xref: /openbmc/linux/drivers/mtd/spi-nor/micron-st.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/mtd/spi-nor.h>
8 
9 #include "core.h"
10 
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR		BIT(0)
13 
14 #define SPINOR_OP_RDFSR		0x70	/* Read flag status register */
15 #define SPINOR_OP_CLFSR		0x50	/* Clear flag status register */
16 #define SPINOR_OP_MT_DTR_RD	0xfd	/* Fast Read opcode in DTR mode */
17 #define SPINOR_OP_MT_RD_ANY_REG	0x85	/* Read volatile register */
18 #define SPINOR_OP_MT_WR_ANY_REG	0x81	/* Write volatile register */
19 #define SPINOR_REG_MT_CFR0V	0x00	/* For setting octal DTR mode */
20 #define SPINOR_REG_MT_CFR1V	0x01	/* For setting dummy cycles */
21 #define SPINOR_REG_MT_CFR1V_DEF	0x1f	/* Default dummy cycles */
22 #define SPINOR_MT_OCT_DTR	0xe7	/* Enable Octal DTR. */
23 #define SPINOR_MT_EXSPI		0xff	/* Enable Extended SPI (default) */
24 
25 /* Flag Status Register bits */
26 #define FSR_READY		BIT(7)	/* Device status, 0 = Busy, 1 = Ready */
27 #define FSR_E_ERR		BIT(5)	/* Erase operation status */
28 #define FSR_P_ERR		BIT(4)	/* Program operation status */
29 #define FSR_PT_ERR		BIT(1)	/* Protection error bit */
30 
31 static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
32 {
33 	struct spi_mem_op op;
34 	u8 *buf = nor->bouncebuf;
35 	int ret;
36 
37 	if (enable) {
38 		/* Use 20 dummy cycles for memory array reads. */
39 		ret = spi_nor_write_enable(nor);
40 		if (ret)
41 			return ret;
42 
43 		*buf = 20;
44 		op = (struct spi_mem_op)
45 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
46 				   SPI_MEM_OP_ADDR(3, SPINOR_REG_MT_CFR1V, 1),
47 				   SPI_MEM_OP_NO_DUMMY,
48 				   SPI_MEM_OP_DATA_OUT(1, buf, 1));
49 
50 		ret = spi_mem_exec_op(nor->spimem, &op);
51 		if (ret)
52 			return ret;
53 
54 		ret = spi_nor_wait_till_ready(nor);
55 		if (ret)
56 			return ret;
57 	}
58 
59 	ret = spi_nor_write_enable(nor);
60 	if (ret)
61 		return ret;
62 
63 	if (enable) {
64 		buf[0] = SPINOR_MT_OCT_DTR;
65 	} else {
66 		/*
67 		 * The register is 1-byte wide, but 1-byte transactions are not
68 		 * allowed in 8D-8D-8D mode. The next register is the dummy
69 		 * cycle configuration register. Since the transaction needs to
70 		 * be at least 2 bytes wide, set the next register to its
71 		 * default value. This also makes sense because the value was
72 		 * changed when enabling 8D-8D-8D mode, it should be reset when
73 		 * disabling.
74 		 */
75 		buf[0] = SPINOR_MT_EXSPI;
76 		buf[1] = SPINOR_REG_MT_CFR1V_DEF;
77 	}
78 
79 	op = (struct spi_mem_op)
80 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 1),
81 			   SPI_MEM_OP_ADDR(enable ? 3 : 4,
82 					   SPINOR_REG_MT_CFR0V, 1),
83 			   SPI_MEM_OP_NO_DUMMY,
84 			   SPI_MEM_OP_DATA_OUT(enable ? 1 : 2, buf, 1));
85 
86 	if (!enable)
87 		spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
88 
89 	ret = spi_mem_exec_op(nor->spimem, &op);
90 	if (ret)
91 		return ret;
92 
93 	/* Read flash ID to make sure the switch was successful. */
94 	op = (struct spi_mem_op)
95 		SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
96 			   SPI_MEM_OP_NO_ADDR,
97 			   SPI_MEM_OP_DUMMY(enable ? 8 : 0, 1),
98 			   SPI_MEM_OP_DATA_IN(round_up(nor->info->id_len, 2),
99 					      buf, 1));
100 
101 	if (enable)
102 		spi_nor_spimem_setup_op(nor, &op, SNOR_PROTO_8_8_8_DTR);
103 
104 	ret = spi_mem_exec_op(nor->spimem, &op);
105 	if (ret)
106 		return ret;
107 
108 	if (memcmp(buf, nor->info->id, nor->info->id_len))
109 		return -EINVAL;
110 
111 	return 0;
112 }
113 
114 static void mt35xu512aba_default_init(struct spi_nor *nor)
115 {
116 	nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
117 }
118 
119 static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
120 {
121 	/* Set the Fast Read settings. */
122 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
123 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
124 				  0, 20, SPINOR_OP_MT_DTR_RD,
125 				  SNOR_PROTO_8_8_8_DTR);
126 
127 	nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
128 	nor->params->rdsr_dummy = 8;
129 	nor->params->rdsr_addr_nbytes = 0;
130 
131 	/*
132 	 * The BFPT quad enable field is set to a reserved value so the quad
133 	 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
134 	 * disable it.
135 	 */
136 	nor->params->quad_enable = NULL;
137 }
138 
139 static const struct spi_nor_fixups mt35xu512aba_fixups = {
140 	.default_init = mt35xu512aba_default_init,
141 	.post_sfdp = mt35xu512aba_post_sfdp_fixup,
142 };
143 
144 static const struct flash_info micron_nor_parts[] = {
145 	{ "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
146 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
147 			   SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
148 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
149 		MFR_FLAGS(USE_FSR)
150 		.fixups = &mt35xu512aba_fixups
151 	},
152 	{ "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
153 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
154 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
155 		MFR_FLAGS(USE_FSR)
156 	},
157 };
158 
159 static const struct flash_info st_nor_parts[] = {
160 	{ "n25q016a",	 INFO(0x20bb15, 0, 64 * 1024,   32)
161 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
162 	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64)
163 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
164 	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64)
165 		NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
166 	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128)
167 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
168 	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128)
169 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
170 	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256)
171 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
172 		      SPI_NOR_BP3_SR_BIT6)
173 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
174 		MFR_FLAGS(USE_FSR)
175 	},
176 	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256)
177 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
178 		      SPI_NOR_BP3_SR_BIT6)
179 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
180 		MFR_FLAGS(USE_FSR)
181 	},
182 	{ "mt25ql256a",  INFO6(0x20ba19, 0x104400, 64 * 1024,  512)
183 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
184 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
185 		MFR_FLAGS(USE_FSR)
186 	},
187 	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512)
188 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
189 			      SPI_NOR_QUAD_READ)
190 		MFR_FLAGS(USE_FSR)
191 	},
192 	{ "mt25qu256a",  INFO6(0x20bb19, 0x104400, 64 * 1024,  512)
193 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
194 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
195 		MFR_FLAGS(USE_FSR)
196 	},
197 	{ "n25q256ax1",  INFO(0x20bb19, 0, 64 * 1024,  512)
198 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
199 		MFR_FLAGS(USE_FSR)
200 	},
201 	{ "mt25ql512a",  INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
202 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
203 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
204 		MFR_FLAGS(USE_FSR)
205 	},
206 	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024)
207 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
208 		      SPI_NOR_BP3_SR_BIT6)
209 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
210 		MFR_FLAGS(USE_FSR)
211 	},
212 	{ "mt25qu512a",  INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
213 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
214 		FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
215 		MFR_FLAGS(USE_FSR)
216 	},
217 	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024)
218 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
219 		      SPI_NOR_BP3_SR_BIT6)
220 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
221 		MFR_FLAGS(USE_FSR)
222 	},
223 	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048)
224 		FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
225 		      SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
226 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
227 		MFR_FLAGS(USE_FSR)
228 	},
229 	{ "n25q00a",     INFO(0x20bb21, 0, 64 * 1024, 2048)
230 		FLAGS(NO_CHIP_ERASE)
231 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
232 		MFR_FLAGS(USE_FSR)
233 	},
234 	{ "mt25ql02g",   INFO(0x20ba22, 0, 64 * 1024, 4096)
235 		FLAGS(NO_CHIP_ERASE)
236 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
237 		MFR_FLAGS(USE_FSR)
238 	},
239 	{ "mt25qu02g",   INFO(0x20bb22, 0, 64 * 1024, 4096)
240 		FLAGS(NO_CHIP_ERASE)
241 		NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
242 			      SPI_NOR_QUAD_READ)
243 		MFR_FLAGS(USE_FSR)
244 	},
245 
246 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2) },
247 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4) },
248 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4) },
249 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8) },
250 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16) },
251 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32) },
252 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64) },
253 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128) },
254 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64) },
255 
256 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2) },
257 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4) },
258 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4) },
259 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8) },
260 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16) },
261 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32) },
262 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64) },
263 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128) },
264 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64) },
265 
266 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2) },
267 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16) },
268 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32) },
269 
270 	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4) },
271 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16) },
272 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32)
273 		NO_SFDP_FLAGS(SECT_4K) },
274 
275 	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32)
276 		NO_SFDP_FLAGS(SECT_4K) },
277 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64)
278 		NO_SFDP_FLAGS(SECT_4K) },
279 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64)
280 		NO_SFDP_FLAGS(SECT_4K) },
281 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64)
282 		NO_SFDP_FLAGS(SECT_4K) },
283 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128) },
284 	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16) },
285 };
286 
287 /**
288  * micron_st_nor_set_4byte_addr_mode() - Set 4-byte address mode for ST and
289  * Micron flashes.
290  * @nor:	pointer to 'struct spi_nor'.
291  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
292  *		address mode.
293  *
294  * Return: 0 on success, -errno otherwise.
295  */
296 static int micron_st_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
297 {
298 	int ret;
299 
300 	ret = spi_nor_write_enable(nor);
301 	if (ret)
302 		return ret;
303 
304 	ret = spi_nor_set_4byte_addr_mode(nor, enable);
305 	if (ret)
306 		return ret;
307 
308 	return spi_nor_write_disable(nor);
309 }
310 
311 /**
312  * micron_st_nor_read_fsr() - Read the Flag Status Register.
313  * @nor:	pointer to 'struct spi_nor'
314  * @fsr:	pointer to a DMA-able buffer where the value of the
315  *              Flag Status Register will be written. Should be at least 2
316  *              bytes.
317  *
318  * Return: 0 on success, -errno otherwise.
319  */
320 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
321 {
322 	int ret;
323 
324 	if (nor->spimem) {
325 		struct spi_mem_op op =
326 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
327 				   SPI_MEM_OP_NO_ADDR,
328 				   SPI_MEM_OP_NO_DUMMY,
329 				   SPI_MEM_OP_DATA_IN(1, fsr, 0));
330 
331 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
332 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
333 			op.dummy.nbytes = nor->params->rdsr_dummy;
334 			/*
335 			 * We don't want to read only one byte in DTR mode. So,
336 			 * read 2 and then discard the second byte.
337 			 */
338 			op.data.nbytes = 2;
339 		}
340 
341 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
342 
343 		ret = spi_mem_exec_op(nor->spimem, &op);
344 	} else {
345 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
346 						      1);
347 	}
348 
349 	if (ret)
350 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
351 
352 	return ret;
353 }
354 
355 /**
356  * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
357  * @nor:	pointer to 'struct spi_nor'.
358  */
359 static void micron_st_nor_clear_fsr(struct spi_nor *nor)
360 {
361 	int ret;
362 
363 	if (nor->spimem) {
364 		struct spi_mem_op op =
365 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
366 				   SPI_MEM_OP_NO_ADDR,
367 				   SPI_MEM_OP_NO_DUMMY,
368 				   SPI_MEM_OP_NO_DATA);
369 
370 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
371 
372 		ret = spi_mem_exec_op(nor->spimem, &op);
373 	} else {
374 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
375 						       NULL, 0);
376 	}
377 
378 	if (ret)
379 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
380 }
381 
382 /**
383  * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
384  * Register to see if the flash is ready for new commands. If there are any
385  * errors in the FSR clear them.
386  * @nor:	pointer to 'struct spi_nor'.
387  *
388  * Return: 1 if ready, 0 if not ready, -errno on errors.
389  */
390 static int micron_st_nor_ready(struct spi_nor *nor)
391 {
392 	int sr_ready, ret;
393 
394 	sr_ready = spi_nor_sr_ready(nor);
395 	if (sr_ready < 0)
396 		return sr_ready;
397 
398 	ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
399 	if (ret)
400 		return ret;
401 
402 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
403 		if (nor->bouncebuf[0] & FSR_E_ERR)
404 			dev_err(nor->dev, "Erase operation failed.\n");
405 		else
406 			dev_err(nor->dev, "Program operation failed.\n");
407 
408 		if (nor->bouncebuf[0] & FSR_PT_ERR)
409 			dev_err(nor->dev,
410 				"Attempted to modify a protected sector.\n");
411 
412 		micron_st_nor_clear_fsr(nor);
413 
414 		/*
415 		 * WEL bit remains set to one when an erase or page program
416 		 * error occurs. Issue a Write Disable command to protect
417 		 * against inadvertent writes that can possibly corrupt the
418 		 * contents of the memory.
419 		 */
420 		ret = spi_nor_write_disable(nor);
421 		if (ret)
422 			return ret;
423 
424 		return -EIO;
425 	}
426 
427 	return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
428 }
429 
430 static void micron_st_nor_default_init(struct spi_nor *nor)
431 {
432 	nor->flags |= SNOR_F_HAS_LOCK;
433 	nor->flags &= ~SNOR_F_HAS_16BIT_SR;
434 	nor->params->quad_enable = NULL;
435 	nor->params->set_4byte_addr_mode = micron_st_nor_set_4byte_addr_mode;
436 }
437 
438 static void micron_st_nor_late_init(struct spi_nor *nor)
439 {
440 	if (nor->info->mfr_flags & USE_FSR)
441 		nor->params->ready = micron_st_nor_ready;
442 }
443 
444 static const struct spi_nor_fixups micron_st_nor_fixups = {
445 	.default_init = micron_st_nor_default_init,
446 	.late_init = micron_st_nor_late_init,
447 };
448 
449 const struct spi_nor_manufacturer spi_nor_micron = {
450 	.name = "micron",
451 	.parts = micron_nor_parts,
452 	.nparts = ARRAY_SIZE(micron_nor_parts),
453 	.fixups = &micron_st_nor_fixups,
454 };
455 
456 const struct spi_nor_manufacturer spi_nor_st = {
457 	.name = "st",
458 	.parts = st_nor_parts,
459 	.nparts = ARRAY_SIZE(st_nor_parts),
460 	.fixups = &micron_st_nor_fixups,
461 };
462