xref: /openbmc/linux/drivers/mtd/spi-nor/micron-st.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR		BIT(0)
13 
14 #define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
15 #define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
16 #define SPINOR_OP_MT_DTR_RD	0xfd	/* Fast Read opcode in DTR mode */
17 #define SPINOR_OP_MT_RD_ANY_REG	0x85	/* Read volatile register */
18 #define SPINOR_OP_MT_WR_ANY_REG	0x81	/* Write volatile register */
19 #define SPINOR_REG_MT_CFR0V	0x00	/* For setting octal DTR mode */
20 #define SPINOR_REG_MT_CFR1V	0x01	/* For setting dummy cycles */
21 #define SPINOR_REG_MT_CFR1V_DEF	0x1f	/* Default dummy cycles */
22 #define SPINOR_MT_OCT_DTR	0xe7	/* Enable Octal DTR. */
23 #define SPINOR_MT_EXSPI		0xff	/* Enable Extended SPI (default) */
24 
25 /* Flag Status Register bits */
26 #define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
27 #define FSR_E_ERR		BIT(5)	/* Erase operation status */
28 #define FSR_P_ERR		BIT(4)	/* Program operation status */
29 #define FSR_PT_ERR		BIT(1)	/* Protection error bit */
30 
31 /* Micron ST SPI NOR flash operations. */
32 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
33 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0),		\
34 		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
35 		   SPI_MEM_OP_NO_DUMMY,					\
36 		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
37 
38 #define MICRON_ST_RDFSR_OP(buf)						\
39 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),			\
40 		   SPI_MEM_OP_NO_ADDR,					\
41 		   SPI_MEM_OP_NO_DUMMY,					\
42 		   SPI_MEM_OP_DATA_IN(1, buf, 0))
43 
44 #define MICRON_ST_CLFSR_OP						\
45 	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),			\
46 		   SPI_MEM_OP_NO_ADDR,					\
47 		   SPI_MEM_OP_NO_DUMMY,					\
48 		   SPI_MEM_OP_NO_DATA)
49 
50 static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
51 {
52 	struct spi_mem_op op;
53 	u8 *buf = nor->bouncebuf;
54 	int ret;
55 	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
56 
57 	/* Use 20 dummy cycles for memory array reads. */
58 	*buf = 20;
59 	op = (struct spi_mem_op)
60 		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
61 					    SPINOR_REG_MT_CFR1V, 1, buf);
62 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
63 	if (ret)
64 		return ret;
65 
66 	buf[0] = SPINOR_MT_OCT_DTR;
67 	op = (struct spi_mem_op)
68 		MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes,
69 					    SPINOR_REG_MT_CFR0V, 1, buf);
70 	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
71 	if (ret)
72 		return ret;
73 
74 	/* Read flash ID to make sure the switch was successful. */
75 	ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
76 	if (ret) {
77 		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
78 		return ret;
79 	}
80 
81 	if (memcmp(buf, nor->info->id, nor->info->id_len))
82 		return -EINVAL;
83 
84 	return 0;
85 }
86 
87 static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
88 {
89 	struct spi_mem_op op;
90 	u8 *buf = nor->bouncebuf;
91 	int ret;
92 
93 	/*
94 	 * The register is 1-byte wide, but 1-byte transactions are not allowed
95 	 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
96 	 * register. Since the transaction needs to be at least 2 bytes wide,
97 	 * set the next register to its default value. This also makes sense
98 	 * because the value was changed when enabling 8D-8D-8D mode, it should
99 	 * be reset when disabling.
100 	 */
101 	buf[0] = SPINOR_MT_EXSPI;
102 	buf[1] = SPINOR_REG_MT_CFR1V_DEF;
103 	op = (struct spi_mem_op)
104 		MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes,
105 					    SPINOR_REG_MT_CFR0V, 2, buf);
106 	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
107 	if (ret)
108 		return ret;
109 
110 	/* Read flash ID to make sure the switch was successful. */
111 	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
112 	if (ret) {
113 		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
114 		return ret;
115 	}
116 
117 	if (memcmp(buf, nor->info->id, nor->info->id_len))
118 		return -EINVAL;
119 
120 	return 0;
121 }
122 
123 static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
124 {
125 	return enable ? micron_st_nor_octal_dtr_en(nor) :
126 			micron_st_nor_octal_dtr_dis(nor);
127 }
128 
129 static void mt35xu512aba_default_init(struct spi_nor *nor)
130 {
131 	nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
132 }
133 
134 static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
135 {
136 	/* Set the Fast Read settings. */
137 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
138 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
139 				  0, 20, SPINOR_OP_MT_DTR_RD,
140 				  SNOR_PROTO_8_8_8_DTR);
141 
142 	nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
143 	nor->params->rdsr_dummy = 8;
144 	nor->params->rdsr_addr_nbytes = 0;
145 
146 	/*
147 	 * The BFPT quad enable field is set to a reserved value so the quad
148 	 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
149 	 * disable it.
150 	 */
151 	nor->params->quad_enable = NULL;
152 }
153 
154 static const struct spi_nor_fixups mt35xu512aba_fixups = {
155 	.default_init = mt35xu512aba_default_init,
156 	.post_sfdp = mt35xu512aba_post_sfdp_fixup,
157 };
158 
159 static const struct flash_info micron_nor_parts[] = {
160 	{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
161 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
162 			   SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
163 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
164 		MFR_FLAGS(USE_FSR)
165 		.fixups = &mt35xu512aba_fixups
166 	},
167 	{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
168 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
169 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
170 		MFR_FLAGS(USE_FSR)
171 	},
172 };
173 
174 static const struct flash_info st_nor_parts[] = {
175 	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32)
176 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
177 	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64)
178 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
179 	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64)
180 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
181 	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128)
182 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
183 	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128)
184 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
185 	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256)
186 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
187 		      SPI_NOR_BP3_SR_BIT6)
188 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
189 		MFR_FLAGS(USE_FSR)
190 	},
191 	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256)
192 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
193 		      SPI_NOR_BP3_SR_BIT6)
194 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
195 		MFR_FLAGS(USE_FSR)
196 	},
197 	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512)
198 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
199 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
200 		MFR_FLAGS(USE_FSR)
201 	},
202 	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512)
203 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
204 			      SPI_NOR_QUAD_READ)
205 		MFR_FLAGS(USE_FSR)
206 	},
207 	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512)
208 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
209 		      SPI_NOR_BP3_SR_BIT6)
210 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
211 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
212 		MFR_FLAGS(USE_FSR)
213 	},
214 	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512)
215 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
216 		MFR_FLAGS(USE_FSR)
217 	},
218 	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
219 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
220 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
221 		MFR_FLAGS(USE_FSR)
222 	},
223 	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024)
224 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
225 		      SPI_NOR_BP3_SR_BIT6)
226 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
227 		MFR_FLAGS(USE_FSR)
228 	},
229 	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
230 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
231 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
232 		MFR_FLAGS(USE_FSR)
233 	},
234 	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024)
235 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
236 		      SPI_NOR_BP3_SR_BIT6)
237 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
238 		MFR_FLAGS(USE_FSR)
239 	},
240 	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048)
241 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
242 		      SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
243 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
244 		MFR_FLAGS(USE_FSR)
245 	},
246 	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048)
247 		FLAGS(NO_CHIP_ERASE)
248 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
249 		MFR_FLAGS(USE_FSR)
250 	},
251 	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096)
252 		FLAGS(NO_CHIP_ERASE)
253 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
254 		MFR_FLAGS(USE_FSR)
255 	},
256 	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096)
257 		FLAGS(NO_CHIP_ERASE)
258 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
259 			      SPI_NOR_QUAD_READ)
260 		MFR_FLAGS(USE_FSR)
261 	},
262 
263 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2) },
264 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4) },
265 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4) },
266 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8) },
267 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16) },
268 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32) },
269 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64) },
270 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128) },
271 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64) },
272 
273 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2) },
274 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4) },
275 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4) },
276 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8) },
277 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16) },
278 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32) },
279 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64) },
280 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128) },
281 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64) },
282 
283 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2) },
284 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16) },
285 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32) },
286 
287 	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4) },
288 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16) },
289 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32)
290 		NO_SFDP_FLAGS(SECT_4K) },
291 
292 	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32)
293 		NO_SFDP_FLAGS(SECT_4K) },
294 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64)
295 		NO_SFDP_FLAGS(SECT_4K) },
296 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64)
297 		NO_SFDP_FLAGS(SECT_4K) },
298 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64)
299 		NO_SFDP_FLAGS(SECT_4K) },
300 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128) },
301 	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16) },
302 };
303 
304 /**
305  * micron_st_nor_set_4byte_addr_mode() - Set 4-byte address mode for ST and
306  * Micron flashes.
307  * @nor:	pointer to 'struct spi_nor'.
308  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
309  *		address mode.
310  *
311  * Return: 0 on success, -errno otherwise.
312  */
313 static int micron_st_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
314 {
315 	int ret;
316 
317 	ret = spi_nor_write_enable(nor);
318 	if (ret)
319 		return ret;
320 
321 	ret = spi_nor_set_4byte_addr_mode(nor, enable);
322 	if (ret)
323 		return ret;
324 
325 	return spi_nor_write_disable(nor);
326 }
327 
328 /**
329  * micron_st_nor_read_fsr() - Read the Flag Status Register.
330  * @nor:	pointer to 'struct spi_nor'
331  * @fsr:	pointer to a DMA-able buffer where the value of the
332  *              Flag Status Register will be written. Should be at least 2
333  *              bytes.
334  *
335  * Return: 0 on success, -errno otherwise.
336  */
337 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
338 {
339 	int ret;
340 
341 	if (nor->spimem) {
342 		struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
343 
344 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
345 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
346 			op.dummy.nbytes = nor->params->rdsr_dummy;
347 			/*
348 			 * We don't want to read only one byte in DTR mode. So,
349 			 * read 2 and then discard the second byte.
350 			 */
351 			op.data.nbytes = 2;
352 		}
353 
354 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
355 
356 		ret = spi_mem_exec_op(nor->spimem, &op);
357 	} else {
358 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
359 						      1);
360 	}
361 
362 	if (ret)
363 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
364 
365 	return ret;
366 }
367 
368 /**
369  * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
370  * @nor:	pointer to 'struct spi_nor'.
371  */
372 static void micron_st_nor_clear_fsr(struct spi_nor *nor)
373 {
374 	int ret;
375 
376 	if (nor->spimem) {
377 		struct spi_mem_op op = MICRON_ST_CLFSR_OP;
378 
379 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
380 
381 		ret = spi_mem_exec_op(nor->spimem, &op);
382 	} else {
383 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
384 						       NULL, 0);
385 	}
386 
387 	if (ret)
388 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
389 }
390 
391 /**
392  * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
393  * Register to see if the flash is ready for new commands. If there are any
394  * errors in the FSR clear them.
395  * @nor:	pointer to 'struct spi_nor'.
396  *
397  * Return: 1 if ready, 0 if not ready, -errno on errors.
398  */
399 static int micron_st_nor_ready(struct spi_nor *nor)
400 {
401 	int sr_ready, ret;
402 
403 	sr_ready = spi_nor_sr_ready(nor);
404 	if (sr_ready < 0)
405 		return sr_ready;
406 
407 	ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
408 	if (ret) {
409 		/*
410 		 * Some controllers, such as Intel SPI, do not support low
411 		 * level operations such as reading the flag status
412 		 * register. They only expose small amount of high level
413 		 * operations to the software. If this is the case we use
414 		 * only the status register value.
415 		 */
416 		return ret == -EOPNOTSUPP ? sr_ready : ret;
417 	}
418 
419 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
420 		if (nor->bouncebuf[0] & FSR_E_ERR)
421 			dev_err(nor->dev, "Erase operation failed.\n");
422 		else
423 			dev_err(nor->dev, "Program operation failed.\n");
424 
425 		if (nor->bouncebuf[0] & FSR_PT_ERR)
426 			dev_err(nor->dev,
427 				"Attempted to modify a protected sector.\n");
428 
429 		micron_st_nor_clear_fsr(nor);
430 
431 		/*
432 		 * WEL bit remains set to one when an erase or page program
433 		 * error occurs. Issue a Write Disable command to protect
434 		 * against inadvertent writes that can possibly corrupt the
435 		 * contents of the memory.
436 		 */
437 		ret = spi_nor_write_disable(nor);
438 		if (ret)
439 			return ret;
440 
441 		return -EIO;
442 	}
443 
444 	return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
445 }
446 
447 static void micron_st_nor_default_init(struct spi_nor *nor)
448 {
449 	nor->flags |= SNOR_F_HAS_LOCK;
450 	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
451 	nor->params->quad_enable = NULL;
452 	nor->params->set_4byte_addr_mode = micron_st_nor_set_4byte_addr_mode;
453 }
454 
455 static void micron_st_nor_late_init(struct spi_nor *nor)
456 {
457 	if (nor->info->mfr_flags & USE_FSR)
458 		nor->params->ready = micron_st_nor_ready;
459 }
460 
461 static const struct spi_nor_fixups micron_st_nor_fixups = {
462 	.default_init = micron_st_nor_default_init,
463 	.late_init = micron_st_nor_late_init,
464 };
465 
466 const struct spi_nor_manufacturer spi_nor_micron = {
467 	.name = "micron",
468 	.parts = micron_nor_parts,
469 	.nparts = ARRAY_SIZE(micron_nor_parts),
470 	.fixups = &micron_st_nor_fixups,
471 };
472 
473 const struct spi_nor_manufacturer spi_nor_st = {
474 	.name = "st",
475 	.parts = st_nor_parts,
476 	.nparts = ARRAY_SIZE(st_nor_parts),
477 	.fixups = &micron_st_nor_fixups,
478 };
479