(USE_FSR)
167 		.fixups = &mt35xu512aba_fixups
168 	},
169 	{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
170 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
171 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
172 		MFR_FLAGS(USE_FSR)
173 	},
174 };
175 
176 static const struct flash_info st_nor_parts[] = {
177 	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32)
178 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
179 	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64)
180 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
181 	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64)
182 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
183 	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128)
184 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
185 	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128)
186 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
187 	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256)
188 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
189 		      SPI_NOR_BP3_SR_BIT6)
190 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
191 		MFR_FLAGS(USE_FSR)
192 	},
193 	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256)
194 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
195 		      SPI_NOR_BP3_SR_BIT6)
196 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
197 		MFR_FLAGS(USE_FSR)
198 	},
199 	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512)
200 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
201 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
202 		MFR_FLAGS(USE_FSR)
203 	},
204 	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512)
205 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
206 			      SPI_NOR_QUAD_READ)
207 		MFR_FLAGS(USE_FSR)
208 	},
209 	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512)
210 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
211 		      SPI_NOR_BP3_SR_BIT6)
212 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
213 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
214 		MFR_FLAGS(USE_FSR)
215 	},
216 	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512)
217 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
218 		MFR_FLAGS(USE_FSR)
219 	},
220 	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
221 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
222 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
223 		MFR_FLAGS(USE_FSR)
224 	},
225 	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024)
226 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
227 		      SPI_NOR_BP3_SR_BIT6)
228 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
229 		MFR_FLAGS(USE_FSR)
230 	},
231 	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
232 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
233 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
234 		MFR_FLAGS(USE_FSR)
235 	},
236 	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024)
237 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
238 		      SPI_NOR_BP3_SR_BIT6)
239 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
240 		MFR_FLAGS(USE_FSR)
241 	},
242 	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048)
243 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
244 		      SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
245 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
246 		MFR_FLAGS(USE_FSR)
247 	},
248 	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048)
249 		FLAGS(NO_CHIP_ERASE)
250 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
251 		MFR_FLAGS(USE_FSR)
252 	},
253 	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096)
254 		FLAGS(NO_CHIP_ERASE)
255 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
256 		MFR_FLAGS(USE_FSR)
257 	},
258 	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096)
259 		FLAGS(NO_CHIP_ERASE)
260 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
261 			      SPI_NOR_QUAD_READ)
262 		MFR_FLAGS(USE_FSR)
263 	},
264 
265 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2) },
266 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4) },
267 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4) },
268 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8) },
269 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16) },
270 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32) },
271 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64) },
272 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128) },
273 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64) },
274 
275 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2) },
276 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4) },
277 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4) },
278 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8) },
279 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16) },
280 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32) },
281 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64) },
282 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128) },
283 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64) },
284 
285 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2) },
286 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16) },
287 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32) },
288 
289 	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4) },
290 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16) },
291 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32)
292 		NO_SFDP_FLAGS(SECT_4K) },
293 
294 	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32)
295 		NO_SFDP_FLAGS(SECT_4K) },
296 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64)
297 		NO_SFDP_FLAGS(SECT_4K) },
298 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64)
299 		NO_SFDP_FLAGS(SECT_4K) },
300 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64)
301 		NO_SFDP_FLAGS(SECT_4K) },
302 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128) },
303 	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16) },
304 };
305 
306 /**
307  * micron_st_nor_read_fsr() - Read the Flag Status Register.
308  * @nor:	pointer to 'struct spi_nor'
309  * @fsr:	pointer to a DMA-able buffer where the value of the
310  *              Flag Status Register will be written. Should be at least 2
311  *              bytes.
312  *
313  * Return: 0 on success, -errno otherwise.
314  */
315 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
316 {
317 	int ret;
318 
319 	if (nor->spimem) {
320 		struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
321 
322 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
323 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
324 			op.dummy.nbytes = nor->params->rdsr_dummy;
325 			/*
326 			 * We don't want to read only one byte in DTR mode. So,
327 			 * read 2 and then discard the second byte.
328 			 */
329 			op.data.nbytes = 2;
330 		}
331 
332 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
333 
334 		ret = spi_mem_exec_op(nor->spimem, &op);
335 	} else {
336 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
337 						      1);
338 	}
339 
340 	if (ret)
341 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
342 
343 	return ret;
344 }
345 
346 /**
347  * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
348  * @nor:	pointer to 'struct spi_nor'.
349  */
350 static void micron_st_nor_clear_fsr(struct spi_nor *nor)
351 {
352 	int ret;
353 
354 	if (nor->spimem) {
355 		struct spi_mem_op op = MICRON_ST_CLFSR_OP;
356 
357 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
358 
359 		ret = spi_mem_exec_op(nor->spimem, &op);
360 	} else {
361 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
362 						       NULL, 0);
363 	}
364 
365 	if (ret)
366 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
367 }
368 
369 /**
370  * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
371  * Register to see if the flash is ready for new commands. If there are any
372  * errors in the FSR clear them.
373  * @nor:	pointer to 'struct spi_nor'.
374  *
375  * Return: 1 if ready, 0 if not ready, -errno on errors.
376  */
377 static int micron_st_nor_ready(struct spi_nor *nor)
378 {
379 	int sr_ready, ret;
380 
381 	sr_ready = spi_nor_sr_ready(nor);
382 	if (sr_ready < 0)
383 		return sr_ready;
384 
385 	ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
386 	if (ret) {
387 		/*
388 		 * Some controllers, such as Intel SPI, do not support low
389 		 * level operations such as reading the flag status
390 		 * register. They only expose small amount of high level
391 		 * operations to the software. If this is the case we use
392 		 * only the status register value.
393 		 */
394 		return ret == -EOPNOTSUPP ? sr_ready : ret;
395 	}
396 
397 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
398 		if (nor->bouncebuf[0] & FSR_E_ERR)
399 			dev_err(nor->dev, "Erase operation failed.\n");
400 		else
401 			dev_err(nor->dev, "Program operation failed.\n");
402 
403 		if (nor->bouncebuf[0] & FSR_PT_ERR)
404 			dev_err(nor->dev,
405 				"Attempted to modify a protected sector.\n");
406 
407 		micron_st_nor_clear_fsr(nor);
408 
409 		/*
410 		 * WEL bit remains set to one when an erase or page program
411 		 * error occurs. Issue a Write Disable command to protect
412 		 * against inadvertent writes that can possibly corrupt the
413 		 * contents of the memory.
414 		 */
415 		ret = spi_nor_write_disable(nor);
416 		if (ret)
417 			return ret;
418 
419 		return -EIO;
420 	}
421 
422 	return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
423 }
424 
425 static void micron_st_nor_default_init(struct spi_nor *nor)
426 {
427 	nor->flags |= SNOR_F_HAS_LOCK;
428 	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
429 	nor->params->quad_enable = NULL;
430 }
431 
432 static void micron_st_nor_late_init(struct spi_nor *nor)
433 {
434 	struct spi_nor_flash_parameter *params = nor->params;
435 
436 	if (nor->info->mfr_flags & USE_FSR)
437 		params->ready = micron_st_nor_ready;
438 
439 	if (!params->set_4byte_addr_mode)
440 		params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b;
441 }
442 
443 static const struct spi_nor_fixups micron_st_nor_fixups = {
444 	.default_init = micron_st_nor_default_init,
445 	.late_init = micron_st_nor_late_init,
446 };
447 
448 const struct spi_nor_manufacturer spi_nor_micron = {
449 	.name = "micron",
450 	.parts = micron_nor_parts,
451 	.nparts = ARRAY_SIZE(micron_nor_parts),
452 	.fixups = &micron_st_nor_fixups,
453 };
454 
455 const struct spi_nor_manufacturer spi_nor_st = {
456 	.name = "st",
457 	.parts = st_nor_parts,
458 	.nparts = ARRAY_SIZE(st_nor_parts),
459 	.fixups = &micron_st_nor_fixups,
460 };
461