1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with 4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c 5 * 6 * Copyright (C) 2005, Intec Automation Inc. 7 * Copyright (C) 2014, Freescale Semiconductor, Inc. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/errno.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/mutex.h> 15 #include <linux/math64.h> 16 #include <linux/sizes.h> 17 #include <linux/slab.h> 18 19 #include <linux/mtd/mtd.h> 20 #include <linux/of_platform.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/spi/flash.h> 23 #include <linux/mtd/spi-nor.h> 24 25 #include "core.h" 26 27 /* Define max times to check status register before we give up. */ 28 29 /* 30 * For everything but full-chip erase; probably could be much smaller, but kept 31 * around for safety for now 32 */ 33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) 34 35 /* 36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up 37 * for larger flash 38 */ 39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) 40 41 #define SPI_NOR_MAX_ADDR_NBYTES 4 42 43 #define SPI_NOR_SRST_SLEEP_MIN 200 44 #define SPI_NOR_SRST_SLEEP_MAX 400 45 46 /** 47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the 48 * extension type. 49 * @nor: pointer to a 'struct spi_nor' 50 * @op: pointer to the 'struct spi_mem_op' whose properties 51 * need to be initialized. 52 * 53 * Right now, only "repeat" and "invert" are supported. 54 * 55 * Return: The opcode extension. 56 */ 57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, 58 const struct spi_mem_op *op) 59 { 60 switch (nor->cmd_ext_type) { 61 case SPI_NOR_EXT_INVERT: 62 return ~op->cmd.opcode; 63 64 case SPI_NOR_EXT_REPEAT: 65 return op->cmd.opcode; 66 67 default: 68 dev_err(nor->dev, "Unknown command extension type\n"); 69 return 0; 70 } 71 } 72 73 /** 74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op. 75 * @nor: pointer to a 'struct spi_nor' 76 * @op: pointer to the 'struct spi_mem_op' whose properties 77 * need to be initialized. 78 * @proto: the protocol from which the properties need to be set. 79 */ 80 void spi_nor_spimem_setup_op(const struct spi_nor *nor, 81 struct spi_mem_op *op, 82 const enum spi_nor_protocol proto) 83 { 84 u8 ext; 85 86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); 87 88 if (op->addr.nbytes) 89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); 90 91 if (op->dummy.nbytes) 92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto); 93 94 if (op->data.nbytes) 95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); 96 97 if (spi_nor_protocol_is_dtr(proto)) { 98 /* 99 * SPIMEM supports mixed DTR modes, but right now we can only 100 * have all phases either DTR or STR. IOW, SPIMEM can have 101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4 102 * phases to either DTR or STR. 103 */ 104 op->cmd.dtr = true; 105 op->addr.dtr = true; 106 op->dummy.dtr = true; 107 op->data.dtr = true; 108 109 /* 2 bytes per clock cycle in DTR mode. */ 110 op->dummy.nbytes *= 2; 111 112 ext = spi_nor_get_cmd_ext(nor, op); 113 op->cmd.opcode = (op->cmd.opcode << 8) | ext; 114 op->cmd.nbytes = 2; 115 } 116 } 117 118 /** 119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data 120 * transfer 121 * @nor: pointer to 'struct spi_nor' 122 * @op: pointer to 'struct spi_mem_op' template for transfer 123 * 124 * If we have to use the bounce buffer, the data field in @op will be updated. 125 * 126 * Return: true if the bounce buffer is needed, false if not 127 */ 128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) 129 { 130 /* op->data.buf.in occupies the same memory as op->data.buf.out */ 131 if (object_is_on_stack(op->data.buf.in) || 132 !virt_addr_valid(op->data.buf.in)) { 133 if (op->data.nbytes > nor->bouncebuf_size) 134 op->data.nbytes = nor->bouncebuf_size; 135 op->data.buf.in = nor->bouncebuf; 136 return true; 137 } 138 139 return false; 140 } 141 142 /** 143 * spi_nor_spimem_exec_op() - execute a memory operation 144 * @nor: pointer to 'struct spi_nor' 145 * @op: pointer to 'struct spi_mem_op' template for transfer 146 * 147 * Return: 0 on success, -error otherwise. 148 */ 149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) 150 { 151 int error; 152 153 error = spi_mem_adjust_op_size(nor->spimem, op); 154 if (error) 155 return error; 156 157 return spi_mem_exec_op(nor->spimem, op); 158 } 159 160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, 161 u8 *buf, size_t len) 162 { 163 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 164 return -EOPNOTSUPP; 165 166 return nor->controller_ops->read_reg(nor, opcode, buf, len); 167 } 168 169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, 170 const u8 *buf, size_t len) 171 { 172 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 173 return -EOPNOTSUPP; 174 175 return nor->controller_ops->write_reg(nor, opcode, buf, len); 176 } 177 178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs) 179 { 180 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 181 return -EOPNOTSUPP; 182 183 return nor->controller_ops->erase(nor, offs); 184 } 185 186 /** 187 * spi_nor_spimem_read_data() - read data from flash's memory region via 188 * spi-mem 189 * @nor: pointer to 'struct spi_nor' 190 * @from: offset to read from 191 * @len: number of bytes to read 192 * @buf: pointer to dst buffer 193 * 194 * Return: number of bytes read successfully, -errno otherwise 195 */ 196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, 197 size_t len, u8 *buf) 198 { 199 struct spi_mem_op op = 200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 201 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0), 202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 203 SPI_MEM_OP_DATA_IN(len, buf, 0)); 204 bool usebouncebuf; 205 ssize_t nbytes; 206 int error; 207 208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto); 209 210 /* convert the dummy cycles to the number of bytes */ 211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 212 if (spi_nor_protocol_is_dtr(nor->read_proto)) 213 op.dummy.nbytes *= 2; 214 215 usebouncebuf = spi_nor_spimem_bounce(nor, &op); 216 217 if (nor->dirmap.rdesc) { 218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, 219 op.data.nbytes, op.data.buf.in); 220 } else { 221 error = spi_nor_spimem_exec_op(nor, &op); 222 if (error) 223 return error; 224 nbytes = op.data.nbytes; 225 } 226 227 if (usebouncebuf && nbytes > 0) 228 memcpy(buf, op.data.buf.in, nbytes); 229 230 return nbytes; 231 } 232 233 /** 234 * spi_nor_read_data() - read data from flash memory 235 * @nor: pointer to 'struct spi_nor' 236 * @from: offset to read from 237 * @len: number of bytes to read 238 * @buf: pointer to dst buffer 239 * 240 * Return: number of bytes read successfully, -errno otherwise 241 */ 242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) 243 { 244 if (nor->spimem) 245 return spi_nor_spimem_read_data(nor, from, len, buf); 246 247 return nor->controller_ops->read(nor, from, len, buf); 248 } 249 250 /** 251 * spi_nor_spimem_write_data() - write data to flash memory via 252 * spi-mem 253 * @nor: pointer to 'struct spi_nor' 254 * @to: offset to write to 255 * @len: number of bytes to write 256 * @buf: pointer to src buffer 257 * 258 * Return: number of bytes written successfully, -errno otherwise 259 */ 260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, 261 size_t len, const u8 *buf) 262 { 263 struct spi_mem_op op = 264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 265 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0), 266 SPI_MEM_OP_NO_DUMMY, 267 SPI_MEM_OP_DATA_OUT(len, buf, 0)); 268 ssize_t nbytes; 269 int error; 270 271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 272 op.addr.nbytes = 0; 273 274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto); 275 276 if (spi_nor_spimem_bounce(nor, &op)) 277 memcpy(nor->bouncebuf, buf, op.data.nbytes); 278 279 if (nor->dirmap.wdesc) { 280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, 281 op.data.nbytes, op.data.buf.out); 282 } else { 283 error = spi_nor_spimem_exec_op(nor, &op); 284 if (error) 285 return error; 286 nbytes = op.data.nbytes; 287 } 288 289 return nbytes; 290 } 291 292 /** 293 * spi_nor_write_data() - write data to flash memory 294 * @nor: pointer to 'struct spi_nor' 295 * @to: offset to write to 296 * @len: number of bytes to write 297 * @buf: pointer to src buffer 298 * 299 * Return: number of bytes written successfully, -errno otherwise 300 */ 301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, 302 const u8 *buf) 303 { 304 if (nor->spimem) 305 return spi_nor_spimem_write_data(nor, to, len, buf); 306 307 return nor->controller_ops->write(nor, to, len, buf); 308 } 309 310 /** 311 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or 312 * volatile. 313 * @nor: pointer to 'struct spi_nor'. 314 * @op: SPI memory operation. op->data.buf must be DMA-able. 315 * @proto: SPI protocol to use for the register operation. 316 * 317 * Return: zero on success, -errno otherwise 318 */ 319 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, 320 enum spi_nor_protocol proto) 321 { 322 if (!nor->spimem) 323 return -EOPNOTSUPP; 324 325 spi_nor_spimem_setup_op(nor, op, proto); 326 return spi_nor_spimem_exec_op(nor, op); 327 } 328 329 /** 330 * spi_nor_write_any_volatile_reg() - write any volatile register to flash 331 * memory. 332 * @nor: pointer to 'struct spi_nor' 333 * @op: SPI memory operation. op->data.buf must be DMA-able. 334 * @proto: SPI protocol to use for the register operation. 335 * 336 * Writing volatile registers are instant according to some manufacturers 337 * (Cypress, Micron) and do not need any status polling. 338 * 339 * Return: zero on success, -errno otherwise 340 */ 341 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, 342 enum spi_nor_protocol proto) 343 { 344 int ret; 345 346 if (!nor->spimem) 347 return -EOPNOTSUPP; 348 349 ret = spi_nor_write_enable(nor); 350 if (ret) 351 return ret; 352 spi_nor_spimem_setup_op(nor, op, proto); 353 return spi_nor_spimem_exec_op(nor, op); 354 } 355 356 /** 357 * spi_nor_write_enable() - Set write enable latch with Write Enable command. 358 * @nor: pointer to 'struct spi_nor'. 359 * 360 * Return: 0 on success, -errno otherwise. 361 */ 362 int spi_nor_write_enable(struct spi_nor *nor) 363 { 364 int ret; 365 366 if (nor->spimem) { 367 struct spi_mem_op op = SPI_NOR_WREN_OP; 368 369 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 370 371 ret = spi_mem_exec_op(nor->spimem, &op); 372 } else { 373 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN, 374 NULL, 0); 375 } 376 377 if (ret) 378 dev_dbg(nor->dev, "error %d on Write Enable\n", ret); 379 380 return ret; 381 } 382 383 /** 384 * spi_nor_write_disable() - Send Write Disable instruction to the chip. 385 * @nor: pointer to 'struct spi_nor'. 386 * 387 * Return: 0 on success, -errno otherwise. 388 */ 389 int spi_nor_write_disable(struct spi_nor *nor) 390 { 391 int ret; 392 393 if (nor->spimem) { 394 struct spi_mem_op op = SPI_NOR_WRDI_OP; 395 396 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 397 398 ret = spi_mem_exec_op(nor->spimem, &op); 399 } else { 400 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI, 401 NULL, 0); 402 } 403 404 if (ret) 405 dev_dbg(nor->dev, "error %d on Write Disable\n", ret); 406 407 return ret; 408 } 409 410 /** 411 * spi_nor_read_id() - Read the JEDEC ID. 412 * @nor: pointer to 'struct spi_nor'. 413 * @naddr: number of address bytes to send. Can be zero if the operation 414 * does not need to send an address. 415 * @ndummy: number of dummy bytes to send after an opcode or address. Can 416 * be zero if the operation does not require dummy bytes. 417 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID 418 * will be written. 419 * @proto: the SPI protocol for register operation. 420 * 421 * Return: 0 on success, -errno otherwise. 422 */ 423 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, 424 enum spi_nor_protocol proto) 425 { 426 int ret; 427 428 if (nor->spimem) { 429 struct spi_mem_op op = 430 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN); 431 432 spi_nor_spimem_setup_op(nor, &op, proto); 433 ret = spi_mem_exec_op(nor->spimem, &op); 434 } else { 435 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, 436 SPI_NOR_MAX_ID_LEN); 437 } 438 return ret; 439 } 440 441 /** 442 * spi_nor_read_sr() - Read the Status Register. 443 * @nor: pointer to 'struct spi_nor'. 444 * @sr: pointer to a DMA-able buffer where the value of the 445 * Status Register will be written. Should be at least 2 bytes. 446 * 447 * Return: 0 on success, -errno otherwise. 448 */ 449 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) 450 { 451 int ret; 452 453 if (nor->spimem) { 454 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr); 455 456 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { 457 op.addr.nbytes = nor->params->rdsr_addr_nbytes; 458 op.dummy.nbytes = nor->params->rdsr_dummy; 459 /* 460 * We don't want to read only one byte in DTR mode. So, 461 * read 2 and then discard the second byte. 462 */ 463 op.data.nbytes = 2; 464 } 465 466 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 467 468 ret = spi_mem_exec_op(nor->spimem, &op); 469 } else { 470 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr, 471 1); 472 } 473 474 if (ret) 475 dev_dbg(nor->dev, "error %d reading SR\n", ret); 476 477 return ret; 478 } 479 480 /** 481 * spi_nor_read_cr() - Read the Configuration Register using the 482 * SPINOR_OP_RDCR (35h) command. 483 * @nor: pointer to 'struct spi_nor' 484 * @cr: pointer to a DMA-able buffer where the value of the 485 * Configuration Register will be written. 486 * 487 * Return: 0 on success, -errno otherwise. 488 */ 489 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) 490 { 491 int ret; 492 493 if (nor->spimem) { 494 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr); 495 496 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 497 498 ret = spi_mem_exec_op(nor->spimem, &op); 499 } else { 500 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr, 501 1); 502 } 503 504 if (ret) 505 dev_dbg(nor->dev, "error %d reading CR\n", ret); 506 507 return ret; 508 } 509 510 /** 511 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode. 512 * @nor: pointer to 'struct spi_nor'. 513 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 514 * address mode. 515 * 516 * Return: 0 on success, -errno otherwise. 517 */ 518 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) 519 { 520 int ret; 521 522 if (nor->spimem) { 523 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable); 524 525 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 526 527 ret = spi_mem_exec_op(nor->spimem, &op); 528 } else { 529 ret = spi_nor_controller_ops_write_reg(nor, 530 enable ? SPINOR_OP_EN4B : 531 SPINOR_OP_EX4B, 532 NULL, 0); 533 } 534 535 if (ret) 536 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 537 538 return ret; 539 } 540 541 /** 542 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion 543 * flashes. 544 * @nor: pointer to 'struct spi_nor'. 545 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 546 * address mode. 547 * 548 * Return: 0 on success, -errno otherwise. 549 */ 550 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable) 551 { 552 int ret; 553 554 nor->bouncebuf[0] = enable << 7; 555 556 if (nor->spimem) { 557 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf); 558 559 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 560 561 ret = spi_mem_exec_op(nor->spimem, &op); 562 } else { 563 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR, 564 nor->bouncebuf, 1); 565 } 566 567 if (ret) 568 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 569 570 return ret; 571 } 572 573 /** 574 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready 575 * for new commands. 576 * @nor: pointer to 'struct spi_nor'. 577 * 578 * Return: 1 if ready, 0 if not ready, -errno on errors. 579 */ 580 int spi_nor_sr_ready(struct spi_nor *nor) 581 { 582 int ret; 583 584 ret = spi_nor_read_sr(nor, nor->bouncebuf); 585 if (ret) 586 return ret; 587 588 return !(nor->bouncebuf[0] & SR_WIP); 589 } 590 591 /** 592 * spi_nor_ready() - Query the flash to see if it is ready for new commands. 593 * @nor: pointer to 'struct spi_nor'. 594 * 595 * Return: 1 if ready, 0 if not ready, -errno on errors. 596 */ 597 static int spi_nor_ready(struct spi_nor *nor) 598 { 599 /* Flashes might override the standard routine. */ 600 if (nor->params->ready) 601 return nor->params->ready(nor); 602 603 return spi_nor_sr_ready(nor); 604 } 605 606 /** 607 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the 608 * Status Register until ready, or timeout occurs. 609 * @nor: pointer to "struct spi_nor". 610 * @timeout_jiffies: jiffies to wait until timeout. 611 * 612 * Return: 0 on success, -errno otherwise. 613 */ 614 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, 615 unsigned long timeout_jiffies) 616 { 617 unsigned long deadline; 618 int timeout = 0, ret; 619 620 deadline = jiffies + timeout_jiffies; 621 622 while (!timeout) { 623 if (time_after_eq(jiffies, deadline)) 624 timeout = 1; 625 626 ret = spi_nor_ready(nor); 627 if (ret < 0) 628 return ret; 629 if (ret) 630 return 0; 631 632 cond_resched(); 633 } 634 635 dev_dbg(nor->dev, "flash operation timed out\n"); 636 637 return -ETIMEDOUT; 638 } 639 640 /** 641 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the 642 * flash to be ready, or timeout occurs. 643 * @nor: pointer to "struct spi_nor". 644 * 645 * Return: 0 on success, -errno otherwise. 646 */ 647 int spi_nor_wait_till_ready(struct spi_nor *nor) 648 { 649 return spi_nor_wait_till_ready_with_timeout(nor, 650 DEFAULT_READY_WAIT_JIFFIES); 651 } 652 653 /** 654 * spi_nor_global_block_unlock() - Unlock Global Block Protection. 655 * @nor: pointer to 'struct spi_nor'. 656 * 657 * Return: 0 on success, -errno otherwise. 658 */ 659 int spi_nor_global_block_unlock(struct spi_nor *nor) 660 { 661 int ret; 662 663 ret = spi_nor_write_enable(nor); 664 if (ret) 665 return ret; 666 667 if (nor->spimem) { 668 struct spi_mem_op op = SPI_NOR_GBULK_OP; 669 670 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 671 672 ret = spi_mem_exec_op(nor->spimem, &op); 673 } else { 674 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK, 675 NULL, 0); 676 } 677 678 if (ret) { 679 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret); 680 return ret; 681 } 682 683 return spi_nor_wait_till_ready(nor); 684 } 685 686 /** 687 * spi_nor_write_sr() - Write the Status Register. 688 * @nor: pointer to 'struct spi_nor'. 689 * @sr: pointer to DMA-able buffer to write to the Status Register. 690 * @len: number of bytes to write to the Status Register. 691 * 692 * Return: 0 on success, -errno otherwise. 693 */ 694 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) 695 { 696 int ret; 697 698 ret = spi_nor_write_enable(nor); 699 if (ret) 700 return ret; 701 702 if (nor->spimem) { 703 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len); 704 705 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 706 707 ret = spi_mem_exec_op(nor->spimem, &op); 708 } else { 709 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr, 710 len); 711 } 712 713 if (ret) { 714 dev_dbg(nor->dev, "error %d writing SR\n", ret); 715 return ret; 716 } 717 718 return spi_nor_wait_till_ready(nor); 719 } 720 721 /** 722 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and 723 * ensure that the byte written match the received value. 724 * @nor: pointer to a 'struct spi_nor'. 725 * @sr1: byte value to be written to the Status Register. 726 * 727 * Return: 0 on success, -errno otherwise. 728 */ 729 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) 730 { 731 int ret; 732 733 nor->bouncebuf[0] = sr1; 734 735 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); 736 if (ret) 737 return ret; 738 739 ret = spi_nor_read_sr(nor, nor->bouncebuf); 740 if (ret) 741 return ret; 742 743 if (nor->bouncebuf[0] != sr1) { 744 dev_dbg(nor->dev, "SR1: read back test failed\n"); 745 return -EIO; 746 } 747 748 return 0; 749 } 750 751 /** 752 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the 753 * Status Register 2 in one shot. Ensure that the byte written in the Status 754 * Register 1 match the received value, and that the 16-bit Write did not 755 * affect what was already in the Status Register 2. 756 * @nor: pointer to a 'struct spi_nor'. 757 * @sr1: byte value to be written to the Status Register 1. 758 * 759 * Return: 0 on success, -errno otherwise. 760 */ 761 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) 762 { 763 int ret; 764 u8 *sr_cr = nor->bouncebuf; 765 u8 cr_written; 766 767 /* Make sure we don't overwrite the contents of Status Register 2. */ 768 if (!(nor->flags & SNOR_F_NO_READ_CR)) { 769 ret = spi_nor_read_cr(nor, &sr_cr[1]); 770 if (ret) 771 return ret; 772 } else if (nor->params->quad_enable) { 773 /* 774 * If the Status Register 2 Read command (35h) is not 775 * supported, we should at least be sure we don't 776 * change the value of the SR2 Quad Enable bit. 777 * 778 * We can safely assume that when the Quad Enable method is 779 * set, the value of the QE bit is one, as a consequence of the 780 * nor->params->quad_enable() call. 781 * 782 * We can safely assume that the Quad Enable bit is present in 783 * the Status Register 2 at BIT(1). According to the JESD216 784 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit 785 * Write Status (01h) command is available just for the cases 786 * in which the QE bit is described in SR2 at BIT(1). 787 */ 788 sr_cr[1] = SR2_QUAD_EN_BIT1; 789 } else { 790 sr_cr[1] = 0; 791 } 792 793 sr_cr[0] = sr1; 794 795 ret = spi_nor_write_sr(nor, sr_cr, 2); 796 if (ret) 797 return ret; 798 799 ret = spi_nor_read_sr(nor, sr_cr); 800 if (ret) 801 return ret; 802 803 if (sr1 != sr_cr[0]) { 804 dev_dbg(nor->dev, "SR: Read back test failed\n"); 805 return -EIO; 806 } 807 808 if (nor->flags & SNOR_F_NO_READ_CR) 809 return 0; 810 811 cr_written = sr_cr[1]; 812 813 ret = spi_nor_read_cr(nor, &sr_cr[1]); 814 if (ret) 815 return ret; 816 817 if (cr_written != sr_cr[1]) { 818 dev_dbg(nor->dev, "CR: read back test failed\n"); 819 return -EIO; 820 } 821 822 return 0; 823 } 824 825 /** 826 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the 827 * Configuration Register in one shot. Ensure that the byte written in the 828 * Configuration Register match the received value, and that the 16-bit Write 829 * did not affect what was already in the Status Register 1. 830 * @nor: pointer to a 'struct spi_nor'. 831 * @cr: byte value to be written to the Configuration Register. 832 * 833 * Return: 0 on success, -errno otherwise. 834 */ 835 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) 836 { 837 int ret; 838 u8 *sr_cr = nor->bouncebuf; 839 u8 sr_written; 840 841 /* Keep the current value of the Status Register 1. */ 842 ret = spi_nor_read_sr(nor, sr_cr); 843 if (ret) 844 return ret; 845 846 sr_cr[1] = cr; 847 848 ret = spi_nor_write_sr(nor, sr_cr, 2); 849 if (ret) 850 return ret; 851 852 sr_written = sr_cr[0]; 853 854 ret = spi_nor_read_sr(nor, sr_cr); 855 if (ret) 856 return ret; 857 858 if (sr_written != sr_cr[0]) { 859 dev_dbg(nor->dev, "SR: Read back test failed\n"); 860 return -EIO; 861 } 862 863 if (nor->flags & SNOR_F_NO_READ_CR) 864 return 0; 865 866 ret = spi_nor_read_cr(nor, &sr_cr[1]); 867 if (ret) 868 return ret; 869 870 if (cr != sr_cr[1]) { 871 dev_dbg(nor->dev, "CR: read back test failed\n"); 872 return -EIO; 873 } 874 875 return 0; 876 } 877 878 /** 879 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that 880 * the byte written match the received value without affecting other bits in the 881 * Status Register 1 and 2. 882 * @nor: pointer to a 'struct spi_nor'. 883 * @sr1: byte value to be written to the Status Register. 884 * 885 * Return: 0 on success, -errno otherwise. 886 */ 887 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) 888 { 889 if (nor->flags & SNOR_F_HAS_16BIT_SR) 890 return spi_nor_write_16bit_sr_and_check(nor, sr1); 891 892 return spi_nor_write_sr1_and_check(nor, sr1); 893 } 894 895 /** 896 * spi_nor_write_sr2() - Write the Status Register 2 using the 897 * SPINOR_OP_WRSR2 (3eh) command. 898 * @nor: pointer to 'struct spi_nor'. 899 * @sr2: pointer to DMA-able buffer to write to the Status Register 2. 900 * 901 * Return: 0 on success, -errno otherwise. 902 */ 903 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) 904 { 905 int ret; 906 907 ret = spi_nor_write_enable(nor); 908 if (ret) 909 return ret; 910 911 if (nor->spimem) { 912 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2); 913 914 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 915 916 ret = spi_mem_exec_op(nor->spimem, &op); 917 } else { 918 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2, 919 sr2, 1); 920 } 921 922 if (ret) { 923 dev_dbg(nor->dev, "error %d writing SR2\n", ret); 924 return ret; 925 } 926 927 return spi_nor_wait_till_ready(nor); 928 } 929 930 /** 931 * spi_nor_read_sr2() - Read the Status Register 2 using the 932 * SPINOR_OP_RDSR2 (3fh) command. 933 * @nor: pointer to 'struct spi_nor'. 934 * @sr2: pointer to DMA-able buffer where the value of the 935 * Status Register 2 will be written. 936 * 937 * Return: 0 on success, -errno otherwise. 938 */ 939 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) 940 { 941 int ret; 942 943 if (nor->spimem) { 944 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2); 945 946 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 947 948 ret = spi_mem_exec_op(nor->spimem, &op); 949 } else { 950 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2, 951 1); 952 } 953 954 if (ret) 955 dev_dbg(nor->dev, "error %d reading SR2\n", ret); 956 957 return ret; 958 } 959 960 /** 961 * spi_nor_erase_chip() - Erase the entire flash memory. 962 * @nor: pointer to 'struct spi_nor'. 963 * 964 * Return: 0 on success, -errno otherwise. 965 */ 966 static int spi_nor_erase_chip(struct spi_nor *nor) 967 { 968 int ret; 969 970 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); 971 972 if (nor->spimem) { 973 struct spi_mem_op op = SPI_NOR_CHIP_ERASE_OP; 974 975 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 976 977 ret = spi_mem_exec_op(nor->spimem, &op); 978 } else { 979 ret = spi_nor_controller_ops_write_reg(nor, 980 SPINOR_OP_CHIP_ERASE, 981 NULL, 0); 982 } 983 984 if (ret) 985 dev_dbg(nor->dev, "error %d erasing chip\n", ret); 986 987 return ret; 988 } 989 990 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) 991 { 992 size_t i; 993 994 for (i = 0; i < size; i++) 995 if (table[i][0] == opcode) 996 return table[i][1]; 997 998 /* No conversion found, keep input op code. */ 999 return opcode; 1000 } 1001 1002 u8 spi_nor_convert_3to4_read(u8 opcode) 1003 { 1004 static const u8 spi_nor_3to4_read[][2] = { 1005 { SPINOR_OP_READ, SPINOR_OP_READ_4B }, 1006 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, 1007 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, 1008 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, 1009 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, 1010 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, 1011 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, 1012 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, 1013 1014 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, 1015 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, 1016 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, 1017 }; 1018 1019 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, 1020 ARRAY_SIZE(spi_nor_3to4_read)); 1021 } 1022 1023 static u8 spi_nor_convert_3to4_program(u8 opcode) 1024 { 1025 static const u8 spi_nor_3to4_program[][2] = { 1026 { SPINOR_OP_PP, SPINOR_OP_PP_4B }, 1027 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, 1028 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, 1029 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, 1030 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, 1031 }; 1032 1033 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, 1034 ARRAY_SIZE(spi_nor_3to4_program)); 1035 } 1036 1037 static u8 spi_nor_convert_3to4_erase(u8 opcode) 1038 { 1039 static const u8 spi_nor_3to4_erase[][2] = { 1040 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, 1041 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, 1042 { SPINOR_OP_SE, SPINOR_OP_SE_4B }, 1043 }; 1044 1045 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, 1046 ARRAY_SIZE(spi_nor_3to4_erase)); 1047 } 1048 1049 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) 1050 { 1051 return !!nor->params->erase_map.uniform_erase_type; 1052 } 1053 1054 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) 1055 { 1056 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); 1057 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); 1058 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); 1059 1060 if (!spi_nor_has_uniform_erase(nor)) { 1061 struct spi_nor_erase_map *map = &nor->params->erase_map; 1062 struct spi_nor_erase_type *erase; 1063 int i; 1064 1065 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1066 erase = &map->erase_type[i]; 1067 erase->opcode = 1068 spi_nor_convert_3to4_erase(erase->opcode); 1069 } 1070 } 1071 } 1072 1073 int spi_nor_lock_and_prep(struct spi_nor *nor) 1074 { 1075 int ret = 0; 1076 1077 mutex_lock(&nor->lock); 1078 1079 if (nor->controller_ops && nor->controller_ops->prepare) { 1080 ret = nor->controller_ops->prepare(nor); 1081 if (ret) { 1082 mutex_unlock(&nor->lock); 1083 return ret; 1084 } 1085 } 1086 return ret; 1087 } 1088 1089 void spi_nor_unlock_and_unprep(struct spi_nor *nor) 1090 { 1091 if (nor->controller_ops && nor->controller_ops->unprepare) 1092 nor->controller_ops->unprepare(nor); 1093 mutex_unlock(&nor->lock); 1094 } 1095 1096 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr) 1097 { 1098 if (!nor->params->convert_addr) 1099 return addr; 1100 1101 return nor->params->convert_addr(nor, addr); 1102 } 1103 1104 /* 1105 * Initiate the erasure of a single sector 1106 */ 1107 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) 1108 { 1109 int i; 1110 1111 addr = spi_nor_convert_addr(nor, addr); 1112 1113 if (nor->spimem) { 1114 struct spi_mem_op op = 1115 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode, 1116 nor->addr_nbytes, addr); 1117 1118 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1119 1120 return spi_mem_exec_op(nor->spimem, &op); 1121 } else if (nor->controller_ops->erase) { 1122 return spi_nor_controller_ops_erase(nor, addr); 1123 } 1124 1125 /* 1126 * Default implementation, if driver doesn't have a specialized HW 1127 * control 1128 */ 1129 for (i = nor->addr_nbytes - 1; i >= 0; i--) { 1130 nor->bouncebuf[i] = addr & 0xff; 1131 addr >>= 8; 1132 } 1133 1134 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode, 1135 nor->bouncebuf, nor->addr_nbytes); 1136 } 1137 1138 /** 1139 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend 1140 * @erase: pointer to a structure that describes a SPI NOR erase type 1141 * @dividend: dividend value 1142 * @remainder: pointer to u32 remainder (will be updated) 1143 * 1144 * Return: the result of the division 1145 */ 1146 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, 1147 u64 dividend, u32 *remainder) 1148 { 1149 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 1150 *remainder = (u32)dividend & erase->size_mask; 1151 return dividend >> erase->size_shift; 1152 } 1153 1154 /** 1155 * spi_nor_find_best_erase_type() - find the best erase type for the given 1156 * offset in the serial flash memory and the 1157 * number of bytes to erase. The region in 1158 * which the address fits is expected to be 1159 * provided. 1160 * @map: the erase map of the SPI NOR 1161 * @region: pointer to a structure that describes a SPI NOR erase region 1162 * @addr: offset in the serial flash memory 1163 * @len: number of bytes to erase 1164 * 1165 * Return: a pointer to the best fitted erase type, NULL otherwise. 1166 */ 1167 static const struct spi_nor_erase_type * 1168 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, 1169 const struct spi_nor_erase_region *region, 1170 u64 addr, u32 len) 1171 { 1172 const struct spi_nor_erase_type *erase; 1173 u32 rem; 1174 int i; 1175 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 1176 1177 /* 1178 * Erase types are ordered by size, with the smallest erase type at 1179 * index 0. 1180 */ 1181 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 1182 /* Does the erase region support the tested erase type? */ 1183 if (!(erase_mask & BIT(i))) 1184 continue; 1185 1186 erase = &map->erase_type[i]; 1187 if (!erase->size) 1188 continue; 1189 1190 /* Alignment is not mandatory for overlaid regions */ 1191 if (region->offset & SNOR_OVERLAID_REGION && 1192 region->size <= len) 1193 return erase; 1194 1195 /* Don't erase more than what the user has asked for. */ 1196 if (erase->size > len) 1197 continue; 1198 1199 spi_nor_div_by_erase_size(erase, addr, &rem); 1200 if (!rem) 1201 return erase; 1202 } 1203 1204 return NULL; 1205 } 1206 1207 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region) 1208 { 1209 return region->offset & SNOR_LAST_REGION; 1210 } 1211 1212 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region) 1213 { 1214 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size; 1215 } 1216 1217 /** 1218 * spi_nor_region_next() - get the next spi nor region 1219 * @region: pointer to a structure that describes a SPI NOR erase region 1220 * 1221 * Return: the next spi nor region or NULL if last region. 1222 */ 1223 struct spi_nor_erase_region * 1224 spi_nor_region_next(struct spi_nor_erase_region *region) 1225 { 1226 if (spi_nor_region_is_last(region)) 1227 return NULL; 1228 region++; 1229 return region; 1230 } 1231 1232 /** 1233 * spi_nor_find_erase_region() - find the region of the serial flash memory in 1234 * which the offset fits 1235 * @map: the erase map of the SPI NOR 1236 * @addr: offset in the serial flash memory 1237 * 1238 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) 1239 * otherwise. 1240 */ 1241 static struct spi_nor_erase_region * 1242 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) 1243 { 1244 struct spi_nor_erase_region *region = map->regions; 1245 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; 1246 u64 region_end = region_start + region->size; 1247 1248 while (addr < region_start || addr >= region_end) { 1249 region = spi_nor_region_next(region); 1250 if (!region) 1251 return ERR_PTR(-EINVAL); 1252 1253 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; 1254 region_end = region_start + region->size; 1255 } 1256 1257 return region; 1258 } 1259 1260 /** 1261 * spi_nor_init_erase_cmd() - initialize an erase command 1262 * @region: pointer to a structure that describes a SPI NOR erase region 1263 * @erase: pointer to a structure that describes a SPI NOR erase type 1264 * 1265 * Return: the pointer to the allocated erase command, ERR_PTR(-errno) 1266 * otherwise. 1267 */ 1268 static struct spi_nor_erase_command * 1269 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, 1270 const struct spi_nor_erase_type *erase) 1271 { 1272 struct spi_nor_erase_command *cmd; 1273 1274 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 1275 if (!cmd) 1276 return ERR_PTR(-ENOMEM); 1277 1278 INIT_LIST_HEAD(&cmd->list); 1279 cmd->opcode = erase->opcode; 1280 cmd->count = 1; 1281 1282 if (region->offset & SNOR_OVERLAID_REGION) 1283 cmd->size = region->size; 1284 else 1285 cmd->size = erase->size; 1286 1287 return cmd; 1288 } 1289 1290 /** 1291 * spi_nor_destroy_erase_cmd_list() - destroy erase command list 1292 * @erase_list: list of erase commands 1293 */ 1294 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) 1295 { 1296 struct spi_nor_erase_command *cmd, *next; 1297 1298 list_for_each_entry_safe(cmd, next, erase_list, list) { 1299 list_del(&cmd->list); 1300 kfree(cmd); 1301 } 1302 } 1303 1304 /** 1305 * spi_nor_init_erase_cmd_list() - initialize erase command list 1306 * @nor: pointer to a 'struct spi_nor' 1307 * @erase_list: list of erase commands to be executed once we validate that the 1308 * erase can be performed 1309 * @addr: offset in the serial flash memory 1310 * @len: number of bytes to erase 1311 * 1312 * Builds the list of best fitted erase commands and verifies if the erase can 1313 * be performed. 1314 * 1315 * Return: 0 on success, -errno otherwise. 1316 */ 1317 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, 1318 struct list_head *erase_list, 1319 u64 addr, u32 len) 1320 { 1321 const struct spi_nor_erase_map *map = &nor->params->erase_map; 1322 const struct spi_nor_erase_type *erase, *prev_erase = NULL; 1323 struct spi_nor_erase_region *region; 1324 struct spi_nor_erase_command *cmd = NULL; 1325 u64 region_end; 1326 int ret = -EINVAL; 1327 1328 region = spi_nor_find_erase_region(map, addr); 1329 if (IS_ERR(region)) 1330 return PTR_ERR(region); 1331 1332 region_end = spi_nor_region_end(region); 1333 1334 while (len) { 1335 erase = spi_nor_find_best_erase_type(map, region, addr, len); 1336 if (!erase) 1337 goto destroy_erase_cmd_list; 1338 1339 if (prev_erase != erase || 1340 erase->size != cmd->size || 1341 region->offset & SNOR_OVERLAID_REGION) { 1342 cmd = spi_nor_init_erase_cmd(region, erase); 1343 if (IS_ERR(cmd)) { 1344 ret = PTR_ERR(cmd); 1345 goto destroy_erase_cmd_list; 1346 } 1347 1348 list_add_tail(&cmd->list, erase_list); 1349 } else { 1350 cmd->count++; 1351 } 1352 1353 addr += cmd->size; 1354 len -= cmd->size; 1355 1356 if (len && addr >= region_end) { 1357 region = spi_nor_region_next(region); 1358 if (!region) 1359 goto destroy_erase_cmd_list; 1360 region_end = spi_nor_region_end(region); 1361 } 1362 1363 prev_erase = erase; 1364 } 1365 1366 return 0; 1367 1368 destroy_erase_cmd_list: 1369 spi_nor_destroy_erase_cmd_list(erase_list); 1370 return ret; 1371 } 1372 1373 /** 1374 * spi_nor_erase_multi_sectors() - perform a non-uniform erase 1375 * @nor: pointer to a 'struct spi_nor' 1376 * @addr: offset in the serial flash memory 1377 * @len: number of bytes to erase 1378 * 1379 * Build a list of best fitted erase commands and execute it once we validate 1380 * that the erase can be performed. 1381 * 1382 * Return: 0 on success, -errno otherwise. 1383 */ 1384 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) 1385 { 1386 LIST_HEAD(erase_list); 1387 struct spi_nor_erase_command *cmd, *next; 1388 int ret; 1389 1390 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); 1391 if (ret) 1392 return ret; 1393 1394 list_for_each_entry_safe(cmd, next, &erase_list, list) { 1395 nor->erase_opcode = cmd->opcode; 1396 while (cmd->count) { 1397 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n", 1398 cmd->size, cmd->opcode, cmd->count); 1399 1400 ret = spi_nor_write_enable(nor); 1401 if (ret) 1402 goto destroy_erase_cmd_list; 1403 1404 ret = spi_nor_erase_sector(nor, addr); 1405 if (ret) 1406 goto destroy_erase_cmd_list; 1407 1408 ret = spi_nor_wait_till_ready(nor); 1409 if (ret) 1410 goto destroy_erase_cmd_list; 1411 1412 addr += cmd->size; 1413 cmd->count--; 1414 } 1415 list_del(&cmd->list); 1416 kfree(cmd); 1417 } 1418 1419 return 0; 1420 1421 destroy_erase_cmd_list: 1422 spi_nor_destroy_erase_cmd_list(&erase_list); 1423 return ret; 1424 } 1425 1426 /* 1427 * Erase an address range on the nor chip. The address range may extend 1428 * one or more erase sectors. Return an error if there is a problem erasing. 1429 */ 1430 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) 1431 { 1432 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1433 u32 addr, len; 1434 uint32_t rem; 1435 int ret; 1436 1437 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, 1438 (long long)instr->len); 1439 1440 if (spi_nor_has_uniform_erase(nor)) { 1441 div_u64_rem(instr->len, mtd->erasesize, &rem); 1442 if (rem) 1443 return -EINVAL; 1444 } 1445 1446 addr = instr->addr; 1447 len = instr->len; 1448 1449 ret = spi_nor_lock_and_prep(nor); 1450 if (ret) 1451 return ret; 1452 1453 /* whole-chip erase? */ 1454 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { 1455 unsigned long timeout; 1456 1457 ret = spi_nor_write_enable(nor); 1458 if (ret) 1459 goto erase_err; 1460 1461 ret = spi_nor_erase_chip(nor); 1462 if (ret) 1463 goto erase_err; 1464 1465 /* 1466 * Scale the timeout linearly with the size of the flash, with 1467 * a minimum calibrated to an old 2MB flash. We could try to 1468 * pull these from CFI/SFDP, but these values should be good 1469 * enough for now. 1470 */ 1471 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, 1472 CHIP_ERASE_2MB_READY_WAIT_JIFFIES * 1473 (unsigned long)(mtd->size / SZ_2M)); 1474 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); 1475 if (ret) 1476 goto erase_err; 1477 1478 /* REVISIT in some cases we could speed up erasing large regions 1479 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up 1480 * to use "small sector erase", but that's not always optimal. 1481 */ 1482 1483 /* "sector"-at-a-time erase */ 1484 } else if (spi_nor_has_uniform_erase(nor)) { 1485 while (len) { 1486 ret = spi_nor_write_enable(nor); 1487 if (ret) 1488 goto erase_err; 1489 1490 ret = spi_nor_erase_sector(nor, addr); 1491 if (ret) 1492 goto erase_err; 1493 1494 ret = spi_nor_wait_till_ready(nor); 1495 if (ret) 1496 goto erase_err; 1497 1498 addr += mtd->erasesize; 1499 len -= mtd->erasesize; 1500 } 1501 1502 /* erase multiple sectors */ 1503 } else { 1504 ret = spi_nor_erase_multi_sectors(nor, addr, len); 1505 if (ret) 1506 goto erase_err; 1507 } 1508 1509 ret = spi_nor_write_disable(nor); 1510 1511 erase_err: 1512 spi_nor_unlock_and_unprep(nor); 1513 1514 return ret; 1515 } 1516 1517 /** 1518 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status 1519 * Register 1. 1520 * @nor: pointer to a 'struct spi_nor' 1521 * 1522 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. 1523 * 1524 * Return: 0 on success, -errno otherwise. 1525 */ 1526 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) 1527 { 1528 int ret; 1529 1530 ret = spi_nor_read_sr(nor, nor->bouncebuf); 1531 if (ret) 1532 return ret; 1533 1534 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) 1535 return 0; 1536 1537 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; 1538 1539 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); 1540 } 1541 1542 /** 1543 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status 1544 * Register 2. 1545 * @nor: pointer to a 'struct spi_nor'. 1546 * 1547 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. 1548 * 1549 * Return: 0 on success, -errno otherwise. 1550 */ 1551 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) 1552 { 1553 int ret; 1554 1555 if (nor->flags & SNOR_F_NO_READ_CR) 1556 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); 1557 1558 ret = spi_nor_read_cr(nor, nor->bouncebuf); 1559 if (ret) 1560 return ret; 1561 1562 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) 1563 return 0; 1564 1565 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; 1566 1567 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); 1568 } 1569 1570 /** 1571 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. 1572 * @nor: pointer to a 'struct spi_nor' 1573 * 1574 * Set the Quad Enable (QE) bit in the Status Register 2. 1575 * 1576 * This is one of the procedures to set the QE bit described in the SFDP 1577 * (JESD216 rev B) specification but no manufacturer using this procedure has 1578 * been identified yet, hence the name of the function. 1579 * 1580 * Return: 0 on success, -errno otherwise. 1581 */ 1582 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) 1583 { 1584 u8 *sr2 = nor->bouncebuf; 1585 int ret; 1586 u8 sr2_written; 1587 1588 /* Check current Quad Enable bit value. */ 1589 ret = spi_nor_read_sr2(nor, sr2); 1590 if (ret) 1591 return ret; 1592 if (*sr2 & SR2_QUAD_EN_BIT7) 1593 return 0; 1594 1595 /* Update the Quad Enable bit. */ 1596 *sr2 |= SR2_QUAD_EN_BIT7; 1597 1598 ret = spi_nor_write_sr2(nor, sr2); 1599 if (ret) 1600 return ret; 1601 1602 sr2_written = *sr2; 1603 1604 /* Read back and check it. */ 1605 ret = spi_nor_read_sr2(nor, sr2); 1606 if (ret) 1607 return ret; 1608 1609 if (*sr2 != sr2_written) { 1610 dev_dbg(nor->dev, "SR2: Read back test failed\n"); 1611 return -EIO; 1612 } 1613 1614 return 0; 1615 } 1616 1617 static const struct spi_nor_manufacturer *manufacturers[] = { 1618 &spi_nor_atmel, 1619 &spi_nor_catalyst, 1620 &spi_nor_eon, 1621 &spi_nor_esmt, 1622 &spi_nor_everspin, 1623 &spi_nor_fujitsu, 1624 &spi_nor_gigadevice, 1625 &spi_nor_intel, 1626 &spi_nor_issi, 1627 &spi_nor_macronix, 1628 &spi_nor_micron, 1629 &spi_nor_st, 1630 &spi_nor_spansion, 1631 &spi_nor_sst, 1632 &spi_nor_winbond, 1633 &spi_nor_xilinx, 1634 &spi_nor_xmc, 1635 }; 1636 1637 static const struct flash_info spi_nor_generic_flash = { 1638 .name = "spi-nor-generic", 1639 /* 1640 * JESD216 rev A doesn't specify the page size, therefore we need a 1641 * sane default. 1642 */ 1643 .page_size = 256, 1644 .parse_sfdp = true, 1645 }; 1646 1647 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, 1648 const u8 *id) 1649 { 1650 const struct flash_info *part; 1651 unsigned int i, j; 1652 1653 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 1654 for (j = 0; j < manufacturers[i]->nparts; j++) { 1655 part = &manufacturers[i]->parts[j]; 1656 if (part->id_len && 1657 !memcmp(part->id, id, part->id_len)) { 1658 nor->manufacturer = manufacturers[i]; 1659 return part; 1660 } 1661 } 1662 } 1663 1664 return NULL; 1665 } 1666 1667 static const struct flash_info *spi_nor_detect(struct spi_nor *nor) 1668 { 1669 const struct flash_info *info; 1670 u8 *id = nor->bouncebuf; 1671 int ret; 1672 1673 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto); 1674 if (ret) { 1675 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); 1676 return ERR_PTR(ret); 1677 } 1678 1679 /* Cache the complete flash ID. */ 1680 nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL); 1681 if (!nor->id) 1682 return ERR_PTR(-ENOMEM); 1683 1684 info = spi_nor_match_id(nor, id); 1685 1686 /* Fallback to a generic flash described only by its SFDP data. */ 1687 if (!info) { 1688 ret = spi_nor_check_sfdp_signature(nor); 1689 if (!ret) 1690 info = &spi_nor_generic_flash; 1691 } 1692 1693 if (!info) { 1694 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", 1695 SPI_NOR_MAX_ID_LEN, id); 1696 return ERR_PTR(-ENODEV); 1697 } 1698 return info; 1699 } 1700 1701 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, 1702 size_t *retlen, u_char *buf) 1703 { 1704 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1705 ssize_t ret; 1706 1707 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); 1708 1709 ret = spi_nor_lock_and_prep(nor); 1710 if (ret) 1711 return ret; 1712 1713 while (len) { 1714 loff_t addr = from; 1715 1716 addr = spi_nor_convert_addr(nor, addr); 1717 1718 ret = spi_nor_read_data(nor, addr, len, buf); 1719 if (ret == 0) { 1720 /* We shouldn't see 0-length reads */ 1721 ret = -EIO; 1722 goto read_err; 1723 } 1724 if (ret < 0) 1725 goto read_err; 1726 1727 WARN_ON(ret > len); 1728 *retlen += ret; 1729 buf += ret; 1730 from += ret; 1731 len -= ret; 1732 } 1733 ret = 0; 1734 1735 read_err: 1736 spi_nor_unlock_and_unprep(nor); 1737 return ret; 1738 } 1739 1740 /* 1741 * Write an address range to the nor chip. Data must be written in 1742 * FLASH_PAGESIZE chunks. The address range may be any size provided 1743 * it is within the physical boundaries. 1744 */ 1745 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, 1746 size_t *retlen, const u_char *buf) 1747 { 1748 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1749 size_t page_offset, page_remain, i; 1750 ssize_t ret; 1751 u32 page_size = nor->params->page_size; 1752 1753 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 1754 1755 ret = spi_nor_lock_and_prep(nor); 1756 if (ret) 1757 return ret; 1758 1759 for (i = 0; i < len; ) { 1760 ssize_t written; 1761 loff_t addr = to + i; 1762 1763 /* 1764 * If page_size is a power of two, the offset can be quickly 1765 * calculated with an AND operation. On the other cases we 1766 * need to do a modulus operation (more expensive). 1767 */ 1768 if (is_power_of_2(page_size)) { 1769 page_offset = addr & (page_size - 1); 1770 } else { 1771 uint64_t aux = addr; 1772 1773 page_offset = do_div(aux, page_size); 1774 } 1775 /* the size of data remaining on the first page */ 1776 page_remain = min_t(size_t, page_size - page_offset, len - i); 1777 1778 addr = spi_nor_convert_addr(nor, addr); 1779 1780 ret = spi_nor_write_enable(nor); 1781 if (ret) 1782 goto write_err; 1783 1784 ret = spi_nor_write_data(nor, addr, page_remain, buf + i); 1785 if (ret < 0) 1786 goto write_err; 1787 written = ret; 1788 1789 ret = spi_nor_wait_till_ready(nor); 1790 if (ret) 1791 goto write_err; 1792 *retlen += written; 1793 i += written; 1794 } 1795 1796 write_err: 1797 spi_nor_unlock_and_unprep(nor); 1798 return ret; 1799 } 1800 1801 static int spi_nor_check(struct spi_nor *nor) 1802 { 1803 if (!nor->dev || 1804 (!nor->spimem && !nor->controller_ops) || 1805 (!nor->spimem && nor->controller_ops && 1806 (!nor->controller_ops->read || 1807 !nor->controller_ops->write || 1808 !nor->controller_ops->read_reg || 1809 !nor->controller_ops->write_reg))) { 1810 pr_err("spi-nor: please fill all the necessary fields!\n"); 1811 return -EINVAL; 1812 } 1813 1814 if (nor->spimem && nor->controller_ops) { 1815 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); 1816 return -EINVAL; 1817 } 1818 1819 return 0; 1820 } 1821 1822 void 1823 spi_nor_set_read_settings(struct spi_nor_read_command *read, 1824 u8 num_mode_clocks, 1825 u8 num_wait_states, 1826 u8 opcode, 1827 enum spi_nor_protocol proto) 1828 { 1829 read->num_mode_clocks = num_mode_clocks; 1830 read->num_wait_states = num_wait_states; 1831 read->opcode = opcode; 1832 read->proto = proto; 1833 } 1834 1835 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, 1836 enum spi_nor_protocol proto) 1837 { 1838 pp->opcode = opcode; 1839 pp->proto = proto; 1840 } 1841 1842 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) 1843 { 1844 size_t i; 1845 1846 for (i = 0; i < size; i++) 1847 if (table[i][0] == (int)hwcaps) 1848 return table[i][1]; 1849 1850 return -EINVAL; 1851 } 1852 1853 int spi_nor_hwcaps_read2cmd(u32 hwcaps) 1854 { 1855 static const int hwcaps_read2cmd[][2] = { 1856 { SNOR_HWCAPS_READ, SNOR_CMD_READ }, 1857 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, 1858 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, 1859 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, 1860 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, 1861 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, 1862 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, 1863 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, 1864 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, 1865 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, 1866 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, 1867 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, 1868 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, 1869 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, 1870 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, 1871 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, 1872 }; 1873 1874 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, 1875 ARRAY_SIZE(hwcaps_read2cmd)); 1876 } 1877 1878 int spi_nor_hwcaps_pp2cmd(u32 hwcaps) 1879 { 1880 static const int hwcaps_pp2cmd[][2] = { 1881 { SNOR_HWCAPS_PP, SNOR_CMD_PP }, 1882 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, 1883 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, 1884 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, 1885 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, 1886 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, 1887 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, 1888 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, 1889 }; 1890 1891 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, 1892 ARRAY_SIZE(hwcaps_pp2cmd)); 1893 } 1894 1895 /** 1896 * spi_nor_spimem_check_op - check if the operation is supported 1897 * by controller 1898 *@nor: pointer to a 'struct spi_nor' 1899 *@op: pointer to op template to be checked 1900 * 1901 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1902 */ 1903 static int spi_nor_spimem_check_op(struct spi_nor *nor, 1904 struct spi_mem_op *op) 1905 { 1906 /* 1907 * First test with 4 address bytes. The opcode itself might 1908 * be a 3B addressing opcode but we don't care, because 1909 * SPI controller implementation should not check the opcode, 1910 * but just the sequence. 1911 */ 1912 op->addr.nbytes = 4; 1913 if (!spi_mem_supports_op(nor->spimem, op)) { 1914 if (nor->params->size > SZ_16M) 1915 return -EOPNOTSUPP; 1916 1917 /* If flash size <= 16MB, 3 address bytes are sufficient */ 1918 op->addr.nbytes = 3; 1919 if (!spi_mem_supports_op(nor->spimem, op)) 1920 return -EOPNOTSUPP; 1921 } 1922 1923 return 0; 1924 } 1925 1926 /** 1927 * spi_nor_spimem_check_readop - check if the read op is supported 1928 * by controller 1929 *@nor: pointer to a 'struct spi_nor' 1930 *@read: pointer to op template to be checked 1931 * 1932 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1933 */ 1934 static int spi_nor_spimem_check_readop(struct spi_nor *nor, 1935 const struct spi_nor_read_command *read) 1936 { 1937 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode); 1938 1939 spi_nor_spimem_setup_op(nor, &op, read->proto); 1940 1941 /* convert the dummy cycles to the number of bytes */ 1942 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) * 1943 op.dummy.buswidth / 8; 1944 if (spi_nor_protocol_is_dtr(nor->read_proto)) 1945 op.dummy.nbytes *= 2; 1946 1947 return spi_nor_spimem_check_op(nor, &op); 1948 } 1949 1950 /** 1951 * spi_nor_spimem_check_pp - check if the page program op is supported 1952 * by controller 1953 *@nor: pointer to a 'struct spi_nor' 1954 *@pp: pointer to op template to be checked 1955 * 1956 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1957 */ 1958 static int spi_nor_spimem_check_pp(struct spi_nor *nor, 1959 const struct spi_nor_pp_command *pp) 1960 { 1961 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode); 1962 1963 spi_nor_spimem_setup_op(nor, &op, pp->proto); 1964 1965 return spi_nor_spimem_check_op(nor, &op); 1966 } 1967 1968 /** 1969 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol 1970 * based on SPI controller capabilities 1971 * @nor: pointer to a 'struct spi_nor' 1972 * @hwcaps: pointer to resulting capabilities after adjusting 1973 * according to controller and flash's capability 1974 */ 1975 static void 1976 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) 1977 { 1978 struct spi_nor_flash_parameter *params = nor->params; 1979 unsigned int cap; 1980 1981 /* X-X-X modes are not supported yet, mask them all. */ 1982 *hwcaps &= ~SNOR_HWCAPS_X_X_X; 1983 1984 /* 1985 * If the reset line is broken, we do not want to enter a stateful 1986 * mode. 1987 */ 1988 if (nor->flags & SNOR_F_BROKEN_RESET) 1989 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); 1990 1991 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { 1992 int rdidx, ppidx; 1993 1994 if (!(*hwcaps & BIT(cap))) 1995 continue; 1996 1997 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); 1998 if (rdidx >= 0 && 1999 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) 2000 *hwcaps &= ~BIT(cap); 2001 2002 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); 2003 if (ppidx < 0) 2004 continue; 2005 2006 if (spi_nor_spimem_check_pp(nor, 2007 ¶ms->page_programs[ppidx])) 2008 *hwcaps &= ~BIT(cap); 2009 } 2010 } 2011 2012 /** 2013 * spi_nor_set_erase_type() - set a SPI NOR erase type 2014 * @erase: pointer to a structure that describes a SPI NOR erase type 2015 * @size: the size of the sector/block erased by the erase type 2016 * @opcode: the SPI command op code to erase the sector/block 2017 */ 2018 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, 2019 u8 opcode) 2020 { 2021 erase->size = size; 2022 erase->opcode = opcode; 2023 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 2024 erase->size_shift = ffs(erase->size) - 1; 2025 erase->size_mask = (1 << erase->size_shift) - 1; 2026 } 2027 2028 /** 2029 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map 2030 * @map: the erase map of the SPI NOR 2031 * @erase_mask: bitmask encoding erase types that can erase the entire 2032 * flash memory 2033 * @flash_size: the spi nor flash memory size 2034 */ 2035 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, 2036 u8 erase_mask, u64 flash_size) 2037 { 2038 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ 2039 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | 2040 SNOR_LAST_REGION; 2041 map->uniform_region.size = flash_size; 2042 map->regions = &map->uniform_region; 2043 map->uniform_erase_type = erase_mask; 2044 } 2045 2046 int spi_nor_post_bfpt_fixups(struct spi_nor *nor, 2047 const struct sfdp_parameter_header *bfpt_header, 2048 const struct sfdp_bfpt *bfpt) 2049 { 2050 int ret; 2051 2052 if (nor->manufacturer && nor->manufacturer->fixups && 2053 nor->manufacturer->fixups->post_bfpt) { 2054 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, 2055 bfpt); 2056 if (ret) 2057 return ret; 2058 } 2059 2060 if (nor->info->fixups && nor->info->fixups->post_bfpt) 2061 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt); 2062 2063 return 0; 2064 } 2065 2066 static int spi_nor_select_read(struct spi_nor *nor, 2067 u32 shared_hwcaps) 2068 { 2069 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; 2070 const struct spi_nor_read_command *read; 2071 2072 if (best_match < 0) 2073 return -EINVAL; 2074 2075 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); 2076 if (cmd < 0) 2077 return -EINVAL; 2078 2079 read = &nor->params->reads[cmd]; 2080 nor->read_opcode = read->opcode; 2081 nor->read_proto = read->proto; 2082 2083 /* 2084 * In the SPI NOR framework, we don't need to make the difference 2085 * between mode clock cycles and wait state clock cycles. 2086 * Indeed, the value of the mode clock cycles is used by a QSPI 2087 * flash memory to know whether it should enter or leave its 0-4-4 2088 * (Continuous Read / XIP) mode. 2089 * eXecution In Place is out of the scope of the mtd sub-system. 2090 * Hence we choose to merge both mode and wait state clock cycles 2091 * into the so called dummy clock cycles. 2092 */ 2093 nor->read_dummy = read->num_mode_clocks + read->num_wait_states; 2094 return 0; 2095 } 2096 2097 static int spi_nor_select_pp(struct spi_nor *nor, 2098 u32 shared_hwcaps) 2099 { 2100 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; 2101 const struct spi_nor_pp_command *pp; 2102 2103 if (best_match < 0) 2104 return -EINVAL; 2105 2106 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); 2107 if (cmd < 0) 2108 return -EINVAL; 2109 2110 pp = &nor->params->page_programs[cmd]; 2111 nor->program_opcode = pp->opcode; 2112 nor->write_proto = pp->proto; 2113 return 0; 2114 } 2115 2116 /** 2117 * spi_nor_select_uniform_erase() - select optimum uniform erase type 2118 * @map: the erase map of the SPI NOR 2119 * @wanted_size: the erase type size to search for. Contains the value of 2120 * info->sector_size, the "small sector" size in case 2121 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined or 0 if 2122 * there is no information about the sector size. The 2123 * latter is the case if the flash parameters are parsed 2124 * solely by SFDP, then the largest supported erase type 2125 * is selected. 2126 * 2127 * Once the optimum uniform sector erase command is found, disable all the 2128 * other. 2129 * 2130 * Return: pointer to erase type on success, NULL otherwise. 2131 */ 2132 static const struct spi_nor_erase_type * 2133 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, 2134 const u32 wanted_size) 2135 { 2136 const struct spi_nor_erase_type *tested_erase, *erase = NULL; 2137 int i; 2138 u8 uniform_erase_type = map->uniform_erase_type; 2139 2140 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2141 if (!(uniform_erase_type & BIT(i))) 2142 continue; 2143 2144 tested_erase = &map->erase_type[i]; 2145 2146 /* Skip masked erase types. */ 2147 if (!tested_erase->size) 2148 continue; 2149 2150 /* 2151 * If the current erase size is the one, stop here: 2152 * we have found the right uniform Sector Erase command. 2153 */ 2154 if (tested_erase->size == wanted_size) { 2155 erase = tested_erase; 2156 break; 2157 } 2158 2159 /* 2160 * Otherwise, the current erase size is still a valid candidate. 2161 * Select the biggest valid candidate. 2162 */ 2163 if (!erase && tested_erase->size) 2164 erase = tested_erase; 2165 /* keep iterating to find the wanted_size */ 2166 } 2167 2168 if (!erase) 2169 return NULL; 2170 2171 /* Disable all other Sector Erase commands. */ 2172 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; 2173 map->uniform_erase_type |= BIT(erase - map->erase_type); 2174 return erase; 2175 } 2176 2177 static int spi_nor_select_erase(struct spi_nor *nor) 2178 { 2179 struct spi_nor_erase_map *map = &nor->params->erase_map; 2180 const struct spi_nor_erase_type *erase = NULL; 2181 struct mtd_info *mtd = &nor->mtd; 2182 u32 wanted_size = nor->info->sector_size; 2183 int i; 2184 2185 /* 2186 * The previous implementation handling Sector Erase commands assumed 2187 * that the SPI flash memory has an uniform layout then used only one 2188 * of the supported erase sizes for all Sector Erase commands. 2189 * So to be backward compatible, the new implementation also tries to 2190 * manage the SPI flash memory as uniform with a single erase sector 2191 * size, when possible. 2192 */ 2193 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS 2194 /* prefer "small sector" erase if possible */ 2195 wanted_size = 4096u; 2196 #endif 2197 2198 if (spi_nor_has_uniform_erase(nor)) { 2199 erase = spi_nor_select_uniform_erase(map, wanted_size); 2200 if (!erase) 2201 return -EINVAL; 2202 nor->erase_opcode = erase->opcode; 2203 mtd->erasesize = erase->size; 2204 return 0; 2205 } 2206 2207 /* 2208 * For non-uniform SPI flash memory, set mtd->erasesize to the 2209 * maximum erase sector size. No need to set nor->erase_opcode. 2210 */ 2211 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2212 if (map->erase_type[i].size) { 2213 erase = &map->erase_type[i]; 2214 break; 2215 } 2216 } 2217 2218 if (!erase) 2219 return -EINVAL; 2220 2221 mtd->erasesize = erase->size; 2222 return 0; 2223 } 2224 2225 static int spi_nor_default_setup(struct spi_nor *nor, 2226 const struct spi_nor_hwcaps *hwcaps) 2227 { 2228 struct spi_nor_flash_parameter *params = nor->params; 2229 u32 ignored_mask, shared_mask; 2230 int err; 2231 2232 /* 2233 * Keep only the hardware capabilities supported by both the SPI 2234 * controller and the SPI flash memory. 2235 */ 2236 shared_mask = hwcaps->mask & params->hwcaps.mask; 2237 2238 if (nor->spimem) { 2239 /* 2240 * When called from spi_nor_probe(), all caps are set and we 2241 * need to discard some of them based on what the SPI 2242 * controller actually supports (using spi_mem_supports_op()). 2243 */ 2244 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); 2245 } else { 2246 /* 2247 * SPI n-n-n protocols are not supported when the SPI 2248 * controller directly implements the spi_nor interface. 2249 * Yet another reason to switch to spi-mem. 2250 */ 2251 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR; 2252 if (shared_mask & ignored_mask) { 2253 dev_dbg(nor->dev, 2254 "SPI n-n-n protocols are not supported.\n"); 2255 shared_mask &= ~ignored_mask; 2256 } 2257 } 2258 2259 /* Select the (Fast) Read command. */ 2260 err = spi_nor_select_read(nor, shared_mask); 2261 if (err) { 2262 dev_dbg(nor->dev, 2263 "can't select read settings supported by both the SPI controller and memory.\n"); 2264 return err; 2265 } 2266 2267 /* Select the Page Program command. */ 2268 err = spi_nor_select_pp(nor, shared_mask); 2269 if (err) { 2270 dev_dbg(nor->dev, 2271 "can't select write settings supported by both the SPI controller and memory.\n"); 2272 return err; 2273 } 2274 2275 /* Select the Sector Erase command. */ 2276 err = spi_nor_select_erase(nor); 2277 if (err) { 2278 dev_dbg(nor->dev, 2279 "can't select erase settings supported by both the SPI controller and memory.\n"); 2280 return err; 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int spi_nor_set_addr_nbytes(struct spi_nor *nor) 2287 { 2288 if (nor->params->addr_nbytes) { 2289 nor->addr_nbytes = nor->params->addr_nbytes; 2290 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) { 2291 /* 2292 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So 2293 * in this protocol an odd addr_nbytes cannot be used because 2294 * then the address phase would only span a cycle and a half. 2295 * Half a cycle would be left over. We would then have to start 2296 * the dummy phase in the middle of a cycle and so too the data 2297 * phase, and we will end the transaction with half a cycle left 2298 * over. 2299 * 2300 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to 2301 * avoid this situation. 2302 */ 2303 nor->addr_nbytes = 4; 2304 } else if (nor->info->addr_nbytes) { 2305 nor->addr_nbytes = nor->info->addr_nbytes; 2306 } else { 2307 nor->addr_nbytes = 3; 2308 } 2309 2310 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) { 2311 /* enable 4-byte addressing if the device exceeds 16MiB */ 2312 nor->addr_nbytes = 4; 2313 } 2314 2315 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) { 2316 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n", 2317 nor->addr_nbytes); 2318 return -EINVAL; 2319 } 2320 2321 /* Set 4byte opcodes when possible. */ 2322 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES && 2323 !(nor->flags & SNOR_F_HAS_4BAIT)) 2324 spi_nor_set_4byte_opcodes(nor); 2325 2326 return 0; 2327 } 2328 2329 static int spi_nor_setup(struct spi_nor *nor, 2330 const struct spi_nor_hwcaps *hwcaps) 2331 { 2332 int ret; 2333 2334 if (nor->params->setup) 2335 ret = nor->params->setup(nor, hwcaps); 2336 else 2337 ret = spi_nor_default_setup(nor, hwcaps); 2338 if (ret) 2339 return ret; 2340 2341 return spi_nor_set_addr_nbytes(nor); 2342 } 2343 2344 /** 2345 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and 2346 * settings based on MFR register and ->default_init() hook. 2347 * @nor: pointer to a 'struct spi_nor'. 2348 */ 2349 static void spi_nor_manufacturer_init_params(struct spi_nor *nor) 2350 { 2351 if (nor->manufacturer && nor->manufacturer->fixups && 2352 nor->manufacturer->fixups->default_init) 2353 nor->manufacturer->fixups->default_init(nor); 2354 2355 if (nor->info->fixups && nor->info->fixups->default_init) 2356 nor->info->fixups->default_init(nor); 2357 } 2358 2359 /** 2360 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and 2361 * settings based on nor->info->sfdp_flags. This method should be called only by 2362 * flashes that do not define SFDP tables. If the flash supports SFDP but the 2363 * information is wrong and the settings from this function can not be retrieved 2364 * by parsing SFDP, one should instead use the fixup hooks and update the wrong 2365 * bits. 2366 * @nor: pointer to a 'struct spi_nor'. 2367 */ 2368 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor) 2369 { 2370 struct spi_nor_flash_parameter *params = nor->params; 2371 struct spi_nor_erase_map *map = ¶ms->erase_map; 2372 const u8 no_sfdp_flags = nor->info->no_sfdp_flags; 2373 u8 i, erase_mask; 2374 2375 if (no_sfdp_flags & SPI_NOR_DUAL_READ) { 2376 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2377 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 2378 0, 8, SPINOR_OP_READ_1_1_2, 2379 SNOR_PROTO_1_1_2); 2380 } 2381 2382 if (no_sfdp_flags & SPI_NOR_QUAD_READ) { 2383 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2384 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 2385 0, 8, SPINOR_OP_READ_1_1_4, 2386 SNOR_PROTO_1_1_4); 2387 } 2388 2389 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) { 2390 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 2391 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 2392 0, 8, SPINOR_OP_READ_1_1_8, 2393 SNOR_PROTO_1_1_8); 2394 } 2395 2396 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) { 2397 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 2398 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 2399 0, 20, SPINOR_OP_READ_FAST, 2400 SNOR_PROTO_8_8_8_DTR); 2401 } 2402 2403 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) { 2404 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 2405 /* 2406 * Since xSPI Page Program opcode is backward compatible with 2407 * Legacy SPI, use Legacy SPI opcode there as well. 2408 */ 2409 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], 2410 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); 2411 } 2412 2413 /* 2414 * Sector Erase settings. Sort Erase Types in ascending order, with the 2415 * smallest erase size starting at BIT(0). 2416 */ 2417 erase_mask = 0; 2418 i = 0; 2419 if (no_sfdp_flags & SECT_4K) { 2420 erase_mask |= BIT(i); 2421 spi_nor_set_erase_type(&map->erase_type[i], 4096u, 2422 SPINOR_OP_BE_4K); 2423 i++; 2424 } 2425 erase_mask |= BIT(i); 2426 spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size, 2427 SPINOR_OP_SE); 2428 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 2429 } 2430 2431 /** 2432 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined 2433 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP. 2434 * @nor: pointer to a 'struct spi_nor' 2435 */ 2436 static void spi_nor_init_flags(struct spi_nor *nor) 2437 { 2438 struct device_node *np = spi_nor_get_flash_node(nor); 2439 const u16 flags = nor->info->flags; 2440 2441 if (of_property_read_bool(np, "broken-flash-reset")) 2442 nor->flags |= SNOR_F_BROKEN_RESET; 2443 2444 if (flags & SPI_NOR_SWP_IS_VOLATILE) 2445 nor->flags |= SNOR_F_SWP_IS_VOLATILE; 2446 2447 if (flags & SPI_NOR_HAS_LOCK) 2448 nor->flags |= SNOR_F_HAS_LOCK; 2449 2450 if (flags & SPI_NOR_HAS_TB) { 2451 nor->flags |= SNOR_F_HAS_SR_TB; 2452 if (flags & SPI_NOR_TB_SR_BIT6) 2453 nor->flags |= SNOR_F_HAS_SR_TB_BIT6; 2454 } 2455 2456 if (flags & SPI_NOR_4BIT_BP) { 2457 nor->flags |= SNOR_F_HAS_4BIT_BP; 2458 if (flags & SPI_NOR_BP3_SR_BIT6) 2459 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; 2460 } 2461 2462 if (flags & NO_CHIP_ERASE) 2463 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; 2464 } 2465 2466 /** 2467 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not 2468 * be discovered by SFDP for this particular flash because the SFDP table that 2469 * indicates this support is not defined in the flash. In case the table for 2470 * this support is defined but has wrong values, one should instead use a 2471 * post_sfdp() hook to set the SNOR_F equivalent flag. 2472 * @nor: pointer to a 'struct spi_nor' 2473 */ 2474 static void spi_nor_init_fixup_flags(struct spi_nor *nor) 2475 { 2476 const u8 fixup_flags = nor->info->fixup_flags; 2477 2478 if (fixup_flags & SPI_NOR_4B_OPCODES) 2479 nor->flags |= SNOR_F_4B_OPCODES; 2480 2481 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE) 2482 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 2483 } 2484 2485 /** 2486 * spi_nor_late_init_params() - Late initialization of default flash parameters. 2487 * @nor: pointer to a 'struct spi_nor' 2488 * 2489 * Used to initialize flash parameters that are not declared in the JESD216 2490 * SFDP standard, or where SFDP tables are not defined at all. 2491 * Will replace the spi_nor_manufacturer_init_params() method. 2492 */ 2493 static void spi_nor_late_init_params(struct spi_nor *nor) 2494 { 2495 if (nor->manufacturer && nor->manufacturer->fixups && 2496 nor->manufacturer->fixups->late_init) 2497 nor->manufacturer->fixups->late_init(nor); 2498 2499 if (nor->info->fixups && nor->info->fixups->late_init) 2500 nor->info->fixups->late_init(nor); 2501 2502 spi_nor_init_flags(nor); 2503 spi_nor_init_fixup_flags(nor); 2504 2505 /* 2506 * NOR protection support. When locking_ops are not provided, we pick 2507 * the default ones. 2508 */ 2509 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) 2510 spi_nor_init_default_locking_ops(nor); 2511 } 2512 2513 /** 2514 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash 2515 * parameters and settings based on JESD216 SFDP standard. 2516 * @nor: pointer to a 'struct spi_nor'. 2517 * 2518 * The method has a roll-back mechanism: in case the SFDP parsing fails, the 2519 * legacy flash parameters and settings will be restored. 2520 */ 2521 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor) 2522 { 2523 struct spi_nor_flash_parameter sfdp_params; 2524 2525 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); 2526 2527 if (spi_nor_parse_sfdp(nor)) { 2528 memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); 2529 nor->flags &= ~SNOR_F_4B_OPCODES; 2530 } 2531 } 2532 2533 /** 2534 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash 2535 * parameters and settings. 2536 * @nor: pointer to a 'struct spi_nor'. 2537 * 2538 * The method assumes that flash doesn't support SFDP so it initializes flash 2539 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten 2540 * when parsing SFDP, if supported. 2541 */ 2542 static void spi_nor_init_params_deprecated(struct spi_nor *nor) 2543 { 2544 spi_nor_no_sfdp_init_params(nor); 2545 2546 spi_nor_manufacturer_init_params(nor); 2547 2548 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ | 2549 SPI_NOR_QUAD_READ | 2550 SPI_NOR_OCTAL_READ | 2551 SPI_NOR_OCTAL_DTR_READ)) 2552 spi_nor_sfdp_init_params_deprecated(nor); 2553 } 2554 2555 /** 2556 * spi_nor_init_default_params() - Default initialization of flash parameters 2557 * and settings. Done for all flashes, regardless is they define SFDP tables 2558 * or not. 2559 * @nor: pointer to a 'struct spi_nor'. 2560 */ 2561 static void spi_nor_init_default_params(struct spi_nor *nor) 2562 { 2563 struct spi_nor_flash_parameter *params = nor->params; 2564 const struct flash_info *info = nor->info; 2565 struct device_node *np = spi_nor_get_flash_node(nor); 2566 2567 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 2568 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode; 2569 params->otp.org = &info->otp_org; 2570 2571 /* Default to 16-bit Write Status (01h) Command */ 2572 nor->flags |= SNOR_F_HAS_16BIT_SR; 2573 2574 /* Set SPI NOR sizes. */ 2575 params->writesize = 1; 2576 params->size = (u64)info->sector_size * info->n_sectors; 2577 params->page_size = info->page_size; 2578 2579 if (!(info->flags & SPI_NOR_NO_FR)) { 2580 /* Default to Fast Read for DT and non-DT platform devices. */ 2581 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; 2582 2583 /* Mask out Fast Read if not requested at DT instantiation. */ 2584 if (np && !of_property_read_bool(np, "m25p,fast-read")) 2585 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; 2586 } 2587 2588 /* (Fast) Read settings. */ 2589 params->hwcaps.mask |= SNOR_HWCAPS_READ; 2590 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 2591 0, 0, SPINOR_OP_READ, 2592 SNOR_PROTO_1_1_1); 2593 2594 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) 2595 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 2596 0, 8, SPINOR_OP_READ_FAST, 2597 SNOR_PROTO_1_1_1); 2598 /* Page Program settings. */ 2599 params->hwcaps.mask |= SNOR_HWCAPS_PP; 2600 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 2601 SPINOR_OP_PP, SNOR_PROTO_1_1_1); 2602 2603 if (info->flags & SPI_NOR_QUAD_PP) { 2604 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; 2605 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], 2606 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4); 2607 } 2608 } 2609 2610 /** 2611 * spi_nor_init_params() - Initialize the flash's parameters and settings. 2612 * @nor: pointer to a 'struct spi_nor'. 2613 * 2614 * The flash parameters and settings are initialized based on a sequence of 2615 * calls that are ordered by priority: 2616 * 2617 * 1/ Default flash parameters initialization. The initializations are done 2618 * based on nor->info data: 2619 * spi_nor_info_init_params() 2620 * 2621 * which can be overwritten by: 2622 * 2/ Manufacturer flash parameters initialization. The initializations are 2623 * done based on MFR register, or when the decisions can not be done solely 2624 * based on MFR, by using specific flash_info tweeks, ->default_init(): 2625 * spi_nor_manufacturer_init_params() 2626 * 2627 * which can be overwritten by: 2628 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and 2629 * should be more accurate that the above. 2630 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params() 2631 * 2632 * Please note that there is a ->post_bfpt() fixup hook that can overwrite 2633 * the flash parameters and settings immediately after parsing the Basic 2634 * Flash Parameter Table. 2635 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed. 2636 * It is used to tweak various flash parameters when information provided 2637 * by the SFDP tables are wrong. 2638 * 2639 * which can be overwritten by: 2640 * 4/ Late flash parameters initialization, used to initialize flash 2641 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP 2642 * tables are not defined at all. 2643 * spi_nor_late_init_params() 2644 * 2645 * Return: 0 on success, -errno otherwise. 2646 */ 2647 static int spi_nor_init_params(struct spi_nor *nor) 2648 { 2649 int ret; 2650 2651 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); 2652 if (!nor->params) 2653 return -ENOMEM; 2654 2655 spi_nor_init_default_params(nor); 2656 2657 if (nor->info->parse_sfdp) { 2658 ret = spi_nor_parse_sfdp(nor); 2659 if (ret) { 2660 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n"); 2661 return ret; 2662 } 2663 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) { 2664 spi_nor_no_sfdp_init_params(nor); 2665 } else { 2666 spi_nor_init_params_deprecated(nor); 2667 } 2668 2669 spi_nor_late_init_params(nor); 2670 2671 return 0; 2672 } 2673 2674 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed 2675 * @nor: pointer to a 'struct spi_nor' 2676 * @enable: whether to enable or disable Octal DTR 2677 * 2678 * Return: 0 on success, -errno otherwise. 2679 */ 2680 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable) 2681 { 2682 int ret; 2683 2684 if (!nor->params->octal_dtr_enable) 2685 return 0; 2686 2687 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && 2688 nor->write_proto == SNOR_PROTO_8_8_8_DTR)) 2689 return 0; 2690 2691 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) 2692 return 0; 2693 2694 ret = nor->params->octal_dtr_enable(nor, enable); 2695 if (ret) 2696 return ret; 2697 2698 if (enable) 2699 nor->reg_proto = SNOR_PROTO_8_8_8_DTR; 2700 else 2701 nor->reg_proto = SNOR_PROTO_1_1_1; 2702 2703 return 0; 2704 } 2705 2706 /** 2707 * spi_nor_quad_enable() - enable Quad I/O if needed. 2708 * @nor: pointer to a 'struct spi_nor' 2709 * 2710 * Return: 0 on success, -errno otherwise. 2711 */ 2712 static int spi_nor_quad_enable(struct spi_nor *nor) 2713 { 2714 if (!nor->params->quad_enable) 2715 return 0; 2716 2717 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || 2718 spi_nor_get_protocol_width(nor->write_proto) == 4)) 2719 return 0; 2720 2721 return nor->params->quad_enable(nor); 2722 } 2723 2724 static int spi_nor_init(struct spi_nor *nor) 2725 { 2726 int err; 2727 2728 err = spi_nor_octal_dtr_enable(nor, true); 2729 if (err) { 2730 dev_dbg(nor->dev, "octal mode not supported\n"); 2731 return err; 2732 } 2733 2734 err = spi_nor_quad_enable(nor); 2735 if (err) { 2736 dev_dbg(nor->dev, "quad mode not supported\n"); 2737 return err; 2738 } 2739 2740 /* 2741 * Some SPI NOR flashes are write protected by default after a power-on 2742 * reset cycle, in order to avoid inadvertent writes during power-up. 2743 * Backward compatibility imposes to unlock the entire flash memory 2744 * array at power-up by default. Depending on the kernel configuration 2745 * (1) do nothing, (2) always unlock the entire flash array or (3) 2746 * unlock the entire flash array only when the software write 2747 * protection bits are volatile. The latter is indicated by 2748 * SNOR_F_SWP_IS_VOLATILE. 2749 */ 2750 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) || 2751 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) && 2752 nor->flags & SNOR_F_SWP_IS_VOLATILE)) 2753 spi_nor_try_unlock_all(nor); 2754 2755 if (nor->addr_nbytes == 4 && 2756 nor->read_proto != SNOR_PROTO_8_8_8_DTR && 2757 !(nor->flags & SNOR_F_4B_OPCODES)) { 2758 /* 2759 * If the RESET# pin isn't hooked up properly, or the system 2760 * otherwise doesn't perform a reset command in the boot 2761 * sequence, it's impossible to 100% protect against unexpected 2762 * reboots (e.g., crashes). Warn the user (or hopefully, system 2763 * designer) that this is bad. 2764 */ 2765 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, 2766 "enabling reset hack; may not recover from unexpected reboots\n"); 2767 err = nor->params->set_4byte_addr_mode(nor, true); 2768 if (err && err != -ENOTSUPP) 2769 return err; 2770 } 2771 2772 return 0; 2773 } 2774 2775 /** 2776 * spi_nor_soft_reset() - Perform a software reset 2777 * @nor: pointer to 'struct spi_nor' 2778 * 2779 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets 2780 * the device to its power-on-reset state. This is useful when the software has 2781 * made some changes to device (volatile) registers and needs to reset it before 2782 * shutting down, for example. 2783 * 2784 * Not every flash supports this sequence. The same set of opcodes might be used 2785 * for some other operation on a flash that does not support this. Support for 2786 * this sequence can be discovered via SFDP in the BFPT table. 2787 * 2788 * Return: 0 on success, -errno otherwise. 2789 */ 2790 static void spi_nor_soft_reset(struct spi_nor *nor) 2791 { 2792 struct spi_mem_op op; 2793 int ret; 2794 2795 op = (struct spi_mem_op)SPINOR_SRSTEN_OP; 2796 2797 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 2798 2799 ret = spi_mem_exec_op(nor->spimem, &op); 2800 if (ret) { 2801 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 2802 return; 2803 } 2804 2805 op = (struct spi_mem_op)SPINOR_SRST_OP; 2806 2807 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 2808 2809 ret = spi_mem_exec_op(nor->spimem, &op); 2810 if (ret) { 2811 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 2812 return; 2813 } 2814 2815 /* 2816 * Software Reset is not instant, and the delay varies from flash to 2817 * flash. Looking at a few flashes, most range somewhere below 100 2818 * microseconds. So, sleep for a range of 200-400 us. 2819 */ 2820 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX); 2821 } 2822 2823 /* mtd suspend handler */ 2824 static int spi_nor_suspend(struct mtd_info *mtd) 2825 { 2826 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2827 int ret; 2828 2829 /* Disable octal DTR mode if we enabled it. */ 2830 ret = spi_nor_octal_dtr_enable(nor, false); 2831 if (ret) 2832 dev_err(nor->dev, "suspend() failed\n"); 2833 2834 return ret; 2835 } 2836 2837 /* mtd resume handler */ 2838 static void spi_nor_resume(struct mtd_info *mtd) 2839 { 2840 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2841 struct device *dev = nor->dev; 2842 int ret; 2843 2844 /* re-initialize the nor chip */ 2845 ret = spi_nor_init(nor); 2846 if (ret) 2847 dev_err(dev, "resume() failed\n"); 2848 } 2849 2850 static int spi_nor_get_device(struct mtd_info *mtd) 2851 { 2852 struct mtd_info *master = mtd_get_master(mtd); 2853 struct spi_nor *nor = mtd_to_spi_nor(master); 2854 struct device *dev; 2855 2856 if (nor->spimem) 2857 dev = nor->spimem->spi->controller->dev.parent; 2858 else 2859 dev = nor->dev; 2860 2861 if (!try_module_get(dev->driver->owner)) 2862 return -ENODEV; 2863 2864 return 0; 2865 } 2866 2867 static void spi_nor_put_device(struct mtd_info *mtd) 2868 { 2869 struct mtd_info *master = mtd_get_master(mtd); 2870 struct spi_nor *nor = mtd_to_spi_nor(master); 2871 struct device *dev; 2872 2873 if (nor->spimem) 2874 dev = nor->spimem->spi->controller->dev.parent; 2875 else 2876 dev = nor->dev; 2877 2878 module_put(dev->driver->owner); 2879 } 2880 2881 void spi_nor_restore(struct spi_nor *nor) 2882 { 2883 int ret; 2884 2885 /* restore the addressing mode */ 2886 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && 2887 nor->flags & SNOR_F_BROKEN_RESET) { 2888 ret = nor->params->set_4byte_addr_mode(nor, false); 2889 if (ret) 2890 /* 2891 * Do not stop the execution in the hope that the flash 2892 * will default to the 3-byte address mode after the 2893 * software reset. 2894 */ 2895 dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret); 2896 } 2897 2898 if (nor->flags & SNOR_F_SOFT_RESET) 2899 spi_nor_soft_reset(nor); 2900 } 2901 EXPORT_SYMBOL_GPL(spi_nor_restore); 2902 2903 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor, 2904 const char *name) 2905 { 2906 unsigned int i, j; 2907 2908 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 2909 for (j = 0; j < manufacturers[i]->nparts; j++) { 2910 if (!strcmp(name, manufacturers[i]->parts[j].name)) { 2911 nor->manufacturer = manufacturers[i]; 2912 return &manufacturers[i]->parts[j]; 2913 } 2914 } 2915 } 2916 2917 return NULL; 2918 } 2919 2920 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, 2921 const char *name) 2922 { 2923 const struct flash_info *info = NULL; 2924 2925 if (name) 2926 info = spi_nor_match_name(nor, name); 2927 /* Try to auto-detect if chip name wasn't specified or not found */ 2928 if (!info) 2929 return spi_nor_detect(nor); 2930 2931 /* 2932 * If caller has specified name of flash model that can normally be 2933 * detected using JEDEC, let's verify it. 2934 */ 2935 if (name && info->id_len) { 2936 const struct flash_info *jinfo; 2937 2938 jinfo = spi_nor_detect(nor); 2939 if (IS_ERR(jinfo)) { 2940 return jinfo; 2941 } else if (jinfo != info) { 2942 /* 2943 * JEDEC knows better, so overwrite platform ID. We 2944 * can't trust partitions any longer, but we'll let 2945 * mtd apply them anyway, since some partitions may be 2946 * marked read-only, and we don't want to lose that 2947 * information, even if it's not 100% accurate. 2948 */ 2949 dev_warn(nor->dev, "found %s, expected %s\n", 2950 jinfo->name, info->name); 2951 info = jinfo; 2952 } 2953 } 2954 2955 return info; 2956 } 2957 2958 static void spi_nor_set_mtd_info(struct spi_nor *nor) 2959 { 2960 struct mtd_info *mtd = &nor->mtd; 2961 struct device *dev = nor->dev; 2962 2963 spi_nor_set_mtd_locking_ops(nor); 2964 spi_nor_set_mtd_otp_ops(nor); 2965 2966 mtd->dev.parent = dev; 2967 if (!mtd->name) 2968 mtd->name = dev_name(dev); 2969 mtd->type = MTD_NORFLASH; 2970 mtd->flags = MTD_CAP_NORFLASH; 2971 if (nor->info->flags & SPI_NOR_NO_ERASE) 2972 mtd->flags |= MTD_NO_ERASE; 2973 else 2974 mtd->_erase = spi_nor_erase; 2975 mtd->writesize = nor->params->writesize; 2976 mtd->writebufsize = nor->params->page_size; 2977 mtd->size = nor->params->size; 2978 mtd->_read = spi_nor_read; 2979 /* Might be already set by some SST flashes. */ 2980 if (!mtd->_write) 2981 mtd->_write = spi_nor_write; 2982 mtd->_suspend = spi_nor_suspend; 2983 mtd->_resume = spi_nor_resume; 2984 mtd->_get_device = spi_nor_get_device; 2985 mtd->_put_device = spi_nor_put_device; 2986 } 2987 2988 static int spi_nor_hw_reset(struct spi_nor *nor) 2989 { 2990 struct gpio_desc *reset; 2991 2992 reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW); 2993 if (IS_ERR_OR_NULL(reset)) 2994 return PTR_ERR_OR_ZERO(reset); 2995 2996 /* 2997 * Experimental delay values by looking at different flash device 2998 * vendors datasheets. 2999 */ 3000 usleep_range(1, 5); 3001 gpiod_set_value_cansleep(reset, 1); 3002 usleep_range(100, 150); 3003 gpiod_set_value_cansleep(reset, 0); 3004 usleep_range(1000, 1200); 3005 3006 return 0; 3007 } 3008 3009 int spi_nor_scan(struct spi_nor *nor, const char *name, 3010 const struct spi_nor_hwcaps *hwcaps) 3011 { 3012 const struct flash_info *info; 3013 struct device *dev = nor->dev; 3014 struct mtd_info *mtd = &nor->mtd; 3015 int ret; 3016 int i; 3017 3018 ret = spi_nor_check(nor); 3019 if (ret) 3020 return ret; 3021 3022 /* Reset SPI protocol for all commands. */ 3023 nor->reg_proto = SNOR_PROTO_1_1_1; 3024 nor->read_proto = SNOR_PROTO_1_1_1; 3025 nor->write_proto = SNOR_PROTO_1_1_1; 3026 3027 /* 3028 * We need the bounce buffer early to read/write registers when going 3029 * through the spi-mem layer (buffers have to be DMA-able). 3030 * For spi-mem drivers, we'll reallocate a new buffer if 3031 * nor->params->page_size turns out to be greater than PAGE_SIZE (which 3032 * shouldn't happen before long since NOR pages are usually less 3033 * than 1KB) after spi_nor_scan() returns. 3034 */ 3035 nor->bouncebuf_size = PAGE_SIZE; 3036 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, 3037 GFP_KERNEL); 3038 if (!nor->bouncebuf) 3039 return -ENOMEM; 3040 3041 ret = spi_nor_hw_reset(nor); 3042 if (ret) 3043 return ret; 3044 3045 info = spi_nor_get_flash_info(nor, name); 3046 if (IS_ERR(info)) 3047 return PTR_ERR(info); 3048 3049 nor->info = info; 3050 3051 mutex_init(&nor->lock); 3052 3053 /* Init flash parameters based on flash_info struct and SFDP */ 3054 ret = spi_nor_init_params(nor); 3055 if (ret) 3056 return ret; 3057 3058 /* 3059 * Configure the SPI memory: 3060 * - select op codes for (Fast) Read, Page Program and Sector Erase. 3061 * - set the number of dummy cycles (mode cycles + wait states). 3062 * - set the SPI protocols for register and memory accesses. 3063 * - set the number of address bytes. 3064 */ 3065 ret = spi_nor_setup(nor, hwcaps); 3066 if (ret) 3067 return ret; 3068 3069 /* Send all the required SPI flash commands to initialize device */ 3070 ret = spi_nor_init(nor); 3071 if (ret) 3072 return ret; 3073 3074 /* No mtd_info fields should be used up to this point. */ 3075 spi_nor_set_mtd_info(nor); 3076 3077 dev_info(dev, "%s (%lld Kbytes)\n", info->name, 3078 (long long)mtd->size >> 10); 3079 3080 dev_dbg(dev, 3081 "mtd .name = %s, .size = 0x%llx (%lldMiB), " 3082 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", 3083 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), 3084 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); 3085 3086 if (mtd->numeraseregions) 3087 for (i = 0; i < mtd->numeraseregions; i++) 3088 dev_dbg(dev, 3089 "mtd.eraseregions[%d] = { .offset = 0x%llx, " 3090 ".erasesize = 0x%.8x (%uKiB), " 3091 ".numblocks = %d }\n", 3092 i, (long long)mtd->eraseregions[i].offset, 3093 mtd->eraseregions[i].erasesize, 3094 mtd->eraseregions[i].erasesize / 1024, 3095 mtd->eraseregions[i].numblocks); 3096 return 0; 3097 } 3098 EXPORT_SYMBOL_GPL(spi_nor_scan); 3099 3100 static int spi_nor_create_read_dirmap(struct spi_nor *nor) 3101 { 3102 struct spi_mem_dirmap_info info = { 3103 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 3104 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3105 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 3106 SPI_MEM_OP_DATA_IN(0, NULL, 0)), 3107 .offset = 0, 3108 .length = nor->params->size, 3109 }; 3110 struct spi_mem_op *op = &info.op_tmpl; 3111 3112 spi_nor_spimem_setup_op(nor, op, nor->read_proto); 3113 3114 /* convert the dummy cycles to the number of bytes */ 3115 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; 3116 if (spi_nor_protocol_is_dtr(nor->read_proto)) 3117 op->dummy.nbytes *= 2; 3118 3119 /* 3120 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3121 * of data bytes is non-zero, the data buswidth won't be set here. So, 3122 * do it explicitly. 3123 */ 3124 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); 3125 3126 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3127 &info); 3128 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); 3129 } 3130 3131 static int spi_nor_create_write_dirmap(struct spi_nor *nor) 3132 { 3133 struct spi_mem_dirmap_info info = { 3134 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 3135 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3136 SPI_MEM_OP_NO_DUMMY, 3137 SPI_MEM_OP_DATA_OUT(0, NULL, 0)), 3138 .offset = 0, 3139 .length = nor->params->size, 3140 }; 3141 struct spi_mem_op *op = &info.op_tmpl; 3142 3143 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 3144 op->addr.nbytes = 0; 3145 3146 spi_nor_spimem_setup_op(nor, op, nor->write_proto); 3147 3148 /* 3149 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3150 * of data bytes is non-zero, the data buswidth won't be set here. So, 3151 * do it explicitly. 3152 */ 3153 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); 3154 3155 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3156 &info); 3157 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); 3158 } 3159 3160 static int spi_nor_probe(struct spi_mem *spimem) 3161 { 3162 struct spi_device *spi = spimem->spi; 3163 struct flash_platform_data *data = dev_get_platdata(&spi->dev); 3164 struct spi_nor *nor; 3165 /* 3166 * Enable all caps by default. The core will mask them after 3167 * checking what's really supported using spi_mem_supports_op(). 3168 */ 3169 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; 3170 char *flash_name; 3171 int ret; 3172 3173 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); 3174 if (!nor) 3175 return -ENOMEM; 3176 3177 nor->spimem = spimem; 3178 nor->dev = &spi->dev; 3179 spi_nor_set_flash_node(nor, spi->dev.of_node); 3180 3181 spi_mem_set_drvdata(spimem, nor); 3182 3183 if (data && data->name) 3184 nor->mtd.name = data->name; 3185 3186 if (!nor->mtd.name) 3187 nor->mtd.name = spi_mem_get_name(spimem); 3188 3189 /* 3190 * For some (historical?) reason many platforms provide two different 3191 * names in flash_platform_data: "name" and "type". Quite often name is 3192 * set to "m25p80" and then "type" provides a real chip name. 3193 * If that's the case, respect "type" and ignore a "name". 3194 */ 3195 if (data && data->type) 3196 flash_name = data->type; 3197 else if (!strcmp(spi->modalias, "spi-nor")) 3198 flash_name = NULL; /* auto-detect */ 3199 else 3200 flash_name = spi->modalias; 3201 3202 ret = spi_nor_scan(nor, flash_name, &hwcaps); 3203 if (ret) 3204 return ret; 3205 3206 spi_nor_debugfs_register(nor); 3207 3208 /* 3209 * None of the existing parts have > 512B pages, but let's play safe 3210 * and add this logic so that if anyone ever adds support for such 3211 * a NOR we don't end up with buffer overflows. 3212 */ 3213 if (nor->params->page_size > PAGE_SIZE) { 3214 nor->bouncebuf_size = nor->params->page_size; 3215 devm_kfree(nor->dev, nor->bouncebuf); 3216 nor->bouncebuf = devm_kmalloc(nor->dev, 3217 nor->bouncebuf_size, 3218 GFP_KERNEL); 3219 if (!nor->bouncebuf) 3220 return -ENOMEM; 3221 } 3222 3223 ret = spi_nor_create_read_dirmap(nor); 3224 if (ret) 3225 return ret; 3226 3227 ret = spi_nor_create_write_dirmap(nor); 3228 if (ret) 3229 return ret; 3230 3231 return mtd_device_register(&nor->mtd, data ? data->parts : NULL, 3232 data ? data->nr_parts : 0); 3233 } 3234 3235 static int spi_nor_remove(struct spi_mem *spimem) 3236 { 3237 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3238 3239 spi_nor_restore(nor); 3240 3241 /* Clean up MTD stuff. */ 3242 return mtd_device_unregister(&nor->mtd); 3243 } 3244 3245 static void spi_nor_shutdown(struct spi_mem *spimem) 3246 { 3247 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3248 3249 spi_nor_restore(nor); 3250 } 3251 3252 /* 3253 * Do NOT add to this array without reading the following: 3254 * 3255 * Historically, many flash devices are bound to this driver by their name. But 3256 * since most of these flash are compatible to some extent, and their 3257 * differences can often be differentiated by the JEDEC read-ID command, we 3258 * encourage new users to add support to the spi-nor library, and simply bind 3259 * against a generic string here (e.g., "jedec,spi-nor"). 3260 * 3261 * Many flash names are kept here in this list to keep them available 3262 * as module aliases for existing platforms. 3263 */ 3264 static const struct spi_device_id spi_nor_dev_ids[] = { 3265 /* 3266 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and 3267 * hack around the fact that the SPI core does not provide uevent 3268 * matching for .of_match_table 3269 */ 3270 {"spi-nor"}, 3271 3272 /* 3273 * Entries not used in DTs that should be safe to drop after replacing 3274 * them with "spi-nor" in platform data. 3275 */ 3276 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, 3277 3278 /* 3279 * Entries that were used in DTs without "jedec,spi-nor" fallback and 3280 * should be kept for backward compatibility. 3281 */ 3282 {"at25df321a"}, {"at25df641"}, {"at26df081a"}, 3283 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, 3284 {"mx25l25635e"},{"mx66l51235l"}, 3285 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, 3286 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, 3287 {"s25fl064k"}, 3288 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, 3289 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, 3290 {"m25p64"}, {"m25p128"}, 3291 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, 3292 {"w25q80bl"}, {"w25q128"}, {"w25q256"}, 3293 3294 /* Flashes that can't be detected using JEDEC */ 3295 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, 3296 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, 3297 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, 3298 3299 /* Everspin MRAMs (non-JEDEC) */ 3300 { "mr25h128" }, /* 128 Kib, 40 MHz */ 3301 { "mr25h256" }, /* 256 Kib, 40 MHz */ 3302 { "mr25h10" }, /* 1 Mib, 40 MHz */ 3303 { "mr25h40" }, /* 4 Mib, 40 MHz */ 3304 3305 { }, 3306 }; 3307 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); 3308 3309 static const struct of_device_id spi_nor_of_table[] = { 3310 /* 3311 * Generic compatibility for SPI NOR that can be identified by the 3312 * JEDEC READ ID opcode (0x9F). Use this, if possible. 3313 */ 3314 { .compatible = "jedec,spi-nor" }, 3315 { /* sentinel */ }, 3316 }; 3317 MODULE_DEVICE_TABLE(of, spi_nor_of_table); 3318 3319 /* 3320 * REVISIT: many of these chips have deep power-down modes, which 3321 * should clearly be entered on suspend() to minimize power use. 3322 * And also when they're otherwise idle... 3323 */ 3324 static struct spi_mem_driver spi_nor_driver = { 3325 .spidrv = { 3326 .driver = { 3327 .name = "spi-nor", 3328 .of_match_table = spi_nor_of_table, 3329 .dev_groups = spi_nor_sysfs_groups, 3330 }, 3331 .id_table = spi_nor_dev_ids, 3332 }, 3333 .probe = spi_nor_probe, 3334 .remove = spi_nor_remove, 3335 .shutdown = spi_nor_shutdown, 3336 }; 3337 module_spi_mem_driver(spi_nor_driver); 3338 3339 MODULE_LICENSE("GPL v2"); 3340 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); 3341 MODULE_AUTHOR("Mike Lavender"); 3342 MODULE_DESCRIPTION("framework for SPI NOR"); 3343