xref: /openbmc/linux/drivers/mtd/spi-nor/core.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_WIDTH	4
42 
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45 
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *			   extension type.
49  * @nor:		pointer to a 'struct spi_nor'
50  * @op:			pointer to the 'struct spi_mem_op' whose properties
51  *			need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 			      const struct spi_mem_op *op)
59 {
60 	switch (nor->cmd_ext_type) {
61 	case SPI_NOR_EXT_INVERT:
62 		return ~op->cmd.opcode;
63 
64 	case SPI_NOR_EXT_REPEAT:
65 		return op->cmd.opcode;
66 
67 	default:
68 		dev_err(nor->dev, "Unknown command extension type\n");
69 		return 0;
70 	}
71 }
72 
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:		pointer to a 'struct spi_nor'
76  * @op:			pointer to the 'struct spi_mem_op' whose properties
77  *			need to be initialized.
78  * @proto:		the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 			     struct spi_mem_op *op,
82 			     const enum spi_nor_protocol proto)
83 {
84 	u8 ext;
85 
86 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87 
88 	if (op->addr.nbytes)
89 		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90 
91 	if (op->dummy.nbytes)
92 		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93 
94 	if (op->data.nbytes)
95 		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96 
97 	if (spi_nor_protocol_is_dtr(proto)) {
98 		/*
99 		 * SPIMEM supports mixed DTR modes, but right now we can only
100 		 * have all phases either DTR or STR. IOW, SPIMEM can have
101 		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 		 * phases to either DTR or STR.
103 		 */
104 		op->cmd.dtr = true;
105 		op->addr.dtr = true;
106 		op->dummy.dtr = true;
107 		op->data.dtr = true;
108 
109 		/* 2 bytes per clock cycle in DTR mode. */
110 		op->dummy.nbytes *= 2;
111 
112 		ext = spi_nor_get_cmd_ext(nor, op);
113 		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 		op->cmd.nbytes = 2;
115 	}
116 }
117 
118 /**
119  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120  *                           transfer
121  * @nor:        pointer to 'struct spi_nor'
122  * @op:         pointer to 'struct spi_mem_op' template for transfer
123  *
124  * If we have to use the bounce buffer, the data field in @op will be updated.
125  *
126  * Return: true if the bounce buffer is needed, false if not
127  */
128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
131 	if (object_is_on_stack(op->data.buf.in) ||
132 	    !virt_addr_valid(op->data.buf.in)) {
133 		if (op->data.nbytes > nor->bouncebuf_size)
134 			op->data.nbytes = nor->bouncebuf_size;
135 		op->data.buf.in = nor->bouncebuf;
136 		return true;
137 	}
138 
139 	return false;
140 }
141 
142 /**
143  * spi_nor_spimem_exec_op() - execute a memory operation
144  * @nor:        pointer to 'struct spi_nor'
145  * @op:         pointer to 'struct spi_mem_op' template for transfer
146  *
147  * Return: 0 on success, -error otherwise.
148  */
149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 	int error;
152 
153 	error = spi_mem_adjust_op_size(nor->spimem, op);
154 	if (error)
155 		return error;
156 
157 	return spi_mem_exec_op(nor->spimem, op);
158 }
159 
160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 				    u8 *buf, size_t len)
162 {
163 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 		return -EOPNOTSUPP;
165 
166 	return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168 
169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 				     const u8 *buf, size_t len)
171 {
172 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 		return -EOPNOTSUPP;
174 
175 	return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177 
178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 	if (spi_nor_protocol_is_dtr(nor->write_proto))
181 		return -EOPNOTSUPP;
182 
183 	return nor->controller_ops->erase(nor, offs);
184 }
185 
186 /**
187  * spi_nor_spimem_read_data() - read data from flash's memory region via
188  *                              spi-mem
189  * @nor:        pointer to 'struct spi_nor'
190  * @from:       offset to read from
191  * @len:        number of bytes to read
192  * @buf:        pointer to dst buffer
193  *
194  * Return: number of bytes read successfully, -errno otherwise
195  */
196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 					size_t len, u8 *buf)
198 {
199 	struct spi_mem_op op =
200 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 			   SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
202 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 			   SPI_MEM_OP_DATA_IN(len, buf, 0));
204 	bool usebouncebuf;
205 	ssize_t nbytes;
206 	int error;
207 
208 	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209 
210 	/* convert the dummy cycles to the number of bytes */
211 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 	if (spi_nor_protocol_is_dtr(nor->read_proto))
213 		op.dummy.nbytes *= 2;
214 
215 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216 
217 	if (nor->dirmap.rdesc) {
218 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 					     op.data.nbytes, op.data.buf.in);
220 	} else {
221 		error = spi_nor_spimem_exec_op(nor, &op);
222 		if (error)
223 			return error;
224 		nbytes = op.data.nbytes;
225 	}
226 
227 	if (usebouncebuf && nbytes > 0)
228 		memcpy(buf, op.data.buf.in, nbytes);
229 
230 	return nbytes;
231 }
232 
233 /**
234  * spi_nor_read_data() - read data from flash memory
235  * @nor:        pointer to 'struct spi_nor'
236  * @from:       offset to read from
237  * @len:        number of bytes to read
238  * @buf:        pointer to dst buffer
239  *
240  * Return: number of bytes read successfully, -errno otherwise
241  */
242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 	if (nor->spimem)
245 		return spi_nor_spimem_read_data(nor, from, len, buf);
246 
247 	return nor->controller_ops->read(nor, from, len, buf);
248 }
249 
250 /**
251  * spi_nor_spimem_write_data() - write data to flash memory via
252  *                               spi-mem
253  * @nor:        pointer to 'struct spi_nor'
254  * @to:         offset to write to
255  * @len:        number of bytes to write
256  * @buf:        pointer to src buffer
257  *
258  * Return: number of bytes written successfully, -errno otherwise
259  */
260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 					 size_t len, const u8 *buf)
262 {
263 	struct spi_mem_op op =
264 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 			   SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
266 			   SPI_MEM_OP_NO_DUMMY,
267 			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 	ssize_t nbytes;
269 	int error;
270 
271 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 		op.addr.nbytes = 0;
273 
274 	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275 
276 	if (spi_nor_spimem_bounce(nor, &op))
277 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
278 
279 	if (nor->dirmap.wdesc) {
280 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 					      op.data.nbytes, op.data.buf.out);
282 	} else {
283 		error = spi_nor_spimem_exec_op(nor, &op);
284 		if (error)
285 			return error;
286 		nbytes = op.data.nbytes;
287 	}
288 
289 	return nbytes;
290 }
291 
292 /**
293  * spi_nor_write_data() - write data to flash memory
294  * @nor:        pointer to 'struct spi_nor'
295  * @to:         offset to write to
296  * @len:        number of bytes to write
297  * @buf:        pointer to src buffer
298  *
299  * Return: number of bytes written successfully, -errno otherwise
300  */
301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 			   const u8 *buf)
303 {
304 	if (nor->spimem)
305 		return spi_nor_spimem_write_data(nor, to, len, buf);
306 
307 	return nor->controller_ops->write(nor, to, len, buf);
308 }
309 
310 /**
311  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
312  * @nor:	pointer to 'struct spi_nor'.
313  *
314  * Return: 0 on success, -errno otherwise.
315  */
316 int spi_nor_write_enable(struct spi_nor *nor)
317 {
318 	int ret;
319 
320 	if (nor->spimem) {
321 		struct spi_mem_op op =
322 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0),
323 				   SPI_MEM_OP_NO_ADDR,
324 				   SPI_MEM_OP_NO_DUMMY,
325 				   SPI_MEM_OP_NO_DATA);
326 
327 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
328 
329 		ret = spi_mem_exec_op(nor->spimem, &op);
330 	} else {
331 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
332 						       NULL, 0);
333 	}
334 
335 	if (ret)
336 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
337 
338 	return ret;
339 }
340 
341 /**
342  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
343  * @nor:	pointer to 'struct spi_nor'.
344  *
345  * Return: 0 on success, -errno otherwise.
346  */
347 int spi_nor_write_disable(struct spi_nor *nor)
348 {
349 	int ret;
350 
351 	if (nor->spimem) {
352 		struct spi_mem_op op =
353 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0),
354 				   SPI_MEM_OP_NO_ADDR,
355 				   SPI_MEM_OP_NO_DUMMY,
356 				   SPI_MEM_OP_NO_DATA);
357 
358 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
359 
360 		ret = spi_mem_exec_op(nor->spimem, &op);
361 	} else {
362 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
363 						       NULL, 0);
364 	}
365 
366 	if (ret)
367 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
368 
369 	return ret;
370 }
371 
372 /**
373  * spi_nor_read_sr() - Read the Status Register.
374  * @nor:	pointer to 'struct spi_nor'.
375  * @sr:		pointer to a DMA-able buffer where the value of the
376  *              Status Register will be written. Should be at least 2 bytes.
377  *
378  * Return: 0 on success, -errno otherwise.
379  */
380 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
381 {
382 	int ret;
383 
384 	if (nor->spimem) {
385 		struct spi_mem_op op =
386 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
387 				   SPI_MEM_OP_NO_ADDR,
388 				   SPI_MEM_OP_NO_DUMMY,
389 				   SPI_MEM_OP_DATA_IN(1, sr, 0));
390 
391 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
392 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
393 			op.dummy.nbytes = nor->params->rdsr_dummy;
394 			/*
395 			 * We don't want to read only one byte in DTR mode. So,
396 			 * read 2 and then discard the second byte.
397 			 */
398 			op.data.nbytes = 2;
399 		}
400 
401 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402 
403 		ret = spi_mem_exec_op(nor->spimem, &op);
404 	} else {
405 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
406 						      1);
407 	}
408 
409 	if (ret)
410 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
411 
412 	return ret;
413 }
414 
415 /**
416  * spi_nor_read_cr() - Read the Configuration Register using the
417  * SPINOR_OP_RDCR (35h) command.
418  * @nor:	pointer to 'struct spi_nor'
419  * @cr:		pointer to a DMA-able buffer where the value of the
420  *              Configuration Register will be written.
421  *
422  * Return: 0 on success, -errno otherwise.
423  */
424 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
425 {
426 	int ret;
427 
428 	if (nor->spimem) {
429 		struct spi_mem_op op =
430 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0),
431 				   SPI_MEM_OP_NO_ADDR,
432 				   SPI_MEM_OP_NO_DUMMY,
433 				   SPI_MEM_OP_DATA_IN(1, cr, 0));
434 
435 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
436 
437 		ret = spi_mem_exec_op(nor->spimem, &op);
438 	} else {
439 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
440 						      1);
441 	}
442 
443 	if (ret)
444 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
445 
446 	return ret;
447 }
448 
449 /**
450  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
451  * @nor:	pointer to 'struct spi_nor'.
452  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
453  *		address mode.
454  *
455  * Return: 0 on success, -errno otherwise.
456  */
457 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
458 {
459 	int ret;
460 
461 	if (nor->spimem) {
462 		struct spi_mem_op op =
463 			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
464 						  SPINOR_OP_EN4B :
465 						  SPINOR_OP_EX4B,
466 						  0),
467 				  SPI_MEM_OP_NO_ADDR,
468 				  SPI_MEM_OP_NO_DUMMY,
469 				  SPI_MEM_OP_NO_DATA);
470 
471 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
472 
473 		ret = spi_mem_exec_op(nor->spimem, &op);
474 	} else {
475 		ret = spi_nor_controller_ops_write_reg(nor,
476 						       enable ? SPINOR_OP_EN4B :
477 								SPINOR_OP_EX4B,
478 						       NULL, 0);
479 	}
480 
481 	if (ret)
482 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
483 
484 	return ret;
485 }
486 
487 /**
488  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
489  * flashes.
490  * @nor:	pointer to 'struct spi_nor'.
491  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
492  *		address mode.
493  *
494  * Return: 0 on success, -errno otherwise.
495  */
496 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
497 {
498 	int ret;
499 
500 	nor->bouncebuf[0] = enable << 7;
501 
502 	if (nor->spimem) {
503 		struct spi_mem_op op =
504 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0),
505 				   SPI_MEM_OP_NO_ADDR,
506 				   SPI_MEM_OP_NO_DUMMY,
507 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
508 
509 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
510 
511 		ret = spi_mem_exec_op(nor->spimem, &op);
512 	} else {
513 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
514 						       nor->bouncebuf, 1);
515 	}
516 
517 	if (ret)
518 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
519 
520 	return ret;
521 }
522 
523 /**
524  * spi_nor_write_ear() - Write Extended Address Register.
525  * @nor:	pointer to 'struct spi_nor'.
526  * @ear:	value to write to the Extended Address Register.
527  *
528  * Return: 0 on success, -errno otherwise.
529  */
530 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
531 {
532 	int ret;
533 
534 	nor->bouncebuf[0] = ear;
535 
536 	if (nor->spimem) {
537 		struct spi_mem_op op =
538 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 0),
539 				   SPI_MEM_OP_NO_ADDR,
540 				   SPI_MEM_OP_NO_DUMMY,
541 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
542 
543 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
544 
545 		ret = spi_mem_exec_op(nor->spimem, &op);
546 	} else {
547 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREAR,
548 						       nor->bouncebuf, 1);
549 	}
550 
551 	if (ret)
552 		dev_dbg(nor->dev, "error %d writing EAR\n", ret);
553 
554 	return ret;
555 }
556 
557 /**
558  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
559  * for new commands.
560  * @nor:	pointer to 'struct spi_nor'.
561  *
562  * Return: 1 if ready, 0 if not ready, -errno on errors.
563  */
564 int spi_nor_sr_ready(struct spi_nor *nor)
565 {
566 	int ret;
567 
568 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
569 	if (ret)
570 		return ret;
571 
572 	return !(nor->bouncebuf[0] & SR_WIP);
573 }
574 
575 /**
576  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
577  * @nor:	pointer to 'struct spi_nor'.
578  *
579  * Return: 1 if ready, 0 if not ready, -errno on errors.
580  */
581 static int spi_nor_ready(struct spi_nor *nor)
582 {
583 	/* Flashes might override the standard routine. */
584 	if (nor->params->ready)
585 		return nor->params->ready(nor);
586 
587 	return spi_nor_sr_ready(nor);
588 }
589 
590 /**
591  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
592  * Status Register until ready, or timeout occurs.
593  * @nor:		pointer to "struct spi_nor".
594  * @timeout_jiffies:	jiffies to wait until timeout.
595  *
596  * Return: 0 on success, -errno otherwise.
597  */
598 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
599 						unsigned long timeout_jiffies)
600 {
601 	unsigned long deadline;
602 	int timeout = 0, ret;
603 
604 	deadline = jiffies + timeout_jiffies;
605 
606 	while (!timeout) {
607 		if (time_after_eq(jiffies, deadline))
608 			timeout = 1;
609 
610 		ret = spi_nor_ready(nor);
611 		if (ret < 0)
612 			return ret;
613 		if (ret)
614 			return 0;
615 
616 		cond_resched();
617 	}
618 
619 	dev_dbg(nor->dev, "flash operation timed out\n");
620 
621 	return -ETIMEDOUT;
622 }
623 
624 /**
625  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
626  * flash to be ready, or timeout occurs.
627  * @nor:	pointer to "struct spi_nor".
628  *
629  * Return: 0 on success, -errno otherwise.
630  */
631 int spi_nor_wait_till_ready(struct spi_nor *nor)
632 {
633 	return spi_nor_wait_till_ready_with_timeout(nor,
634 						    DEFAULT_READY_WAIT_JIFFIES);
635 }
636 
637 /**
638  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
639  * @nor:	pointer to 'struct spi_nor'.
640  *
641  * Return: 0 on success, -errno otherwise.
642  */
643 int spi_nor_global_block_unlock(struct spi_nor *nor)
644 {
645 	int ret;
646 
647 	ret = spi_nor_write_enable(nor);
648 	if (ret)
649 		return ret;
650 
651 	if (nor->spimem) {
652 		struct spi_mem_op op =
653 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0),
654 				   SPI_MEM_OP_NO_ADDR,
655 				   SPI_MEM_OP_NO_DUMMY,
656 				   SPI_MEM_OP_NO_DATA);
657 
658 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
659 
660 		ret = spi_mem_exec_op(nor->spimem, &op);
661 	} else {
662 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
663 						       NULL, 0);
664 	}
665 
666 	if (ret) {
667 		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
668 		return ret;
669 	}
670 
671 	return spi_nor_wait_till_ready(nor);
672 }
673 
674 /**
675  * spi_nor_write_sr() - Write the Status Register.
676  * @nor:	pointer to 'struct spi_nor'.
677  * @sr:		pointer to DMA-able buffer to write to the Status Register.
678  * @len:	number of bytes to write to the Status Register.
679  *
680  * Return: 0 on success, -errno otherwise.
681  */
682 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
683 {
684 	int ret;
685 
686 	ret = spi_nor_write_enable(nor);
687 	if (ret)
688 		return ret;
689 
690 	if (nor->spimem) {
691 		struct spi_mem_op op =
692 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0),
693 				   SPI_MEM_OP_NO_ADDR,
694 				   SPI_MEM_OP_NO_DUMMY,
695 				   SPI_MEM_OP_DATA_OUT(len, sr, 0));
696 
697 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
698 
699 		ret = spi_mem_exec_op(nor->spimem, &op);
700 	} else {
701 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
702 						       len);
703 	}
704 
705 	if (ret) {
706 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
707 		return ret;
708 	}
709 
710 	return spi_nor_wait_till_ready(nor);
711 }
712 
713 /**
714  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
715  * ensure that the byte written match the received value.
716  * @nor:	pointer to a 'struct spi_nor'.
717  * @sr1:	byte value to be written to the Status Register.
718  *
719  * Return: 0 on success, -errno otherwise.
720  */
721 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
722 {
723 	int ret;
724 
725 	nor->bouncebuf[0] = sr1;
726 
727 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
728 	if (ret)
729 		return ret;
730 
731 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
732 	if (ret)
733 		return ret;
734 
735 	if (nor->bouncebuf[0] != sr1) {
736 		dev_dbg(nor->dev, "SR1: read back test failed\n");
737 		return -EIO;
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
745  * Status Register 2 in one shot. Ensure that the byte written in the Status
746  * Register 1 match the received value, and that the 16-bit Write did not
747  * affect what was already in the Status Register 2.
748  * @nor:	pointer to a 'struct spi_nor'.
749  * @sr1:	byte value to be written to the Status Register 1.
750  *
751  * Return: 0 on success, -errno otherwise.
752  */
753 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
754 {
755 	int ret;
756 	u8 *sr_cr = nor->bouncebuf;
757 	u8 cr_written;
758 
759 	/* Make sure we don't overwrite the contents of Status Register 2. */
760 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
761 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
762 		if (ret)
763 			return ret;
764 	} else if (nor->params->quad_enable) {
765 		/*
766 		 * If the Status Register 2 Read command (35h) is not
767 		 * supported, we should at least be sure we don't
768 		 * change the value of the SR2 Quad Enable bit.
769 		 *
770 		 * We can safely assume that when the Quad Enable method is
771 		 * set, the value of the QE bit is one, as a consequence of the
772 		 * nor->params->quad_enable() call.
773 		 *
774 		 * We can safely assume that the Quad Enable bit is present in
775 		 * the Status Register 2 at BIT(1). According to the JESD216
776 		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
777 		 * Write Status (01h) command is available just for the cases
778 		 * in which the QE bit is described in SR2 at BIT(1).
779 		 */
780 		sr_cr[1] = SR2_QUAD_EN_BIT1;
781 	} else {
782 		sr_cr[1] = 0;
783 	}
784 
785 	sr_cr[0] = sr1;
786 
787 	ret = spi_nor_write_sr(nor, sr_cr, 2);
788 	if (ret)
789 		return ret;
790 
791 	if (nor->flags & SNOR_F_NO_READ_CR)
792 		return 0;
793 
794 	cr_written = sr_cr[1];
795 
796 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
797 	if (ret)
798 		return ret;
799 
800 	if (cr_written != sr_cr[1]) {
801 		dev_dbg(nor->dev, "CR: read back test failed\n");
802 		return -EIO;
803 	}
804 
805 	return 0;
806 }
807 
808 /**
809  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
810  * Configuration Register in one shot. Ensure that the byte written in the
811  * Configuration Register match the received value, and that the 16-bit Write
812  * did not affect what was already in the Status Register 1.
813  * @nor:	pointer to a 'struct spi_nor'.
814  * @cr:		byte value to be written to the Configuration Register.
815  *
816  * Return: 0 on success, -errno otherwise.
817  */
818 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
819 {
820 	int ret;
821 	u8 *sr_cr = nor->bouncebuf;
822 	u8 sr_written;
823 
824 	/* Keep the current value of the Status Register 1. */
825 	ret = spi_nor_read_sr(nor, sr_cr);
826 	if (ret)
827 		return ret;
828 
829 	sr_cr[1] = cr;
830 
831 	ret = spi_nor_write_sr(nor, sr_cr, 2);
832 	if (ret)
833 		return ret;
834 
835 	sr_written = sr_cr[0];
836 
837 	ret = spi_nor_read_sr(nor, sr_cr);
838 	if (ret)
839 		return ret;
840 
841 	if (sr_written != sr_cr[0]) {
842 		dev_dbg(nor->dev, "SR: Read back test failed\n");
843 		return -EIO;
844 	}
845 
846 	if (nor->flags & SNOR_F_NO_READ_CR)
847 		return 0;
848 
849 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
850 	if (ret)
851 		return ret;
852 
853 	if (cr != sr_cr[1]) {
854 		dev_dbg(nor->dev, "CR: read back test failed\n");
855 		return -EIO;
856 	}
857 
858 	return 0;
859 }
860 
861 /**
862  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
863  * the byte written match the received value without affecting other bits in the
864  * Status Register 1 and 2.
865  * @nor:	pointer to a 'struct spi_nor'.
866  * @sr1:	byte value to be written to the Status Register.
867  *
868  * Return: 0 on success, -errno otherwise.
869  */
870 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
871 {
872 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
873 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
874 
875 	return spi_nor_write_sr1_and_check(nor, sr1);
876 }
877 
878 /**
879  * spi_nor_write_sr2() - Write the Status Register 2 using the
880  * SPINOR_OP_WRSR2 (3eh) command.
881  * @nor:	pointer to 'struct spi_nor'.
882  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
883  *
884  * Return: 0 on success, -errno otherwise.
885  */
886 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
887 {
888 	int ret;
889 
890 	ret = spi_nor_write_enable(nor);
891 	if (ret)
892 		return ret;
893 
894 	if (nor->spimem) {
895 		struct spi_mem_op op =
896 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0),
897 				   SPI_MEM_OP_NO_ADDR,
898 				   SPI_MEM_OP_NO_DUMMY,
899 				   SPI_MEM_OP_DATA_OUT(1, sr2, 0));
900 
901 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
902 
903 		ret = spi_mem_exec_op(nor->spimem, &op);
904 	} else {
905 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
906 						       sr2, 1);
907 	}
908 
909 	if (ret) {
910 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
911 		return ret;
912 	}
913 
914 	return spi_nor_wait_till_ready(nor);
915 }
916 
917 /**
918  * spi_nor_read_sr2() - Read the Status Register 2 using the
919  * SPINOR_OP_RDSR2 (3fh) command.
920  * @nor:	pointer to 'struct spi_nor'.
921  * @sr2:	pointer to DMA-able buffer where the value of the
922  *		Status Register 2 will be written.
923  *
924  * Return: 0 on success, -errno otherwise.
925  */
926 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
927 {
928 	int ret;
929 
930 	if (nor->spimem) {
931 		struct spi_mem_op op =
932 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0),
933 				   SPI_MEM_OP_NO_ADDR,
934 				   SPI_MEM_OP_NO_DUMMY,
935 				   SPI_MEM_OP_DATA_IN(1, sr2, 0));
936 
937 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
938 
939 		ret = spi_mem_exec_op(nor->spimem, &op);
940 	} else {
941 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
942 						      1);
943 	}
944 
945 	if (ret)
946 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
947 
948 	return ret;
949 }
950 
951 /**
952  * spi_nor_erase_chip() - Erase the entire flash memory.
953  * @nor:	pointer to 'struct spi_nor'.
954  *
955  * Return: 0 on success, -errno otherwise.
956  */
957 static int spi_nor_erase_chip(struct spi_nor *nor)
958 {
959 	int ret;
960 
961 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
962 
963 	if (nor->spimem) {
964 		struct spi_mem_op op =
965 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
966 				   SPI_MEM_OP_NO_ADDR,
967 				   SPI_MEM_OP_NO_DUMMY,
968 				   SPI_MEM_OP_NO_DATA);
969 
970 		spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
971 
972 		ret = spi_mem_exec_op(nor->spimem, &op);
973 	} else {
974 		ret = spi_nor_controller_ops_write_reg(nor,
975 						       SPINOR_OP_CHIP_ERASE,
976 						       NULL, 0);
977 	}
978 
979 	if (ret)
980 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
981 
982 	return ret;
983 }
984 
985 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
986 {
987 	size_t i;
988 
989 	for (i = 0; i < size; i++)
990 		if (table[i][0] == opcode)
991 			return table[i][1];
992 
993 	/* No conversion found, keep input op code. */
994 	return opcode;
995 }
996 
997 u8 spi_nor_convert_3to4_read(u8 opcode)
998 {
999 	static const u8 spi_nor_3to4_read[][2] = {
1000 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1001 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1002 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1003 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1004 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1005 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1006 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1007 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1008 
1009 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1010 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1011 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1012 	};
1013 
1014 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1015 				      ARRAY_SIZE(spi_nor_3to4_read));
1016 }
1017 
1018 static u8 spi_nor_convert_3to4_program(u8 opcode)
1019 {
1020 	static const u8 spi_nor_3to4_program[][2] = {
1021 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1022 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1023 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1024 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1025 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1026 	};
1027 
1028 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1029 				      ARRAY_SIZE(spi_nor_3to4_program));
1030 }
1031 
1032 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1033 {
1034 	static const u8 spi_nor_3to4_erase[][2] = {
1035 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1036 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1037 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1038 	};
1039 
1040 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1041 				      ARRAY_SIZE(spi_nor_3to4_erase));
1042 }
1043 
1044 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1045 {
1046 	return !!nor->params->erase_map.uniform_erase_type;
1047 }
1048 
1049 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1050 {
1051 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1052 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1053 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1054 
1055 	if (!spi_nor_has_uniform_erase(nor)) {
1056 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1057 		struct spi_nor_erase_type *erase;
1058 		int i;
1059 
1060 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1061 			erase = &map->erase_type[i];
1062 			erase->opcode =
1063 				spi_nor_convert_3to4_erase(erase->opcode);
1064 		}
1065 	}
1066 }
1067 
1068 int spi_nor_lock_and_prep(struct spi_nor *nor)
1069 {
1070 	int ret = 0;
1071 
1072 	mutex_lock(&nor->lock);
1073 
1074 	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1075 		ret = nor->controller_ops->prepare(nor);
1076 		if (ret) {
1077 			mutex_unlock(&nor->lock);
1078 			return ret;
1079 		}
1080 	}
1081 	return ret;
1082 }
1083 
1084 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1085 {
1086 	if (nor->controller_ops && nor->controller_ops->unprepare)
1087 		nor->controller_ops->unprepare(nor);
1088 	mutex_unlock(&nor->lock);
1089 }
1090 
1091 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1092 {
1093 	if (!nor->params->convert_addr)
1094 		return addr;
1095 
1096 	return nor->params->convert_addr(nor, addr);
1097 }
1098 
1099 /*
1100  * Initiate the erasure of a single sector
1101  */
1102 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1103 {
1104 	int i;
1105 
1106 	addr = spi_nor_convert_addr(nor, addr);
1107 
1108 	if (nor->spimem) {
1109 		struct spi_mem_op op =
1110 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
1111 				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
1112 				   SPI_MEM_OP_NO_DUMMY,
1113 				   SPI_MEM_OP_NO_DATA);
1114 
1115 		spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1116 
1117 		return spi_mem_exec_op(nor->spimem, &op);
1118 	} else if (nor->controller_ops->erase) {
1119 		return spi_nor_controller_ops_erase(nor, addr);
1120 	}
1121 
1122 	/*
1123 	 * Default implementation, if driver doesn't have a specialized HW
1124 	 * control
1125 	 */
1126 	for (i = nor->addr_width - 1; i >= 0; i--) {
1127 		nor->bouncebuf[i] = addr & 0xff;
1128 		addr >>= 8;
1129 	}
1130 
1131 	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1132 						nor->bouncebuf, nor->addr_width);
1133 }
1134 
1135 /**
1136  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1137  * @erase:	pointer to a structure that describes a SPI NOR erase type
1138  * @dividend:	dividend value
1139  * @remainder:	pointer to u32 remainder (will be updated)
1140  *
1141  * Return: the result of the division
1142  */
1143 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1144 				     u64 dividend, u32 *remainder)
1145 {
1146 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1147 	*remainder = (u32)dividend & erase->size_mask;
1148 	return dividend >> erase->size_shift;
1149 }
1150 
1151 /**
1152  * spi_nor_find_best_erase_type() - find the best erase type for the given
1153  *				    offset in the serial flash memory and the
1154  *				    number of bytes to erase. The region in
1155  *				    which the address fits is expected to be
1156  *				    provided.
1157  * @map:	the erase map of the SPI NOR
1158  * @region:	pointer to a structure that describes a SPI NOR erase region
1159  * @addr:	offset in the serial flash memory
1160  * @len:	number of bytes to erase
1161  *
1162  * Return: a pointer to the best fitted erase type, NULL otherwise.
1163  */
1164 static const struct spi_nor_erase_type *
1165 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1166 			     const struct spi_nor_erase_region *region,
1167 			     u64 addr, u32 len)
1168 {
1169 	const struct spi_nor_erase_type *erase;
1170 	u32 rem;
1171 	int i;
1172 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1173 
1174 	/*
1175 	 * Erase types are ordered by size, with the smallest erase type at
1176 	 * index 0.
1177 	 */
1178 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1179 		/* Does the erase region support the tested erase type? */
1180 		if (!(erase_mask & BIT(i)))
1181 			continue;
1182 
1183 		erase = &map->erase_type[i];
1184 
1185 		/* Alignment is not mandatory for overlaid regions */
1186 		if (region->offset & SNOR_OVERLAID_REGION &&
1187 		    region->size <= len)
1188 			return erase;
1189 
1190 		/* Don't erase more than what the user has asked for. */
1191 		if (erase->size > len)
1192 			continue;
1193 
1194 		spi_nor_div_by_erase_size(erase, addr, &rem);
1195 		if (!rem)
1196 			return erase;
1197 	}
1198 
1199 	return NULL;
1200 }
1201 
1202 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1203 {
1204 	return region->offset & SNOR_LAST_REGION;
1205 }
1206 
1207 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1208 {
1209 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1210 }
1211 
1212 /**
1213  * spi_nor_region_next() - get the next spi nor region
1214  * @region:	pointer to a structure that describes a SPI NOR erase region
1215  *
1216  * Return: the next spi nor region or NULL if last region.
1217  */
1218 struct spi_nor_erase_region *
1219 spi_nor_region_next(struct spi_nor_erase_region *region)
1220 {
1221 	if (spi_nor_region_is_last(region))
1222 		return NULL;
1223 	region++;
1224 	return region;
1225 }
1226 
1227 /**
1228  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1229  *				 which the offset fits
1230  * @map:	the erase map of the SPI NOR
1231  * @addr:	offset in the serial flash memory
1232  *
1233  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1234  *	   otherwise.
1235  */
1236 static struct spi_nor_erase_region *
1237 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1238 {
1239 	struct spi_nor_erase_region *region = map->regions;
1240 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1241 	u64 region_end = region_start + region->size;
1242 
1243 	while (addr < region_start || addr >= region_end) {
1244 		region = spi_nor_region_next(region);
1245 		if (!region)
1246 			return ERR_PTR(-EINVAL);
1247 
1248 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1249 		region_end = region_start + region->size;
1250 	}
1251 
1252 	return region;
1253 }
1254 
1255 /**
1256  * spi_nor_init_erase_cmd() - initialize an erase command
1257  * @region:	pointer to a structure that describes a SPI NOR erase region
1258  * @erase:	pointer to a structure that describes a SPI NOR erase type
1259  *
1260  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1261  *	   otherwise.
1262  */
1263 static struct spi_nor_erase_command *
1264 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1265 		       const struct spi_nor_erase_type *erase)
1266 {
1267 	struct spi_nor_erase_command *cmd;
1268 
1269 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1270 	if (!cmd)
1271 		return ERR_PTR(-ENOMEM);
1272 
1273 	INIT_LIST_HEAD(&cmd->list);
1274 	cmd->opcode = erase->opcode;
1275 	cmd->count = 1;
1276 
1277 	if (region->offset & SNOR_OVERLAID_REGION)
1278 		cmd->size = region->size;
1279 	else
1280 		cmd->size = erase->size;
1281 
1282 	return cmd;
1283 }
1284 
1285 /**
1286  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1287  * @erase_list:	list of erase commands
1288  */
1289 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1290 {
1291 	struct spi_nor_erase_command *cmd, *next;
1292 
1293 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1294 		list_del(&cmd->list);
1295 		kfree(cmd);
1296 	}
1297 }
1298 
1299 /**
1300  * spi_nor_init_erase_cmd_list() - initialize erase command list
1301  * @nor:	pointer to a 'struct spi_nor'
1302  * @erase_list:	list of erase commands to be executed once we validate that the
1303  *		erase can be performed
1304  * @addr:	offset in the serial flash memory
1305  * @len:	number of bytes to erase
1306  *
1307  * Builds the list of best fitted erase commands and verifies if the erase can
1308  * be performed.
1309  *
1310  * Return: 0 on success, -errno otherwise.
1311  */
1312 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1313 				       struct list_head *erase_list,
1314 				       u64 addr, u32 len)
1315 {
1316 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1317 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1318 	struct spi_nor_erase_region *region;
1319 	struct spi_nor_erase_command *cmd = NULL;
1320 	u64 region_end;
1321 	int ret = -EINVAL;
1322 
1323 	region = spi_nor_find_erase_region(map, addr);
1324 	if (IS_ERR(region))
1325 		return PTR_ERR(region);
1326 
1327 	region_end = spi_nor_region_end(region);
1328 
1329 	while (len) {
1330 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1331 		if (!erase)
1332 			goto destroy_erase_cmd_list;
1333 
1334 		if (prev_erase != erase ||
1335 		    erase->size != cmd->size ||
1336 		    region->offset & SNOR_OVERLAID_REGION) {
1337 			cmd = spi_nor_init_erase_cmd(region, erase);
1338 			if (IS_ERR(cmd)) {
1339 				ret = PTR_ERR(cmd);
1340 				goto destroy_erase_cmd_list;
1341 			}
1342 
1343 			list_add_tail(&cmd->list, erase_list);
1344 		} else {
1345 			cmd->count++;
1346 		}
1347 
1348 		addr += cmd->size;
1349 		len -= cmd->size;
1350 
1351 		if (len && addr >= region_end) {
1352 			region = spi_nor_region_next(region);
1353 			if (!region)
1354 				goto destroy_erase_cmd_list;
1355 			region_end = spi_nor_region_end(region);
1356 		}
1357 
1358 		prev_erase = erase;
1359 	}
1360 
1361 	return 0;
1362 
1363 destroy_erase_cmd_list:
1364 	spi_nor_destroy_erase_cmd_list(erase_list);
1365 	return ret;
1366 }
1367 
1368 /**
1369  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1370  * @nor:	pointer to a 'struct spi_nor'
1371  * @addr:	offset in the serial flash memory
1372  * @len:	number of bytes to erase
1373  *
1374  * Build a list of best fitted erase commands and execute it once we validate
1375  * that the erase can be performed.
1376  *
1377  * Return: 0 on success, -errno otherwise.
1378  */
1379 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1380 {
1381 	LIST_HEAD(erase_list);
1382 	struct spi_nor_erase_command *cmd, *next;
1383 	int ret;
1384 
1385 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1386 	if (ret)
1387 		return ret;
1388 
1389 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1390 		nor->erase_opcode = cmd->opcode;
1391 		while (cmd->count) {
1392 			dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1393 				 cmd->size, cmd->opcode, cmd->count);
1394 
1395 			ret = spi_nor_write_enable(nor);
1396 			if (ret)
1397 				goto destroy_erase_cmd_list;
1398 
1399 			ret = spi_nor_erase_sector(nor, addr);
1400 			if (ret)
1401 				goto destroy_erase_cmd_list;
1402 
1403 			ret = spi_nor_wait_till_ready(nor);
1404 			if (ret)
1405 				goto destroy_erase_cmd_list;
1406 
1407 			addr += cmd->size;
1408 			cmd->count--;
1409 		}
1410 		list_del(&cmd->list);
1411 		kfree(cmd);
1412 	}
1413 
1414 	return 0;
1415 
1416 destroy_erase_cmd_list:
1417 	spi_nor_destroy_erase_cmd_list(&erase_list);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Erase an address range on the nor chip.  The address range may extend
1423  * one or more erase sectors. Return an error if there is a problem erasing.
1424  */
1425 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1426 {
1427 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1428 	u32 addr, len;
1429 	uint32_t rem;
1430 	int ret;
1431 
1432 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1433 			(long long)instr->len);
1434 
1435 	if (spi_nor_has_uniform_erase(nor)) {
1436 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1437 		if (rem)
1438 			return -EINVAL;
1439 	}
1440 
1441 	addr = instr->addr;
1442 	len = instr->len;
1443 
1444 	ret = spi_nor_lock_and_prep(nor);
1445 	if (ret)
1446 		return ret;
1447 
1448 	/* whole-chip erase? */
1449 	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1450 		unsigned long timeout;
1451 
1452 		ret = spi_nor_write_enable(nor);
1453 		if (ret)
1454 			goto erase_err;
1455 
1456 		ret = spi_nor_erase_chip(nor);
1457 		if (ret)
1458 			goto erase_err;
1459 
1460 		/*
1461 		 * Scale the timeout linearly with the size of the flash, with
1462 		 * a minimum calibrated to an old 2MB flash. We could try to
1463 		 * pull these from CFI/SFDP, but these values should be good
1464 		 * enough for now.
1465 		 */
1466 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1467 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1468 			      (unsigned long)(mtd->size / SZ_2M));
1469 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1470 		if (ret)
1471 			goto erase_err;
1472 
1473 	/* REVISIT in some cases we could speed up erasing large regions
1474 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1475 	 * to use "small sector erase", but that's not always optimal.
1476 	 */
1477 
1478 	/* "sector"-at-a-time erase */
1479 	} else if (spi_nor_has_uniform_erase(nor)) {
1480 		while (len) {
1481 			ret = spi_nor_write_enable(nor);
1482 			if (ret)
1483 				goto erase_err;
1484 
1485 			ret = spi_nor_erase_sector(nor, addr);
1486 			if (ret)
1487 				goto erase_err;
1488 
1489 			ret = spi_nor_wait_till_ready(nor);
1490 			if (ret)
1491 				goto erase_err;
1492 
1493 			addr += mtd->erasesize;
1494 			len -= mtd->erasesize;
1495 		}
1496 
1497 	/* erase multiple sectors */
1498 	} else {
1499 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1500 		if (ret)
1501 			goto erase_err;
1502 	}
1503 
1504 	ret = spi_nor_write_disable(nor);
1505 
1506 erase_err:
1507 	spi_nor_unlock_and_unprep(nor);
1508 
1509 	return ret;
1510 }
1511 
1512 /**
1513  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1514  * Register 1.
1515  * @nor:	pointer to a 'struct spi_nor'
1516  *
1517  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1518  *
1519  * Return: 0 on success, -errno otherwise.
1520  */
1521 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1522 {
1523 	int ret;
1524 
1525 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1526 	if (ret)
1527 		return ret;
1528 
1529 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1530 		return 0;
1531 
1532 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1533 
1534 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1535 }
1536 
1537 /**
1538  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1539  * Register 2.
1540  * @nor:       pointer to a 'struct spi_nor'.
1541  *
1542  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1543  *
1544  * Return: 0 on success, -errno otherwise.
1545  */
1546 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1547 {
1548 	int ret;
1549 
1550 	if (nor->flags & SNOR_F_NO_READ_CR)
1551 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1552 
1553 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
1554 	if (ret)
1555 		return ret;
1556 
1557 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1558 		return 0;
1559 
1560 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1561 
1562 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1563 }
1564 
1565 /**
1566  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1567  * @nor:	pointer to a 'struct spi_nor'
1568  *
1569  * Set the Quad Enable (QE) bit in the Status Register 2.
1570  *
1571  * This is one of the procedures to set the QE bit described in the SFDP
1572  * (JESD216 rev B) specification but no manufacturer using this procedure has
1573  * been identified yet, hence the name of the function.
1574  *
1575  * Return: 0 on success, -errno otherwise.
1576  */
1577 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1578 {
1579 	u8 *sr2 = nor->bouncebuf;
1580 	int ret;
1581 	u8 sr2_written;
1582 
1583 	/* Check current Quad Enable bit value. */
1584 	ret = spi_nor_read_sr2(nor, sr2);
1585 	if (ret)
1586 		return ret;
1587 	if (*sr2 & SR2_QUAD_EN_BIT7)
1588 		return 0;
1589 
1590 	/* Update the Quad Enable bit. */
1591 	*sr2 |= SR2_QUAD_EN_BIT7;
1592 
1593 	ret = spi_nor_write_sr2(nor, sr2);
1594 	if (ret)
1595 		return ret;
1596 
1597 	sr2_written = *sr2;
1598 
1599 	/* Read back and check it. */
1600 	ret = spi_nor_read_sr2(nor, sr2);
1601 	if (ret)
1602 		return ret;
1603 
1604 	if (*sr2 != sr2_written) {
1605 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
1606 		return -EIO;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static const struct spi_nor_manufacturer *manufacturers[] = {
1613 	&spi_nor_atmel,
1614 	&spi_nor_catalyst,
1615 	&spi_nor_eon,
1616 	&spi_nor_esmt,
1617 	&spi_nor_everspin,
1618 	&spi_nor_fujitsu,
1619 	&spi_nor_gigadevice,
1620 	&spi_nor_intel,
1621 	&spi_nor_issi,
1622 	&spi_nor_macronix,
1623 	&spi_nor_micron,
1624 	&spi_nor_st,
1625 	&spi_nor_spansion,
1626 	&spi_nor_sst,
1627 	&spi_nor_winbond,
1628 	&spi_nor_xilinx,
1629 	&spi_nor_xmc,
1630 };
1631 
1632 static const struct flash_info *
1633 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
1634 			  const u8 *id)
1635 {
1636 	unsigned int i;
1637 
1638 	for (i = 0; i < nparts; i++) {
1639 		if (parts[i].id_len &&
1640 		    !memcmp(parts[i].id, id, parts[i].id_len))
1641 			return &parts[i];
1642 	}
1643 
1644 	return NULL;
1645 }
1646 
1647 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1648 {
1649 	const struct flash_info *info;
1650 	u8 *id = nor->bouncebuf;
1651 	unsigned int i;
1652 	int ret;
1653 
1654 	if (nor->spimem) {
1655 		struct spi_mem_op op =
1656 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
1657 				   SPI_MEM_OP_NO_ADDR,
1658 				   SPI_MEM_OP_NO_DUMMY,
1659 				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
1660 
1661 		ret = spi_mem_exec_op(nor->spimem, &op);
1662 	} else {
1663 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
1664 						    SPI_NOR_MAX_ID_LEN);
1665 	}
1666 	if (ret) {
1667 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1668 		return ERR_PTR(ret);
1669 	}
1670 
1671 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1672 		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
1673 						 manufacturers[i]->nparts,
1674 						 id);
1675 		if (info) {
1676 			nor->manufacturer = manufacturers[i];
1677 			return info;
1678 		}
1679 	}
1680 
1681 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
1682 		SPI_NOR_MAX_ID_LEN, id);
1683 	return ERR_PTR(-ENODEV);
1684 }
1685 
1686 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1687 			size_t *retlen, u_char *buf)
1688 {
1689 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1690 	ssize_t ret;
1691 
1692 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1693 
1694 	ret = spi_nor_lock_and_prep(nor);
1695 	if (ret)
1696 		return ret;
1697 
1698 	while (len) {
1699 		loff_t addr = from;
1700 
1701 		addr = spi_nor_convert_addr(nor, addr);
1702 
1703 		ret = spi_nor_read_data(nor, addr, len, buf);
1704 		if (ret == 0) {
1705 			/* We shouldn't see 0-length reads */
1706 			ret = -EIO;
1707 			goto read_err;
1708 		}
1709 		if (ret < 0)
1710 			goto read_err;
1711 
1712 		WARN_ON(ret > len);
1713 		*retlen += ret;
1714 		buf += ret;
1715 		from += ret;
1716 		len -= ret;
1717 	}
1718 	ret = 0;
1719 
1720 read_err:
1721 	spi_nor_unlock_and_unprep(nor);
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Write an address range to the nor chip.  Data must be written in
1727  * FLASH_PAGESIZE chunks.  The address range may be any size provided
1728  * it is within the physical boundaries.
1729  */
1730 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1731 	size_t *retlen, const u_char *buf)
1732 {
1733 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1734 	size_t page_offset, page_remain, i;
1735 	ssize_t ret;
1736 	u32 page_size = nor->params->page_size;
1737 
1738 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1739 
1740 	ret = spi_nor_lock_and_prep(nor);
1741 	if (ret)
1742 		return ret;
1743 
1744 	for (i = 0; i < len; ) {
1745 		ssize_t written;
1746 		loff_t addr = to + i;
1747 
1748 		/*
1749 		 * If page_size is a power of two, the offset can be quickly
1750 		 * calculated with an AND operation. On the other cases we
1751 		 * need to do a modulus operation (more expensive).
1752 		 */
1753 		if (is_power_of_2(page_size)) {
1754 			page_offset = addr & (page_size - 1);
1755 		} else {
1756 			uint64_t aux = addr;
1757 
1758 			page_offset = do_div(aux, page_size);
1759 		}
1760 		/* the size of data remaining on the first page */
1761 		page_remain = min_t(size_t, page_size - page_offset, len - i);
1762 
1763 		addr = spi_nor_convert_addr(nor, addr);
1764 
1765 		ret = spi_nor_write_enable(nor);
1766 		if (ret)
1767 			goto write_err;
1768 
1769 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
1770 		if (ret < 0)
1771 			goto write_err;
1772 		written = ret;
1773 
1774 		ret = spi_nor_wait_till_ready(nor);
1775 		if (ret)
1776 			goto write_err;
1777 		*retlen += written;
1778 		i += written;
1779 	}
1780 
1781 write_err:
1782 	spi_nor_unlock_and_unprep(nor);
1783 	return ret;
1784 }
1785 
1786 static int spi_nor_check(struct spi_nor *nor)
1787 {
1788 	if (!nor->dev ||
1789 	    (!nor->spimem && !nor->controller_ops) ||
1790 	    (!nor->spimem && nor->controller_ops &&
1791 	    (!nor->controller_ops->read ||
1792 	     !nor->controller_ops->write ||
1793 	     !nor->controller_ops->read_reg ||
1794 	     !nor->controller_ops->write_reg))) {
1795 		pr_err("spi-nor: please fill all the necessary fields!\n");
1796 		return -EINVAL;
1797 	}
1798 
1799 	if (nor->spimem && nor->controller_ops) {
1800 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
1801 		return -EINVAL;
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 void
1808 spi_nor_set_read_settings(struct spi_nor_read_command *read,
1809 			  u8 num_mode_clocks,
1810 			  u8 num_wait_states,
1811 			  u8 opcode,
1812 			  enum spi_nor_protocol proto)
1813 {
1814 	read->num_mode_clocks = num_mode_clocks;
1815 	read->num_wait_states = num_wait_states;
1816 	read->opcode = opcode;
1817 	read->proto = proto;
1818 }
1819 
1820 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
1821 			     enum spi_nor_protocol proto)
1822 {
1823 	pp->opcode = opcode;
1824 	pp->proto = proto;
1825 }
1826 
1827 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
1828 {
1829 	size_t i;
1830 
1831 	for (i = 0; i < size; i++)
1832 		if (table[i][0] == (int)hwcaps)
1833 			return table[i][1];
1834 
1835 	return -EINVAL;
1836 }
1837 
1838 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
1839 {
1840 	static const int hwcaps_read2cmd[][2] = {
1841 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
1842 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
1843 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
1844 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
1845 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
1846 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
1847 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
1848 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
1849 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
1850 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
1851 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
1852 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
1853 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
1854 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
1855 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
1856 		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
1857 	};
1858 
1859 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
1860 				  ARRAY_SIZE(hwcaps_read2cmd));
1861 }
1862 
1863 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
1864 {
1865 	static const int hwcaps_pp2cmd[][2] = {
1866 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
1867 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
1868 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
1869 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
1870 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
1871 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
1872 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
1873 		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
1874 	};
1875 
1876 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
1877 				  ARRAY_SIZE(hwcaps_pp2cmd));
1878 }
1879 
1880 /**
1881  * spi_nor_spimem_check_op - check if the operation is supported
1882  *                           by controller
1883  *@nor:        pointer to a 'struct spi_nor'
1884  *@op:         pointer to op template to be checked
1885  *
1886  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1887  */
1888 static int spi_nor_spimem_check_op(struct spi_nor *nor,
1889 				   struct spi_mem_op *op)
1890 {
1891 	/*
1892 	 * First test with 4 address bytes. The opcode itself might
1893 	 * be a 3B addressing opcode but we don't care, because
1894 	 * SPI controller implementation should not check the opcode,
1895 	 * but just the sequence.
1896 	 */
1897 	op->addr.nbytes = 4;
1898 	if (!spi_mem_supports_op(nor->spimem, op)) {
1899 		if (nor->params->size > SZ_16M)
1900 			return -EOPNOTSUPP;
1901 
1902 		/* If flash size <= 16MB, 3 address bytes are sufficient */
1903 		op->addr.nbytes = 3;
1904 		if (!spi_mem_supports_op(nor->spimem, op))
1905 			return -EOPNOTSUPP;
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 /**
1912  * spi_nor_spimem_check_readop - check if the read op is supported
1913  *                               by controller
1914  *@nor:         pointer to a 'struct spi_nor'
1915  *@read:        pointer to op template to be checked
1916  *
1917  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1918  */
1919 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
1920 				       const struct spi_nor_read_command *read)
1921 {
1922 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
1923 					  SPI_MEM_OP_ADDR(3, 0, 0),
1924 					  SPI_MEM_OP_DUMMY(1, 0),
1925 					  SPI_MEM_OP_DATA_IN(2, NULL, 0));
1926 
1927 	spi_nor_spimem_setup_op(nor, &op, read->proto);
1928 
1929 	/* convert the dummy cycles to the number of bytes */
1930 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
1931 	if (spi_nor_protocol_is_dtr(nor->read_proto))
1932 		op.dummy.nbytes *= 2;
1933 
1934 	return spi_nor_spimem_check_op(nor, &op);
1935 }
1936 
1937 /**
1938  * spi_nor_spimem_check_pp - check if the page program op is supported
1939  *                           by controller
1940  *@nor:         pointer to a 'struct spi_nor'
1941  *@pp:          pointer to op template to be checked
1942  *
1943  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
1944  */
1945 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
1946 				   const struct spi_nor_pp_command *pp)
1947 {
1948 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
1949 					  SPI_MEM_OP_ADDR(3, 0, 0),
1950 					  SPI_MEM_OP_NO_DUMMY,
1951 					  SPI_MEM_OP_DATA_OUT(2, NULL, 0));
1952 
1953 	spi_nor_spimem_setup_op(nor, &op, pp->proto);
1954 
1955 	return spi_nor_spimem_check_op(nor, &op);
1956 }
1957 
1958 /**
1959  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
1960  *                                based on SPI controller capabilities
1961  * @nor:        pointer to a 'struct spi_nor'
1962  * @hwcaps:     pointer to resulting capabilities after adjusting
1963  *              according to controller and flash's capability
1964  */
1965 static void
1966 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
1967 {
1968 	struct spi_nor_flash_parameter *params = nor->params;
1969 	unsigned int cap;
1970 
1971 	/* X-X-X modes are not supported yet, mask them all. */
1972 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
1973 
1974 	/*
1975 	 * If the reset line is broken, we do not want to enter a stateful
1976 	 * mode.
1977 	 */
1978 	if (nor->flags & SNOR_F_BROKEN_RESET)
1979 		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
1980 
1981 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
1982 		int rdidx, ppidx;
1983 
1984 		if (!(*hwcaps & BIT(cap)))
1985 			continue;
1986 
1987 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
1988 		if (rdidx >= 0 &&
1989 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
1990 			*hwcaps &= ~BIT(cap);
1991 
1992 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
1993 		if (ppidx < 0)
1994 			continue;
1995 
1996 		if (spi_nor_spimem_check_pp(nor,
1997 					    &params->page_programs[ppidx]))
1998 			*hwcaps &= ~BIT(cap);
1999 	}
2000 }
2001 
2002 /**
2003  * spi_nor_set_erase_type() - set a SPI NOR erase type
2004  * @erase:	pointer to a structure that describes a SPI NOR erase type
2005  * @size:	the size of the sector/block erased by the erase type
2006  * @opcode:	the SPI command op code to erase the sector/block
2007  */
2008 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2009 			    u8 opcode)
2010 {
2011 	erase->size = size;
2012 	erase->opcode = opcode;
2013 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2014 	erase->size_shift = ffs(erase->size) - 1;
2015 	erase->size_mask = (1 << erase->size_shift) - 1;
2016 }
2017 
2018 /**
2019  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2020  * @map:		the erase map of the SPI NOR
2021  * @erase_mask:		bitmask encoding erase types that can erase the entire
2022  *			flash memory
2023  * @flash_size:		the spi nor flash memory size
2024  */
2025 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2026 				    u8 erase_mask, u64 flash_size)
2027 {
2028 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2029 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2030 				     SNOR_LAST_REGION;
2031 	map->uniform_region.size = flash_size;
2032 	map->regions = &map->uniform_region;
2033 	map->uniform_erase_type = erase_mask;
2034 }
2035 
2036 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2037 			     const struct sfdp_parameter_header *bfpt_header,
2038 			     const struct sfdp_bfpt *bfpt)
2039 {
2040 	int ret;
2041 
2042 	if (nor->manufacturer && nor->manufacturer->fixups &&
2043 	    nor->manufacturer->fixups->post_bfpt) {
2044 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2045 							   bfpt);
2046 		if (ret)
2047 			return ret;
2048 	}
2049 
2050 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2051 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2052 
2053 	return 0;
2054 }
2055 
2056 static int spi_nor_select_read(struct spi_nor *nor,
2057 			       u32 shared_hwcaps)
2058 {
2059 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2060 	const struct spi_nor_read_command *read;
2061 
2062 	if (best_match < 0)
2063 		return -EINVAL;
2064 
2065 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2066 	if (cmd < 0)
2067 		return -EINVAL;
2068 
2069 	read = &nor->params->reads[cmd];
2070 	nor->read_opcode = read->opcode;
2071 	nor->read_proto = read->proto;
2072 
2073 	/*
2074 	 * In the SPI NOR framework, we don't need to make the difference
2075 	 * between mode clock cycles and wait state clock cycles.
2076 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2077 	 * flash memory to know whether it should enter or leave its 0-4-4
2078 	 * (Continuous Read / XIP) mode.
2079 	 * eXecution In Place is out of the scope of the mtd sub-system.
2080 	 * Hence we choose to merge both mode and wait state clock cycles
2081 	 * into the so called dummy clock cycles.
2082 	 */
2083 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2084 	return 0;
2085 }
2086 
2087 static int spi_nor_select_pp(struct spi_nor *nor,
2088 			     u32 shared_hwcaps)
2089 {
2090 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2091 	const struct spi_nor_pp_command *pp;
2092 
2093 	if (best_match < 0)
2094 		return -EINVAL;
2095 
2096 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2097 	if (cmd < 0)
2098 		return -EINVAL;
2099 
2100 	pp = &nor->params->page_programs[cmd];
2101 	nor->program_opcode = pp->opcode;
2102 	nor->write_proto = pp->proto;
2103 	return 0;
2104 }
2105 
2106 /**
2107  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2108  * @map:		the erase map of the SPI NOR
2109  * @wanted_size:	the erase type size to search for. Contains the value of
2110  *			info->sector_size or of the "small sector" size in case
2111  *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2112  *
2113  * Once the optimum uniform sector erase command is found, disable all the
2114  * other.
2115  *
2116  * Return: pointer to erase type on success, NULL otherwise.
2117  */
2118 static const struct spi_nor_erase_type *
2119 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2120 			     const u32 wanted_size)
2121 {
2122 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2123 	int i;
2124 	u8 uniform_erase_type = map->uniform_erase_type;
2125 
2126 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2127 		if (!(uniform_erase_type & BIT(i)))
2128 			continue;
2129 
2130 		tested_erase = &map->erase_type[i];
2131 
2132 		/*
2133 		 * If the current erase size is the one, stop here:
2134 		 * we have found the right uniform Sector Erase command.
2135 		 */
2136 		if (tested_erase->size == wanted_size) {
2137 			erase = tested_erase;
2138 			break;
2139 		}
2140 
2141 		/*
2142 		 * Otherwise, the current erase size is still a valid candidate.
2143 		 * Select the biggest valid candidate.
2144 		 */
2145 		if (!erase && tested_erase->size)
2146 			erase = tested_erase;
2147 			/* keep iterating to find the wanted_size */
2148 	}
2149 
2150 	if (!erase)
2151 		return NULL;
2152 
2153 	/* Disable all other Sector Erase commands. */
2154 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2155 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2156 	return erase;
2157 }
2158 
2159 static int spi_nor_select_erase(struct spi_nor *nor)
2160 {
2161 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2162 	const struct spi_nor_erase_type *erase = NULL;
2163 	struct mtd_info *mtd = &nor->mtd;
2164 	u32 wanted_size = nor->info->sector_size;
2165 	int i;
2166 
2167 	/*
2168 	 * The previous implementation handling Sector Erase commands assumed
2169 	 * that the SPI flash memory has an uniform layout then used only one
2170 	 * of the supported erase sizes for all Sector Erase commands.
2171 	 * So to be backward compatible, the new implementation also tries to
2172 	 * manage the SPI flash memory as uniform with a single erase sector
2173 	 * size, when possible.
2174 	 */
2175 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2176 	/* prefer "small sector" erase if possible */
2177 	wanted_size = 4096u;
2178 #endif
2179 
2180 	if (spi_nor_has_uniform_erase(nor)) {
2181 		erase = spi_nor_select_uniform_erase(map, wanted_size);
2182 		if (!erase)
2183 			return -EINVAL;
2184 		nor->erase_opcode = erase->opcode;
2185 		mtd->erasesize = erase->size;
2186 		return 0;
2187 	}
2188 
2189 	/*
2190 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2191 	 * maximum erase sector size. No need to set nor->erase_opcode.
2192 	 */
2193 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2194 		if (map->erase_type[i].size) {
2195 			erase = &map->erase_type[i];
2196 			break;
2197 		}
2198 	}
2199 
2200 	if (!erase)
2201 		return -EINVAL;
2202 
2203 	mtd->erasesize = erase->size;
2204 	return 0;
2205 }
2206 
2207 static int spi_nor_default_setup(struct spi_nor *nor,
2208 				 const struct spi_nor_hwcaps *hwcaps)
2209 {
2210 	struct spi_nor_flash_parameter *params = nor->params;
2211 	u32 ignored_mask, shared_mask;
2212 	int err;
2213 
2214 	/*
2215 	 * Keep only the hardware capabilities supported by both the SPI
2216 	 * controller and the SPI flash memory.
2217 	 */
2218 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2219 
2220 	if (nor->spimem) {
2221 		/*
2222 		 * When called from spi_nor_probe(), all caps are set and we
2223 		 * need to discard some of them based on what the SPI
2224 		 * controller actually supports (using spi_mem_supports_op()).
2225 		 */
2226 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2227 	} else {
2228 		/*
2229 		 * SPI n-n-n protocols are not supported when the SPI
2230 		 * controller directly implements the spi_nor interface.
2231 		 * Yet another reason to switch to spi-mem.
2232 		 */
2233 		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2234 		if (shared_mask & ignored_mask) {
2235 			dev_dbg(nor->dev,
2236 				"SPI n-n-n protocols are not supported.\n");
2237 			shared_mask &= ~ignored_mask;
2238 		}
2239 	}
2240 
2241 	/* Select the (Fast) Read command. */
2242 	err = spi_nor_select_read(nor, shared_mask);
2243 	if (err) {
2244 		dev_dbg(nor->dev,
2245 			"can't select read settings supported by both the SPI controller and memory.\n");
2246 		return err;
2247 	}
2248 
2249 	/* Select the Page Program command. */
2250 	err = spi_nor_select_pp(nor, shared_mask);
2251 	if (err) {
2252 		dev_dbg(nor->dev,
2253 			"can't select write settings supported by both the SPI controller and memory.\n");
2254 		return err;
2255 	}
2256 
2257 	/* Select the Sector Erase command. */
2258 	err = spi_nor_select_erase(nor);
2259 	if (err) {
2260 		dev_dbg(nor->dev,
2261 			"can't select erase settings supported by both the SPI controller and memory.\n");
2262 		return err;
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 static int spi_nor_set_addr_width(struct spi_nor *nor)
2269 {
2270 	if (nor->addr_width) {
2271 		/* already configured from SFDP */
2272 	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2273 		/*
2274 		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2275 		 * in this protocol an odd address width cannot be used because
2276 		 * then the address phase would only span a cycle and a half.
2277 		 * Half a cycle would be left over. We would then have to start
2278 		 * the dummy phase in the middle of a cycle and so too the data
2279 		 * phase, and we will end the transaction with half a cycle left
2280 		 * over.
2281 		 *
2282 		 * Force all 8D-8D-8D flashes to use an address width of 4 to
2283 		 * avoid this situation.
2284 		 */
2285 		nor->addr_width = 4;
2286 	} else if (nor->info->addr_width) {
2287 		nor->addr_width = nor->info->addr_width;
2288 	} else {
2289 		nor->addr_width = 3;
2290 	}
2291 
2292 	if (nor->addr_width == 3 && nor->params->size > 0x1000000) {
2293 		/* enable 4-byte addressing if the device exceeds 16MiB */
2294 		nor->addr_width = 4;
2295 	}
2296 
2297 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
2298 		dev_dbg(nor->dev, "address width is too large: %u\n",
2299 			nor->addr_width);
2300 		return -EINVAL;
2301 	}
2302 
2303 	/* Set 4byte opcodes when possible. */
2304 	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2305 	    !(nor->flags & SNOR_F_HAS_4BAIT))
2306 		spi_nor_set_4byte_opcodes(nor);
2307 
2308 	return 0;
2309 }
2310 
2311 static int spi_nor_setup(struct spi_nor *nor,
2312 			 const struct spi_nor_hwcaps *hwcaps)
2313 {
2314 	int ret;
2315 
2316 	if (nor->params->setup)
2317 		ret = nor->params->setup(nor, hwcaps);
2318 	else
2319 		ret = spi_nor_default_setup(nor, hwcaps);
2320 	if (ret)
2321 		return ret;
2322 
2323 	return spi_nor_set_addr_width(nor);
2324 }
2325 
2326 /**
2327  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2328  * settings based on MFR register and ->default_init() hook.
2329  * @nor:	pointer to a 'struct spi_nor'.
2330  */
2331 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2332 {
2333 	if (nor->manufacturer && nor->manufacturer->fixups &&
2334 	    nor->manufacturer->fixups->default_init)
2335 		nor->manufacturer->fixups->default_init(nor);
2336 
2337 	if (nor->info->fixups && nor->info->fixups->default_init)
2338 		nor->info->fixups->default_init(nor);
2339 }
2340 
2341 /**
2342  * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2343  * settings based on nor->info->sfdp_flags. This method should be called only by
2344  * flashes that do not define SFDP tables. If the flash supports SFDP but the
2345  * information is wrong and the settings from this function can not be retrieved
2346  * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2347  * bits.
2348  * @nor:	pointer to a 'struct spi_nor'.
2349  */
2350 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2351 {
2352 	struct spi_nor_flash_parameter *params = nor->params;
2353 	struct spi_nor_erase_map *map = &params->erase_map;
2354 	const u8 no_sfdp_flags = nor->info->no_sfdp_flags;
2355 	u8 i, erase_mask;
2356 
2357 	if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2358 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2359 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2360 					  0, 8, SPINOR_OP_READ_1_1_2,
2361 					  SNOR_PROTO_1_1_2);
2362 	}
2363 
2364 	if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2365 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2366 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2367 					  0, 8, SPINOR_OP_READ_1_1_4,
2368 					  SNOR_PROTO_1_1_4);
2369 	}
2370 
2371 	if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2372 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2373 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2374 					  0, 8, SPINOR_OP_READ_1_1_8,
2375 					  SNOR_PROTO_1_1_8);
2376 	}
2377 
2378 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2379 		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2380 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2381 					  0, 20, SPINOR_OP_READ_FAST,
2382 					  SNOR_PROTO_8_8_8_DTR);
2383 	}
2384 
2385 	if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2386 		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2387 		/*
2388 		 * Since xSPI Page Program opcode is backward compatible with
2389 		 * Legacy SPI, use Legacy SPI opcode there as well.
2390 		 */
2391 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2392 					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2393 	}
2394 
2395 	/*
2396 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2397 	 * smallest erase size starting at BIT(0).
2398 	 */
2399 	erase_mask = 0;
2400 	i = 0;
2401 	if (no_sfdp_flags & SECT_4K_PMC) {
2402 		erase_mask |= BIT(i);
2403 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2404 				       SPINOR_OP_BE_4K_PMC);
2405 		i++;
2406 	} else if (no_sfdp_flags & SECT_4K) {
2407 		erase_mask |= BIT(i);
2408 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2409 				       SPINOR_OP_BE_4K);
2410 		i++;
2411 	}
2412 	erase_mask |= BIT(i);
2413 	spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size,
2414 			       SPINOR_OP_SE);
2415 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2416 }
2417 
2418 /**
2419  * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2420  * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2421  * @nor:	pointer to a 'struct spi_nor'
2422  */
2423 static void spi_nor_init_flags(struct spi_nor *nor)
2424 {
2425 	struct device_node *np = spi_nor_get_flash_node(nor);
2426 	const u16 flags = nor->info->flags;
2427 
2428 	if (of_property_read_bool(np, "broken-flash-reset"))
2429 		nor->flags |= SNOR_F_BROKEN_RESET;
2430 
2431 	if (flags & SPI_NOR_SWP_IS_VOLATILE)
2432 		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2433 
2434 	if (flags & SPI_NOR_HAS_LOCK)
2435 		nor->flags |= SNOR_F_HAS_LOCK;
2436 
2437 	if (flags & SPI_NOR_HAS_TB) {
2438 		nor->flags |= SNOR_F_HAS_SR_TB;
2439 		if (flags & SPI_NOR_TB_SR_BIT6)
2440 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2441 	}
2442 
2443 	if (flags & SPI_NOR_4BIT_BP) {
2444 		nor->flags |= SNOR_F_HAS_4BIT_BP;
2445 		if (flags & SPI_NOR_BP3_SR_BIT6)
2446 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2447 	}
2448 
2449 	if (flags & NO_CHIP_ERASE)
2450 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
2451 }
2452 
2453 /**
2454  * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2455  * be discovered by SFDP for this particular flash because the SFDP table that
2456  * indicates this support is not defined in the flash. In case the table for
2457  * this support is defined but has wrong values, one should instead use a
2458  * post_sfdp() hook to set the SNOR_F equivalent flag.
2459  * @nor:       pointer to a 'struct spi_nor'
2460  */
2461 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2462 {
2463 	const u8 fixup_flags = nor->info->fixup_flags;
2464 
2465 	if (fixup_flags & SPI_NOR_4B_OPCODES)
2466 		nor->flags |= SNOR_F_4B_OPCODES;
2467 
2468 	if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2469 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2470 }
2471 
2472 /**
2473  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2474  * @nor:	pointer to a 'struct spi_nor'
2475  *
2476  * Used to initialize flash parameters that are not declared in the JESD216
2477  * SFDP standard, or where SFDP tables are not defined at all.
2478  * Will replace the spi_nor_manufacturer_init_params() method.
2479  */
2480 static void spi_nor_late_init_params(struct spi_nor *nor)
2481 {
2482 	if (nor->manufacturer && nor->manufacturer->fixups &&
2483 	    nor->manufacturer->fixups->late_init)
2484 		nor->manufacturer->fixups->late_init(nor);
2485 
2486 	if (nor->info->fixups && nor->info->fixups->late_init)
2487 		nor->info->fixups->late_init(nor);
2488 
2489 	spi_nor_init_flags(nor);
2490 	spi_nor_init_fixup_flags(nor);
2491 
2492 	/*
2493 	 * NOR protection support. When locking_ops are not provided, we pick
2494 	 * the default ones.
2495 	 */
2496 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2497 		spi_nor_init_default_locking_ops(nor);
2498 }
2499 
2500 /**
2501  * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2502  * parameters and settings based on JESD216 SFDP standard.
2503  * @nor:	pointer to a 'struct spi_nor'.
2504  *
2505  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2506  * legacy flash parameters and settings will be restored.
2507  */
2508 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2509 {
2510 	struct spi_nor_flash_parameter sfdp_params;
2511 
2512 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2513 
2514 	if (spi_nor_parse_sfdp(nor)) {
2515 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2516 		nor->addr_width = 0;
2517 		nor->flags &= ~SNOR_F_4B_OPCODES;
2518 	}
2519 }
2520 
2521 /**
2522  * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2523  * parameters and settings.
2524  * @nor:	pointer to a 'struct spi_nor'.
2525  *
2526  * The method assumes that flash doesn't support SFDP so it initializes flash
2527  * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2528  * when parsing SFDP, if supported.
2529  */
2530 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2531 {
2532 	spi_nor_no_sfdp_init_params(nor);
2533 
2534 	spi_nor_manufacturer_init_params(nor);
2535 
2536 	if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2537 					SPI_NOR_QUAD_READ |
2538 					SPI_NOR_OCTAL_READ |
2539 					SPI_NOR_OCTAL_DTR_READ))
2540 		spi_nor_sfdp_init_params_deprecated(nor);
2541 }
2542 
2543 /**
2544  * spi_nor_init_default_params() - Default initialization of flash parameters
2545  * and settings. Done for all flashes, regardless is they define SFDP tables
2546  * or not.
2547  * @nor:	pointer to a 'struct spi_nor'.
2548  */
2549 static void spi_nor_init_default_params(struct spi_nor *nor)
2550 {
2551 	struct spi_nor_flash_parameter *params = nor->params;
2552 	const struct flash_info *info = nor->info;
2553 	struct device_node *np = spi_nor_get_flash_node(nor);
2554 
2555 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2556 	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2557 	params->otp.org = &info->otp_org;
2558 
2559 	/* Default to 16-bit Write Status (01h) Command */
2560 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2561 
2562 	/* Set SPI NOR sizes. */
2563 	params->writesize = 1;
2564 	params->size = (u64)info->sector_size * info->n_sectors;
2565 	params->page_size = info->page_size;
2566 
2567 	if (!(info->flags & SPI_NOR_NO_FR)) {
2568 		/* Default to Fast Read for DT and non-DT platform devices. */
2569 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2570 
2571 		/* Mask out Fast Read if not requested at DT instantiation. */
2572 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
2573 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2574 	}
2575 
2576 	/* (Fast) Read settings. */
2577 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2578 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2579 				  0, 0, SPINOR_OP_READ,
2580 				  SNOR_PROTO_1_1_1);
2581 
2582 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2583 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2584 					  0, 8, SPINOR_OP_READ_FAST,
2585 					  SNOR_PROTO_1_1_1);
2586 	/* Page Program settings. */
2587 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2588 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2589 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2590 }
2591 
2592 /**
2593  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2594  * @nor:	pointer to a 'struct spi_nor'.
2595  *
2596  * The flash parameters and settings are initialized based on a sequence of
2597  * calls that are ordered by priority:
2598  *
2599  * 1/ Default flash parameters initialization. The initializations are done
2600  *    based on nor->info data:
2601  *		spi_nor_info_init_params()
2602  *
2603  * which can be overwritten by:
2604  * 2/ Manufacturer flash parameters initialization. The initializations are
2605  *    done based on MFR register, or when the decisions can not be done solely
2606  *    based on MFR, by using specific flash_info tweeks, ->default_init():
2607  *		spi_nor_manufacturer_init_params()
2608  *
2609  * which can be overwritten by:
2610  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2611  *    should be more accurate that the above.
2612  *		spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2613  *
2614  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
2615  *    the flash parameters and settings immediately after parsing the Basic
2616  *    Flash Parameter Table.
2617  *    spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2618  *    It is used to tweak various flash parameters when information provided
2619  *    by the SFDP tables are wrong.
2620  *
2621  * which can be overwritten by:
2622  * 4/ Late flash parameters initialization, used to initialize flash
2623  * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2624  * tables are not defined at all.
2625  *		spi_nor_late_init_params()
2626  *
2627  * Return: 0 on success, -errno otherwise.
2628  */
2629 static int spi_nor_init_params(struct spi_nor *nor)
2630 {
2631 	int ret;
2632 
2633 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2634 	if (!nor->params)
2635 		return -ENOMEM;
2636 
2637 	spi_nor_init_default_params(nor);
2638 
2639 	if (nor->info->parse_sfdp) {
2640 		ret = spi_nor_parse_sfdp(nor);
2641 		if (ret) {
2642 			dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
2643 			return ret;
2644 		}
2645 	} else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
2646 		spi_nor_no_sfdp_init_params(nor);
2647 	} else {
2648 		spi_nor_init_params_deprecated(nor);
2649 	}
2650 
2651 	spi_nor_late_init_params(nor);
2652 
2653 	return 0;
2654 }
2655 
2656 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
2657  * @nor:                 pointer to a 'struct spi_nor'
2658  * @enable:              whether to enable or disable Octal DTR
2659  *
2660  * Return: 0 on success, -errno otherwise.
2661  */
2662 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
2663 {
2664 	int ret;
2665 
2666 	if (!nor->params->octal_dtr_enable)
2667 		return 0;
2668 
2669 	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
2670 	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
2671 		return 0;
2672 
2673 	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
2674 		return 0;
2675 
2676 	ret = nor->params->octal_dtr_enable(nor, enable);
2677 	if (ret)
2678 		return ret;
2679 
2680 	if (enable)
2681 		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
2682 	else
2683 		nor->reg_proto = SNOR_PROTO_1_1_1;
2684 
2685 	return 0;
2686 }
2687 
2688 /**
2689  * spi_nor_quad_enable() - enable Quad I/O if needed.
2690  * @nor:                pointer to a 'struct spi_nor'
2691  *
2692  * Return: 0 on success, -errno otherwise.
2693  */
2694 static int spi_nor_quad_enable(struct spi_nor *nor)
2695 {
2696 	if (!nor->params->quad_enable)
2697 		return 0;
2698 
2699 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2700 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
2701 		return 0;
2702 
2703 	return nor->params->quad_enable(nor);
2704 }
2705 
2706 static int spi_nor_init(struct spi_nor *nor)
2707 {
2708 	int err;
2709 
2710 	err = spi_nor_octal_dtr_enable(nor, true);
2711 	if (err) {
2712 		dev_dbg(nor->dev, "octal mode not supported\n");
2713 		return err;
2714 	}
2715 
2716 	err = spi_nor_quad_enable(nor);
2717 	if (err) {
2718 		dev_dbg(nor->dev, "quad mode not supported\n");
2719 		return err;
2720 	}
2721 
2722 	/*
2723 	 * Some SPI NOR flashes are write protected by default after a power-on
2724 	 * reset cycle, in order to avoid inadvertent writes during power-up.
2725 	 * Backward compatibility imposes to unlock the entire flash memory
2726 	 * array at power-up by default. Depending on the kernel configuration
2727 	 * (1) do nothing, (2) always unlock the entire flash array or (3)
2728 	 * unlock the entire flash array only when the software write
2729 	 * protection bits are volatile. The latter is indicated by
2730 	 * SNOR_F_SWP_IS_VOLATILE.
2731 	 */
2732 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
2733 	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
2734 	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
2735 		spi_nor_try_unlock_all(nor);
2736 
2737 	if (nor->addr_width == 4 &&
2738 	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
2739 	    !(nor->flags & SNOR_F_4B_OPCODES)) {
2740 		/*
2741 		 * If the RESET# pin isn't hooked up properly, or the system
2742 		 * otherwise doesn't perform a reset command in the boot
2743 		 * sequence, it's impossible to 100% protect against unexpected
2744 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
2745 		 * designer) that this is bad.
2746 		 */
2747 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2748 			  "enabling reset hack; may not recover from unexpected reboots\n");
2749 		nor->params->set_4byte_addr_mode(nor, true);
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /**
2756  * spi_nor_soft_reset() - Perform a software reset
2757  * @nor:	pointer to 'struct spi_nor'
2758  *
2759  * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
2760  * the device to its power-on-reset state. This is useful when the software has
2761  * made some changes to device (volatile) registers and needs to reset it before
2762  * shutting down, for example.
2763  *
2764  * Not every flash supports this sequence. The same set of opcodes might be used
2765  * for some other operation on a flash that does not support this. Support for
2766  * this sequence can be discovered via SFDP in the BFPT table.
2767  *
2768  * Return: 0 on success, -errno otherwise.
2769  */
2770 static void spi_nor_soft_reset(struct spi_nor *nor)
2771 {
2772 	struct spi_mem_op op;
2773 	int ret;
2774 
2775 	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
2776 			SPI_MEM_OP_NO_DUMMY,
2777 			SPI_MEM_OP_NO_ADDR,
2778 			SPI_MEM_OP_NO_DATA);
2779 
2780 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2781 
2782 	ret = spi_mem_exec_op(nor->spimem, &op);
2783 	if (ret) {
2784 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2785 		return;
2786 	}
2787 
2788 	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
2789 			SPI_MEM_OP_NO_DUMMY,
2790 			SPI_MEM_OP_NO_ADDR,
2791 			SPI_MEM_OP_NO_DATA);
2792 
2793 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2794 
2795 	ret = spi_mem_exec_op(nor->spimem, &op);
2796 	if (ret) {
2797 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2798 		return;
2799 	}
2800 
2801 	/*
2802 	 * Software Reset is not instant, and the delay varies from flash to
2803 	 * flash. Looking at a few flashes, most range somewhere below 100
2804 	 * microseconds. So, sleep for a range of 200-400 us.
2805 	 */
2806 	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
2807 }
2808 
2809 /* mtd suspend handler */
2810 static int spi_nor_suspend(struct mtd_info *mtd)
2811 {
2812 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2813 	int ret;
2814 
2815 	/* Disable octal DTR mode if we enabled it. */
2816 	ret = spi_nor_octal_dtr_enable(nor, false);
2817 	if (ret)
2818 		dev_err(nor->dev, "suspend() failed\n");
2819 
2820 	return ret;
2821 }
2822 
2823 /* mtd resume handler */
2824 static void spi_nor_resume(struct mtd_info *mtd)
2825 {
2826 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2827 	struct device *dev = nor->dev;
2828 	int ret;
2829 
2830 	/* re-initialize the nor chip */
2831 	ret = spi_nor_init(nor);
2832 	if (ret)
2833 		dev_err(dev, "resume() failed\n");
2834 }
2835 
2836 static int spi_nor_get_device(struct mtd_info *mtd)
2837 {
2838 	struct mtd_info *master = mtd_get_master(mtd);
2839 	struct spi_nor *nor = mtd_to_spi_nor(master);
2840 	struct device *dev;
2841 
2842 	if (nor->spimem)
2843 		dev = nor->spimem->spi->controller->dev.parent;
2844 	else
2845 		dev = nor->dev;
2846 
2847 	if (!try_module_get(dev->driver->owner))
2848 		return -ENODEV;
2849 
2850 	return 0;
2851 }
2852 
2853 static void spi_nor_put_device(struct mtd_info *mtd)
2854 {
2855 	struct mtd_info *master = mtd_get_master(mtd);
2856 	struct spi_nor *nor = mtd_to_spi_nor(master);
2857 	struct device *dev;
2858 
2859 	if (nor->spimem)
2860 		dev = nor->spimem->spi->controller->dev.parent;
2861 	else
2862 		dev = nor->dev;
2863 
2864 	module_put(dev->driver->owner);
2865 }
2866 
2867 void spi_nor_restore(struct spi_nor *nor)
2868 {
2869 	/* restore the addressing mode */
2870 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
2871 	    nor->flags & SNOR_F_BROKEN_RESET)
2872 		nor->params->set_4byte_addr_mode(nor, false);
2873 
2874 	if (nor->flags & SNOR_F_SOFT_RESET)
2875 		spi_nor_soft_reset(nor);
2876 }
2877 EXPORT_SYMBOL_GPL(spi_nor_restore);
2878 
2879 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2880 						 const char *name)
2881 {
2882 	unsigned int i, j;
2883 
2884 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2885 		for (j = 0; j < manufacturers[i]->nparts; j++) {
2886 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
2887 				nor->manufacturer = manufacturers[i];
2888 				return &manufacturers[i]->parts[j];
2889 			}
2890 		}
2891 	}
2892 
2893 	return NULL;
2894 }
2895 
2896 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
2897 						       const char *name)
2898 {
2899 	const struct flash_info *info = NULL;
2900 
2901 	if (name)
2902 		info = spi_nor_match_id(nor, name);
2903 	/* Try to auto-detect if chip name wasn't specified or not found */
2904 	if (!info)
2905 		info = spi_nor_read_id(nor);
2906 	if (IS_ERR_OR_NULL(info))
2907 		return ERR_PTR(-ENOENT);
2908 
2909 	/*
2910 	 * If caller has specified name of flash model that can normally be
2911 	 * detected using JEDEC, let's verify it.
2912 	 */
2913 	if (name && info->id_len) {
2914 		const struct flash_info *jinfo;
2915 
2916 		jinfo = spi_nor_read_id(nor);
2917 		if (IS_ERR(jinfo)) {
2918 			return jinfo;
2919 		} else if (jinfo != info) {
2920 			/*
2921 			 * JEDEC knows better, so overwrite platform ID. We
2922 			 * can't trust partitions any longer, but we'll let
2923 			 * mtd apply them anyway, since some partitions may be
2924 			 * marked read-only, and we don't want to lose that
2925 			 * information, even if it's not 100% accurate.
2926 			 */
2927 			dev_warn(nor->dev, "found %s, expected %s\n",
2928 				 jinfo->name, info->name);
2929 			info = jinfo;
2930 		}
2931 	}
2932 
2933 	return info;
2934 }
2935 
2936 static void spi_nor_set_mtd_info(struct spi_nor *nor)
2937 {
2938 	struct mtd_info *mtd = &nor->mtd;
2939 	struct device *dev = nor->dev;
2940 
2941 	spi_nor_set_mtd_locking_ops(nor);
2942 	spi_nor_set_mtd_otp_ops(nor);
2943 
2944 	mtd->dev.parent = dev;
2945 	if (!mtd->name)
2946 		mtd->name = dev_name(dev);
2947 	mtd->type = MTD_NORFLASH;
2948 	mtd->flags = MTD_CAP_NORFLASH;
2949 	if (nor->info->flags & SPI_NOR_NO_ERASE)
2950 		mtd->flags |= MTD_NO_ERASE;
2951 	else
2952 		mtd->_erase = spi_nor_erase;
2953 	mtd->writesize = nor->params->writesize;
2954 	mtd->writebufsize = nor->params->page_size;
2955 	mtd->size = nor->params->size;
2956 	mtd->_read = spi_nor_read;
2957 	/* Might be already set by some SST flashes. */
2958 	if (!mtd->_write)
2959 		mtd->_write = spi_nor_write;
2960 	mtd->_suspend = spi_nor_suspend;
2961 	mtd->_resume = spi_nor_resume;
2962 	mtd->_get_device = spi_nor_get_device;
2963 	mtd->_put_device = spi_nor_put_device;
2964 }
2965 
2966 int spi_nor_scan(struct spi_nor *nor, const char *name,
2967 		 const struct spi_nor_hwcaps *hwcaps)
2968 {
2969 	const struct flash_info *info;
2970 	struct device *dev = nor->dev;
2971 	struct mtd_info *mtd = &nor->mtd;
2972 	int ret;
2973 	int i;
2974 
2975 	ret = spi_nor_check(nor);
2976 	if (ret)
2977 		return ret;
2978 
2979 	/* Reset SPI protocol for all commands. */
2980 	nor->reg_proto = SNOR_PROTO_1_1_1;
2981 	nor->read_proto = SNOR_PROTO_1_1_1;
2982 	nor->write_proto = SNOR_PROTO_1_1_1;
2983 
2984 	/*
2985 	 * We need the bounce buffer early to read/write registers when going
2986 	 * through the spi-mem layer (buffers have to be DMA-able).
2987 	 * For spi-mem drivers, we'll reallocate a new buffer if
2988 	 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
2989 	 * shouldn't happen before long since NOR pages are usually less
2990 	 * than 1KB) after spi_nor_scan() returns.
2991 	 */
2992 	nor->bouncebuf_size = PAGE_SIZE;
2993 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
2994 				      GFP_KERNEL);
2995 	if (!nor->bouncebuf)
2996 		return -ENOMEM;
2997 
2998 	info = spi_nor_get_flash_info(nor, name);
2999 	if (IS_ERR(info))
3000 		return PTR_ERR(info);
3001 
3002 	nor->info = info;
3003 
3004 	mutex_init(&nor->lock);
3005 
3006 	/* Init flash parameters based on flash_info struct and SFDP */
3007 	ret = spi_nor_init_params(nor);
3008 	if (ret)
3009 		return ret;
3010 
3011 	/*
3012 	 * Configure the SPI memory:
3013 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3014 	 * - set the number of dummy cycles (mode cycles + wait states).
3015 	 * - set the SPI protocols for register and memory accesses.
3016 	 * - set the address width.
3017 	 */
3018 	ret = spi_nor_setup(nor, hwcaps);
3019 	if (ret)
3020 		return ret;
3021 
3022 	/* Send all the required SPI flash commands to initialize device */
3023 	ret = spi_nor_init(nor);
3024 	if (ret)
3025 		return ret;
3026 
3027 	/* No mtd_info fields should be used up to this point. */
3028 	spi_nor_set_mtd_info(nor);
3029 
3030 	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3031 			(long long)mtd->size >> 10);
3032 
3033 	dev_dbg(dev,
3034 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
3035 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3036 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3037 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3038 
3039 	if (mtd->numeraseregions)
3040 		for (i = 0; i < mtd->numeraseregions; i++)
3041 			dev_dbg(dev,
3042 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
3043 				".erasesize = 0x%.8x (%uKiB), "
3044 				".numblocks = %d }\n",
3045 				i, (long long)mtd->eraseregions[i].offset,
3046 				mtd->eraseregions[i].erasesize,
3047 				mtd->eraseregions[i].erasesize / 1024,
3048 				mtd->eraseregions[i].numblocks);
3049 	return 0;
3050 }
3051 EXPORT_SYMBOL_GPL(spi_nor_scan);
3052 
3053 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3054 {
3055 	struct spi_mem_dirmap_info info = {
3056 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3057 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3058 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3059 				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3060 		.offset = 0,
3061 		.length = nor->params->size,
3062 	};
3063 	struct spi_mem_op *op = &info.op_tmpl;
3064 
3065 	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3066 
3067 	/* convert the dummy cycles to the number of bytes */
3068 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3069 	if (spi_nor_protocol_is_dtr(nor->read_proto))
3070 		op->dummy.nbytes *= 2;
3071 
3072 	/*
3073 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3074 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3075 	 * do it explicitly.
3076 	 */
3077 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3078 
3079 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3080 						       &info);
3081 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3082 }
3083 
3084 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3085 {
3086 	struct spi_mem_dirmap_info info = {
3087 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3088 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3089 				      SPI_MEM_OP_NO_DUMMY,
3090 				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3091 		.offset = 0,
3092 		.length = nor->params->size,
3093 	};
3094 	struct spi_mem_op *op = &info.op_tmpl;
3095 
3096 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3097 		op->addr.nbytes = 0;
3098 
3099 	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3100 
3101 	/*
3102 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3103 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3104 	 * do it explicitly.
3105 	 */
3106 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3107 
3108 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3109 						       &info);
3110 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3111 }
3112 
3113 static int spi_nor_probe(struct spi_mem *spimem)
3114 {
3115 	struct spi_device *spi = spimem->spi;
3116 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3117 	struct spi_nor *nor;
3118 	/*
3119 	 * Enable all caps by default. The core will mask them after
3120 	 * checking what's really supported using spi_mem_supports_op().
3121 	 */
3122 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3123 	char *flash_name;
3124 	int ret;
3125 
3126 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3127 	if (!nor)
3128 		return -ENOMEM;
3129 
3130 	nor->spimem = spimem;
3131 	nor->dev = &spi->dev;
3132 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3133 
3134 	spi_mem_set_drvdata(spimem, nor);
3135 
3136 	if (data && data->name)
3137 		nor->mtd.name = data->name;
3138 
3139 	if (!nor->mtd.name)
3140 		nor->mtd.name = spi_mem_get_name(spimem);
3141 
3142 	/*
3143 	 * For some (historical?) reason many platforms provide two different
3144 	 * names in flash_platform_data: "name" and "type". Quite often name is
3145 	 * set to "m25p80" and then "type" provides a real chip name.
3146 	 * If that's the case, respect "type" and ignore a "name".
3147 	 */
3148 	if (data && data->type)
3149 		flash_name = data->type;
3150 	else if (!strcmp(spi->modalias, "spi-nor"))
3151 		flash_name = NULL; /* auto-detect */
3152 	else
3153 		flash_name = spi->modalias;
3154 
3155 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3156 	if (ret)
3157 		return ret;
3158 
3159 	/*
3160 	 * None of the existing parts have > 512B pages, but let's play safe
3161 	 * and add this logic so that if anyone ever adds support for such
3162 	 * a NOR we don't end up with buffer overflows.
3163 	 */
3164 	if (nor->params->page_size > PAGE_SIZE) {
3165 		nor->bouncebuf_size = nor->params->page_size;
3166 		devm_kfree(nor->dev, nor->bouncebuf);
3167 		nor->bouncebuf = devm_kmalloc(nor->dev,
3168 					      nor->bouncebuf_size,
3169 					      GFP_KERNEL);
3170 		if (!nor->bouncebuf)
3171 			return -ENOMEM;
3172 	}
3173 
3174 	ret = spi_nor_create_read_dirmap(nor);
3175 	if (ret)
3176 		return ret;
3177 
3178 	ret = spi_nor_create_write_dirmap(nor);
3179 	if (ret)
3180 		return ret;
3181 
3182 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3183 				   data ? data->nr_parts : 0);
3184 }
3185 
3186 static int spi_nor_remove(struct spi_mem *spimem)
3187 {
3188 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3189 
3190 	spi_nor_restore(nor);
3191 
3192 	/* Clean up MTD stuff. */
3193 	return mtd_device_unregister(&nor->mtd);
3194 }
3195 
3196 static void spi_nor_shutdown(struct spi_mem *spimem)
3197 {
3198 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3199 
3200 	spi_nor_restore(nor);
3201 }
3202 
3203 /*
3204  * Do NOT add to this array without reading the following:
3205  *
3206  * Historically, many flash devices are bound to this driver by their name. But
3207  * since most of these flash are compatible to some extent, and their
3208  * differences can often be differentiated by the JEDEC read-ID command, we
3209  * encourage new users to add support to the spi-nor library, and simply bind
3210  * against a generic string here (e.g., "jedec,spi-nor").
3211  *
3212  * Many flash names are kept here in this list to keep them available
3213  * as module aliases for existing platforms.
3214  */
3215 static const struct spi_device_id spi_nor_dev_ids[] = {
3216 	/*
3217 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3218 	 * hack around the fact that the SPI core does not provide uevent
3219 	 * matching for .of_match_table
3220 	 */
3221 	{"spi-nor"},
3222 
3223 	/*
3224 	 * Entries not used in DTs that should be safe to drop after replacing
3225 	 * them with "spi-nor" in platform data.
3226 	 */
3227 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3228 
3229 	/*
3230 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3231 	 * should be kept for backward compatibility.
3232 	 */
3233 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3234 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3235 	{"mx25l25635e"},{"mx66l51235l"},
3236 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3237 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3238 	{"s25fl064k"},
3239 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3240 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3241 	{"m25p64"},	{"m25p128"},
3242 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3243 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3244 
3245 	/* Flashes that can't be detected using JEDEC */
3246 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3247 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3248 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3249 
3250 	/* Everspin MRAMs (non-JEDEC) */
3251 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3252 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3253 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3254 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3255 
3256 	{ },
3257 };
3258 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3259 
3260 static const struct of_device_id spi_nor_of_table[] = {
3261 	/*
3262 	 * Generic compatibility for SPI NOR that can be identified by the
3263 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3264 	 */
3265 	{ .compatible = "jedec,spi-nor" },
3266 	{ /* sentinel */ },
3267 };
3268 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3269 
3270 /*
3271  * REVISIT: many of these chips have deep power-down modes, which
3272  * should clearly be entered on suspend() to minimize power use.
3273  * And also when they're otherwise idle...
3274  */
3275 static struct spi_mem_driver spi_nor_driver = {
3276 	.spidrv = {
3277 		.driver = {
3278 			.name = "spi-nor",
3279 			.of_match_table = spi_nor_of_table,
3280 			.dev_groups = spi_nor_sysfs_groups,
3281 		},
3282 		.id_table = spi_nor_dev_ids,
3283 	},
3284 	.probe = spi_nor_probe,
3285 	.remove = spi_nor_remove,
3286 	.shutdown = spi_nor_shutdown,
3287 };
3288 module_spi_mem_driver(spi_nor_driver);
3289 
3290 MODULE_LICENSE("GPL v2");
3291 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3292 MODULE_AUTHOR("Mike Lavender");
3293 MODULE_DESCRIPTION("framework for SPI NOR");
3294