1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with 4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c 5 * 6 * Copyright (C) 2005, Intec Automation Inc. 7 * Copyright (C) 2014, Freescale Semiconductor, Inc. 8 */ 9 10 #include <linux/err.h> 11 #include <linux/errno.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/mutex.h> 15 #include <linux/math64.h> 16 #include <linux/sizes.h> 17 #include <linux/slab.h> 18 19 #include <linux/mtd/mtd.h> 20 #include <linux/of_platform.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/spi/flash.h> 23 #include <linux/mtd/spi-nor.h> 24 25 #include "core.h" 26 27 /* Define max times to check status register before we give up. */ 28 29 /* 30 * For everything but full-chip erase; probably could be much smaller, but kept 31 * around for safety for now 32 */ 33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) 34 35 /* 36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up 37 * for larger flash 38 */ 39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) 40 41 #define SPI_NOR_MAX_ADDR_NBYTES 4 42 43 #define SPI_NOR_SRST_SLEEP_MIN 200 44 #define SPI_NOR_SRST_SLEEP_MAX 400 45 46 /** 47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the 48 * extension type. 49 * @nor: pointer to a 'struct spi_nor' 50 * @op: pointer to the 'struct spi_mem_op' whose properties 51 * need to be initialized. 52 * 53 * Right now, only "repeat" and "invert" are supported. 54 * 55 * Return: The opcode extension. 56 */ 57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor, 58 const struct spi_mem_op *op) 59 { 60 switch (nor->cmd_ext_type) { 61 case SPI_NOR_EXT_INVERT: 62 return ~op->cmd.opcode; 63 64 case SPI_NOR_EXT_REPEAT: 65 return op->cmd.opcode; 66 67 default: 68 dev_err(nor->dev, "Unknown command extension type\n"); 69 return 0; 70 } 71 } 72 73 /** 74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op. 75 * @nor: pointer to a 'struct spi_nor' 76 * @op: pointer to the 'struct spi_mem_op' whose properties 77 * need to be initialized. 78 * @proto: the protocol from which the properties need to be set. 79 */ 80 void spi_nor_spimem_setup_op(const struct spi_nor *nor, 81 struct spi_mem_op *op, 82 const enum spi_nor_protocol proto) 83 { 84 u8 ext; 85 86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto); 87 88 if (op->addr.nbytes) 89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto); 90 91 if (op->dummy.nbytes) 92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto); 93 94 if (op->data.nbytes) 95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto); 96 97 if (spi_nor_protocol_is_dtr(proto)) { 98 /* 99 * SPIMEM supports mixed DTR modes, but right now we can only 100 * have all phases either DTR or STR. IOW, SPIMEM can have 101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4 102 * phases to either DTR or STR. 103 */ 104 op->cmd.dtr = true; 105 op->addr.dtr = true; 106 op->dummy.dtr = true; 107 op->data.dtr = true; 108 109 /* 2 bytes per clock cycle in DTR mode. */ 110 op->dummy.nbytes *= 2; 111 112 ext = spi_nor_get_cmd_ext(nor, op); 113 op->cmd.opcode = (op->cmd.opcode << 8) | ext; 114 op->cmd.nbytes = 2; 115 } 116 } 117 118 /** 119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data 120 * transfer 121 * @nor: pointer to 'struct spi_nor' 122 * @op: pointer to 'struct spi_mem_op' template for transfer 123 * 124 * If we have to use the bounce buffer, the data field in @op will be updated. 125 * 126 * Return: true if the bounce buffer is needed, false if not 127 */ 128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op) 129 { 130 /* op->data.buf.in occupies the same memory as op->data.buf.out */ 131 if (object_is_on_stack(op->data.buf.in) || 132 !virt_addr_valid(op->data.buf.in)) { 133 if (op->data.nbytes > nor->bouncebuf_size) 134 op->data.nbytes = nor->bouncebuf_size; 135 op->data.buf.in = nor->bouncebuf; 136 return true; 137 } 138 139 return false; 140 } 141 142 /** 143 * spi_nor_spimem_exec_op() - execute a memory operation 144 * @nor: pointer to 'struct spi_nor' 145 * @op: pointer to 'struct spi_mem_op' template for transfer 146 * 147 * Return: 0 on success, -error otherwise. 148 */ 149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op) 150 { 151 int error; 152 153 error = spi_mem_adjust_op_size(nor->spimem, op); 154 if (error) 155 return error; 156 157 return spi_mem_exec_op(nor->spimem, op); 158 } 159 160 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode, 161 u8 *buf, size_t len) 162 { 163 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 164 return -EOPNOTSUPP; 165 166 return nor->controller_ops->read_reg(nor, opcode, buf, len); 167 } 168 169 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode, 170 const u8 *buf, size_t len) 171 { 172 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 173 return -EOPNOTSUPP; 174 175 return nor->controller_ops->write_reg(nor, opcode, buf, len); 176 } 177 178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs) 179 { 180 if (spi_nor_protocol_is_dtr(nor->reg_proto)) 181 return -EOPNOTSUPP; 182 183 return nor->controller_ops->erase(nor, offs); 184 } 185 186 /** 187 * spi_nor_spimem_read_data() - read data from flash's memory region via 188 * spi-mem 189 * @nor: pointer to 'struct spi_nor' 190 * @from: offset to read from 191 * @len: number of bytes to read 192 * @buf: pointer to dst buffer 193 * 194 * Return: number of bytes read successfully, -errno otherwise 195 */ 196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from, 197 size_t len, u8 *buf) 198 { 199 struct spi_mem_op op = 200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 201 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0), 202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 203 SPI_MEM_OP_DATA_IN(len, buf, 0)); 204 bool usebouncebuf; 205 ssize_t nbytes; 206 int error; 207 208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto); 209 210 /* convert the dummy cycles to the number of bytes */ 211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 212 if (spi_nor_protocol_is_dtr(nor->read_proto)) 213 op.dummy.nbytes *= 2; 214 215 usebouncebuf = spi_nor_spimem_bounce(nor, &op); 216 217 if (nor->dirmap.rdesc) { 218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val, 219 op.data.nbytes, op.data.buf.in); 220 } else { 221 error = spi_nor_spimem_exec_op(nor, &op); 222 if (error) 223 return error; 224 nbytes = op.data.nbytes; 225 } 226 227 if (usebouncebuf && nbytes > 0) 228 memcpy(buf, op.data.buf.in, nbytes); 229 230 return nbytes; 231 } 232 233 /** 234 * spi_nor_read_data() - read data from flash memory 235 * @nor: pointer to 'struct spi_nor' 236 * @from: offset to read from 237 * @len: number of bytes to read 238 * @buf: pointer to dst buffer 239 * 240 * Return: number of bytes read successfully, -errno otherwise 241 */ 242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf) 243 { 244 if (nor->spimem) 245 return spi_nor_spimem_read_data(nor, from, len, buf); 246 247 return nor->controller_ops->read(nor, from, len, buf); 248 } 249 250 /** 251 * spi_nor_spimem_write_data() - write data to flash memory via 252 * spi-mem 253 * @nor: pointer to 'struct spi_nor' 254 * @to: offset to write to 255 * @len: number of bytes to write 256 * @buf: pointer to src buffer 257 * 258 * Return: number of bytes written successfully, -errno otherwise 259 */ 260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to, 261 size_t len, const u8 *buf) 262 { 263 struct spi_mem_op op = 264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 265 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0), 266 SPI_MEM_OP_NO_DUMMY, 267 SPI_MEM_OP_DATA_OUT(len, buf, 0)); 268 ssize_t nbytes; 269 int error; 270 271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 272 op.addr.nbytes = 0; 273 274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto); 275 276 if (spi_nor_spimem_bounce(nor, &op)) 277 memcpy(nor->bouncebuf, buf, op.data.nbytes); 278 279 if (nor->dirmap.wdesc) { 280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val, 281 op.data.nbytes, op.data.buf.out); 282 } else { 283 error = spi_nor_spimem_exec_op(nor, &op); 284 if (error) 285 return error; 286 nbytes = op.data.nbytes; 287 } 288 289 return nbytes; 290 } 291 292 /** 293 * spi_nor_write_data() - write data to flash memory 294 * @nor: pointer to 'struct spi_nor' 295 * @to: offset to write to 296 * @len: number of bytes to write 297 * @buf: pointer to src buffer 298 * 299 * Return: number of bytes written successfully, -errno otherwise 300 */ 301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len, 302 const u8 *buf) 303 { 304 if (nor->spimem) 305 return spi_nor_spimem_write_data(nor, to, len, buf); 306 307 return nor->controller_ops->write(nor, to, len, buf); 308 } 309 310 /** 311 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or 312 * volatile. 313 * @nor: pointer to 'struct spi_nor'. 314 * @op: SPI memory operation. op->data.buf must be DMA-able. 315 * @proto: SPI protocol to use for the register operation. 316 * 317 * Return: zero on success, -errno otherwise 318 */ 319 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op, 320 enum spi_nor_protocol proto) 321 { 322 if (!nor->spimem) 323 return -EOPNOTSUPP; 324 325 spi_nor_spimem_setup_op(nor, op, proto); 326 return spi_nor_spimem_exec_op(nor, op); 327 } 328 329 /** 330 * spi_nor_write_any_volatile_reg() - write any volatile register to flash 331 * memory. 332 * @nor: pointer to 'struct spi_nor' 333 * @op: SPI memory operation. op->data.buf must be DMA-able. 334 * @proto: SPI protocol to use for the register operation. 335 * 336 * Writing volatile registers are instant according to some manufacturers 337 * (Cypress, Micron) and do not need any status polling. 338 * 339 * Return: zero on success, -errno otherwise 340 */ 341 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op, 342 enum spi_nor_protocol proto) 343 { 344 int ret; 345 346 if (!nor->spimem) 347 return -EOPNOTSUPP; 348 349 ret = spi_nor_write_enable(nor); 350 if (ret) 351 return ret; 352 spi_nor_spimem_setup_op(nor, op, proto); 353 return spi_nor_spimem_exec_op(nor, op); 354 } 355 356 /** 357 * spi_nor_write_enable() - Set write enable latch with Write Enable command. 358 * @nor: pointer to 'struct spi_nor'. 359 * 360 * Return: 0 on success, -errno otherwise. 361 */ 362 int spi_nor_write_enable(struct spi_nor *nor) 363 { 364 int ret; 365 366 if (nor->spimem) { 367 struct spi_mem_op op = SPI_NOR_WREN_OP; 368 369 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 370 371 ret = spi_mem_exec_op(nor->spimem, &op); 372 } else { 373 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN, 374 NULL, 0); 375 } 376 377 if (ret) 378 dev_dbg(nor->dev, "error %d on Write Enable\n", ret); 379 380 return ret; 381 } 382 383 /** 384 * spi_nor_write_disable() - Send Write Disable instruction to the chip. 385 * @nor: pointer to 'struct spi_nor'. 386 * 387 * Return: 0 on success, -errno otherwise. 388 */ 389 int spi_nor_write_disable(struct spi_nor *nor) 390 { 391 int ret; 392 393 if (nor->spimem) { 394 struct spi_mem_op op = SPI_NOR_WRDI_OP; 395 396 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 397 398 ret = spi_mem_exec_op(nor->spimem, &op); 399 } else { 400 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI, 401 NULL, 0); 402 } 403 404 if (ret) 405 dev_dbg(nor->dev, "error %d on Write Disable\n", ret); 406 407 return ret; 408 } 409 410 /** 411 * spi_nor_read_id() - Read the JEDEC ID. 412 * @nor: pointer to 'struct spi_nor'. 413 * @naddr: number of address bytes to send. Can be zero if the operation 414 * does not need to send an address. 415 * @ndummy: number of dummy bytes to send after an opcode or address. Can 416 * be zero if the operation does not require dummy bytes. 417 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID 418 * will be written. 419 * @proto: the SPI protocol for register operation. 420 * 421 * Return: 0 on success, -errno otherwise. 422 */ 423 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id, 424 enum spi_nor_protocol proto) 425 { 426 int ret; 427 428 if (nor->spimem) { 429 struct spi_mem_op op = 430 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN); 431 432 spi_nor_spimem_setup_op(nor, &op, proto); 433 ret = spi_mem_exec_op(nor->spimem, &op); 434 } else { 435 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id, 436 SPI_NOR_MAX_ID_LEN); 437 } 438 return ret; 439 } 440 441 /** 442 * spi_nor_read_sr() - Read the Status Register. 443 * @nor: pointer to 'struct spi_nor'. 444 * @sr: pointer to a DMA-able buffer where the value of the 445 * Status Register will be written. Should be at least 2 bytes. 446 * 447 * Return: 0 on success, -errno otherwise. 448 */ 449 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr) 450 { 451 int ret; 452 453 if (nor->spimem) { 454 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr); 455 456 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { 457 op.addr.nbytes = nor->params->rdsr_addr_nbytes; 458 op.dummy.nbytes = nor->params->rdsr_dummy; 459 /* 460 * We don't want to read only one byte in DTR mode. So, 461 * read 2 and then discard the second byte. 462 */ 463 op.data.nbytes = 2; 464 } 465 466 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 467 468 ret = spi_mem_exec_op(nor->spimem, &op); 469 } else { 470 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr, 471 1); 472 } 473 474 if (ret) 475 dev_dbg(nor->dev, "error %d reading SR\n", ret); 476 477 return ret; 478 } 479 480 /** 481 * spi_nor_read_cr() - Read the Configuration Register using the 482 * SPINOR_OP_RDCR (35h) command. 483 * @nor: pointer to 'struct spi_nor' 484 * @cr: pointer to a DMA-able buffer where the value of the 485 * Configuration Register will be written. 486 * 487 * Return: 0 on success, -errno otherwise. 488 */ 489 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr) 490 { 491 int ret; 492 493 if (nor->spimem) { 494 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr); 495 496 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 497 498 ret = spi_mem_exec_op(nor->spimem, &op); 499 } else { 500 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr, 501 1); 502 } 503 504 if (ret) 505 dev_dbg(nor->dev, "error %d reading CR\n", ret); 506 507 return ret; 508 } 509 510 /** 511 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode. 512 * @nor: pointer to 'struct spi_nor'. 513 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 514 * address mode. 515 * 516 * Return: 0 on success, -errno otherwise. 517 */ 518 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable) 519 { 520 int ret; 521 522 if (nor->spimem) { 523 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable); 524 525 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 526 527 ret = spi_mem_exec_op(nor->spimem, &op); 528 } else { 529 ret = spi_nor_controller_ops_write_reg(nor, 530 enable ? SPINOR_OP_EN4B : 531 SPINOR_OP_EX4B, 532 NULL, 0); 533 } 534 535 if (ret) 536 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 537 538 return ret; 539 } 540 541 /** 542 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion 543 * flashes. 544 * @nor: pointer to 'struct spi_nor'. 545 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte 546 * address mode. 547 * 548 * Return: 0 on success, -errno otherwise. 549 */ 550 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable) 551 { 552 int ret; 553 554 nor->bouncebuf[0] = enable << 7; 555 556 if (nor->spimem) { 557 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf); 558 559 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 560 561 ret = spi_mem_exec_op(nor->spimem, &op); 562 } else { 563 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR, 564 nor->bouncebuf, 1); 565 } 566 567 if (ret) 568 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret); 569 570 return ret; 571 } 572 573 /** 574 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready 575 * for new commands. 576 * @nor: pointer to 'struct spi_nor'. 577 * 578 * Return: 1 if ready, 0 if not ready, -errno on errors. 579 */ 580 int spi_nor_sr_ready(struct spi_nor *nor) 581 { 582 int ret; 583 584 ret = spi_nor_read_sr(nor, nor->bouncebuf); 585 if (ret) 586 return ret; 587 588 return !(nor->bouncebuf[0] & SR_WIP); 589 } 590 591 /** 592 * spi_nor_ready() - Query the flash to see if it is ready for new commands. 593 * @nor: pointer to 'struct spi_nor'. 594 * 595 * Return: 1 if ready, 0 if not ready, -errno on errors. 596 */ 597 static int spi_nor_ready(struct spi_nor *nor) 598 { 599 /* Flashes might override the standard routine. */ 600 if (nor->params->ready) 601 return nor->params->ready(nor); 602 603 return spi_nor_sr_ready(nor); 604 } 605 606 /** 607 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the 608 * Status Register until ready, or timeout occurs. 609 * @nor: pointer to "struct spi_nor". 610 * @timeout_jiffies: jiffies to wait until timeout. 611 * 612 * Return: 0 on success, -errno otherwise. 613 */ 614 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, 615 unsigned long timeout_jiffies) 616 { 617 unsigned long deadline; 618 int timeout = 0, ret; 619 620 deadline = jiffies + timeout_jiffies; 621 622 while (!timeout) { 623 if (time_after_eq(jiffies, deadline)) 624 timeout = 1; 625 626 ret = spi_nor_ready(nor); 627 if (ret < 0) 628 return ret; 629 if (ret) 630 return 0; 631 632 cond_resched(); 633 } 634 635 dev_dbg(nor->dev, "flash operation timed out\n"); 636 637 return -ETIMEDOUT; 638 } 639 640 /** 641 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the 642 * flash to be ready, or timeout occurs. 643 * @nor: pointer to "struct spi_nor". 644 * 645 * Return: 0 on success, -errno otherwise. 646 */ 647 int spi_nor_wait_till_ready(struct spi_nor *nor) 648 { 649 return spi_nor_wait_till_ready_with_timeout(nor, 650 DEFAULT_READY_WAIT_JIFFIES); 651 } 652 653 /** 654 * spi_nor_global_block_unlock() - Unlock Global Block Protection. 655 * @nor: pointer to 'struct spi_nor'. 656 * 657 * Return: 0 on success, -errno otherwise. 658 */ 659 int spi_nor_global_block_unlock(struct spi_nor *nor) 660 { 661 int ret; 662 663 ret = spi_nor_write_enable(nor); 664 if (ret) 665 return ret; 666 667 if (nor->spimem) { 668 struct spi_mem_op op = SPI_NOR_GBULK_OP; 669 670 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 671 672 ret = spi_mem_exec_op(nor->spimem, &op); 673 } else { 674 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK, 675 NULL, 0); 676 } 677 678 if (ret) { 679 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret); 680 return ret; 681 } 682 683 return spi_nor_wait_till_ready(nor); 684 } 685 686 /** 687 * spi_nor_write_sr() - Write the Status Register. 688 * @nor: pointer to 'struct spi_nor'. 689 * @sr: pointer to DMA-able buffer to write to the Status Register. 690 * @len: number of bytes to write to the Status Register. 691 * 692 * Return: 0 on success, -errno otherwise. 693 */ 694 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len) 695 { 696 int ret; 697 698 ret = spi_nor_write_enable(nor); 699 if (ret) 700 return ret; 701 702 if (nor->spimem) { 703 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len); 704 705 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 706 707 ret = spi_mem_exec_op(nor->spimem, &op); 708 } else { 709 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr, 710 len); 711 } 712 713 if (ret) { 714 dev_dbg(nor->dev, "error %d writing SR\n", ret); 715 return ret; 716 } 717 718 return spi_nor_wait_till_ready(nor); 719 } 720 721 /** 722 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and 723 * ensure that the byte written match the received value. 724 * @nor: pointer to a 'struct spi_nor'. 725 * @sr1: byte value to be written to the Status Register. 726 * 727 * Return: 0 on success, -errno otherwise. 728 */ 729 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1) 730 { 731 int ret; 732 733 nor->bouncebuf[0] = sr1; 734 735 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1); 736 if (ret) 737 return ret; 738 739 ret = spi_nor_read_sr(nor, nor->bouncebuf); 740 if (ret) 741 return ret; 742 743 if (nor->bouncebuf[0] != sr1) { 744 dev_dbg(nor->dev, "SR1: read back test failed\n"); 745 return -EIO; 746 } 747 748 return 0; 749 } 750 751 /** 752 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the 753 * Status Register 2 in one shot. Ensure that the byte written in the Status 754 * Register 1 match the received value, and that the 16-bit Write did not 755 * affect what was already in the Status Register 2. 756 * @nor: pointer to a 'struct spi_nor'. 757 * @sr1: byte value to be written to the Status Register 1. 758 * 759 * Return: 0 on success, -errno otherwise. 760 */ 761 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1) 762 { 763 int ret; 764 u8 *sr_cr = nor->bouncebuf; 765 u8 cr_written; 766 767 /* Make sure we don't overwrite the contents of Status Register 2. */ 768 if (!(nor->flags & SNOR_F_NO_READ_CR)) { 769 ret = spi_nor_read_cr(nor, &sr_cr[1]); 770 if (ret) 771 return ret; 772 } else if (nor->params->quad_enable) { 773 /* 774 * If the Status Register 2 Read command (35h) is not 775 * supported, we should at least be sure we don't 776 * change the value of the SR2 Quad Enable bit. 777 * 778 * We can safely assume that when the Quad Enable method is 779 * set, the value of the QE bit is one, as a consequence of the 780 * nor->params->quad_enable() call. 781 * 782 * We can safely assume that the Quad Enable bit is present in 783 * the Status Register 2 at BIT(1). According to the JESD216 784 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit 785 * Write Status (01h) command is available just for the cases 786 * in which the QE bit is described in SR2 at BIT(1). 787 */ 788 sr_cr[1] = SR2_QUAD_EN_BIT1; 789 } else { 790 sr_cr[1] = 0; 791 } 792 793 sr_cr[0] = sr1; 794 795 ret = spi_nor_write_sr(nor, sr_cr, 2); 796 if (ret) 797 return ret; 798 799 ret = spi_nor_read_sr(nor, sr_cr); 800 if (ret) 801 return ret; 802 803 if (sr1 != sr_cr[0]) { 804 dev_dbg(nor->dev, "SR: Read back test failed\n"); 805 return -EIO; 806 } 807 808 if (nor->flags & SNOR_F_NO_READ_CR) 809 return 0; 810 811 cr_written = sr_cr[1]; 812 813 ret = spi_nor_read_cr(nor, &sr_cr[1]); 814 if (ret) 815 return ret; 816 817 if (cr_written != sr_cr[1]) { 818 dev_dbg(nor->dev, "CR: read back test failed\n"); 819 return -EIO; 820 } 821 822 return 0; 823 } 824 825 /** 826 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the 827 * Configuration Register in one shot. Ensure that the byte written in the 828 * Configuration Register match the received value, and that the 16-bit Write 829 * did not affect what was already in the Status Register 1. 830 * @nor: pointer to a 'struct spi_nor'. 831 * @cr: byte value to be written to the Configuration Register. 832 * 833 * Return: 0 on success, -errno otherwise. 834 */ 835 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr) 836 { 837 int ret; 838 u8 *sr_cr = nor->bouncebuf; 839 u8 sr_written; 840 841 /* Keep the current value of the Status Register 1. */ 842 ret = spi_nor_read_sr(nor, sr_cr); 843 if (ret) 844 return ret; 845 846 sr_cr[1] = cr; 847 848 ret = spi_nor_write_sr(nor, sr_cr, 2); 849 if (ret) 850 return ret; 851 852 sr_written = sr_cr[0]; 853 854 ret = spi_nor_read_sr(nor, sr_cr); 855 if (ret) 856 return ret; 857 858 if (sr_written != sr_cr[0]) { 859 dev_dbg(nor->dev, "SR: Read back test failed\n"); 860 return -EIO; 861 } 862 863 if (nor->flags & SNOR_F_NO_READ_CR) 864 return 0; 865 866 ret = spi_nor_read_cr(nor, &sr_cr[1]); 867 if (ret) 868 return ret; 869 870 if (cr != sr_cr[1]) { 871 dev_dbg(nor->dev, "CR: read back test failed\n"); 872 return -EIO; 873 } 874 875 return 0; 876 } 877 878 /** 879 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that 880 * the byte written match the received value without affecting other bits in the 881 * Status Register 1 and 2. 882 * @nor: pointer to a 'struct spi_nor'. 883 * @sr1: byte value to be written to the Status Register. 884 * 885 * Return: 0 on success, -errno otherwise. 886 */ 887 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1) 888 { 889 if (nor->flags & SNOR_F_HAS_16BIT_SR) 890 return spi_nor_write_16bit_sr_and_check(nor, sr1); 891 892 return spi_nor_write_sr1_and_check(nor, sr1); 893 } 894 895 /** 896 * spi_nor_write_sr2() - Write the Status Register 2 using the 897 * SPINOR_OP_WRSR2 (3eh) command. 898 * @nor: pointer to 'struct spi_nor'. 899 * @sr2: pointer to DMA-able buffer to write to the Status Register 2. 900 * 901 * Return: 0 on success, -errno otherwise. 902 */ 903 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2) 904 { 905 int ret; 906 907 ret = spi_nor_write_enable(nor); 908 if (ret) 909 return ret; 910 911 if (nor->spimem) { 912 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2); 913 914 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 915 916 ret = spi_mem_exec_op(nor->spimem, &op); 917 } else { 918 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2, 919 sr2, 1); 920 } 921 922 if (ret) { 923 dev_dbg(nor->dev, "error %d writing SR2\n", ret); 924 return ret; 925 } 926 927 return spi_nor_wait_till_ready(nor); 928 } 929 930 /** 931 * spi_nor_read_sr2() - Read the Status Register 2 using the 932 * SPINOR_OP_RDSR2 (3fh) command. 933 * @nor: pointer to 'struct spi_nor'. 934 * @sr2: pointer to DMA-able buffer where the value of the 935 * Status Register 2 will be written. 936 * 937 * Return: 0 on success, -errno otherwise. 938 */ 939 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2) 940 { 941 int ret; 942 943 if (nor->spimem) { 944 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2); 945 946 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 947 948 ret = spi_mem_exec_op(nor->spimem, &op); 949 } else { 950 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2, 951 1); 952 } 953 954 if (ret) 955 dev_dbg(nor->dev, "error %d reading SR2\n", ret); 956 957 return ret; 958 } 959 960 /** 961 * spi_nor_erase_chip() - Erase the entire flash memory. 962 * @nor: pointer to 'struct spi_nor'. 963 * 964 * Return: 0 on success, -errno otherwise. 965 */ 966 static int spi_nor_erase_chip(struct spi_nor *nor) 967 { 968 int ret; 969 970 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); 971 972 if (nor->spimem) { 973 struct spi_mem_op op = SPI_NOR_CHIP_ERASE_OP; 974 975 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 976 977 ret = spi_mem_exec_op(nor->spimem, &op); 978 } else { 979 ret = spi_nor_controller_ops_write_reg(nor, 980 SPINOR_OP_CHIP_ERASE, 981 NULL, 0); 982 } 983 984 if (ret) 985 dev_dbg(nor->dev, "error %d erasing chip\n", ret); 986 987 return ret; 988 } 989 990 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) 991 { 992 size_t i; 993 994 for (i = 0; i < size; i++) 995 if (table[i][0] == opcode) 996 return table[i][1]; 997 998 /* No conversion found, keep input op code. */ 999 return opcode; 1000 } 1001 1002 u8 spi_nor_convert_3to4_read(u8 opcode) 1003 { 1004 static const u8 spi_nor_3to4_read[][2] = { 1005 { SPINOR_OP_READ, SPINOR_OP_READ_4B }, 1006 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, 1007 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, 1008 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, 1009 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, 1010 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, 1011 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B }, 1012 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B }, 1013 1014 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B }, 1015 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B }, 1016 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B }, 1017 }; 1018 1019 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, 1020 ARRAY_SIZE(spi_nor_3to4_read)); 1021 } 1022 1023 static u8 spi_nor_convert_3to4_program(u8 opcode) 1024 { 1025 static const u8 spi_nor_3to4_program[][2] = { 1026 { SPINOR_OP_PP, SPINOR_OP_PP_4B }, 1027 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, 1028 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, 1029 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B }, 1030 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B }, 1031 }; 1032 1033 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, 1034 ARRAY_SIZE(spi_nor_3to4_program)); 1035 } 1036 1037 static u8 spi_nor_convert_3to4_erase(u8 opcode) 1038 { 1039 static const u8 spi_nor_3to4_erase[][2] = { 1040 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, 1041 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, 1042 { SPINOR_OP_SE, SPINOR_OP_SE_4B }, 1043 }; 1044 1045 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, 1046 ARRAY_SIZE(spi_nor_3to4_erase)); 1047 } 1048 1049 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor) 1050 { 1051 return !!nor->params->erase_map.uniform_erase_type; 1052 } 1053 1054 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor) 1055 { 1056 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); 1057 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); 1058 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); 1059 1060 if (!spi_nor_has_uniform_erase(nor)) { 1061 struct spi_nor_erase_map *map = &nor->params->erase_map; 1062 struct spi_nor_erase_type *erase; 1063 int i; 1064 1065 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { 1066 erase = &map->erase_type[i]; 1067 erase->opcode = 1068 spi_nor_convert_3to4_erase(erase->opcode); 1069 } 1070 } 1071 } 1072 1073 int spi_nor_lock_and_prep(struct spi_nor *nor) 1074 { 1075 int ret = 0; 1076 1077 mutex_lock(&nor->lock); 1078 1079 if (nor->controller_ops && nor->controller_ops->prepare) { 1080 ret = nor->controller_ops->prepare(nor); 1081 if (ret) { 1082 mutex_unlock(&nor->lock); 1083 return ret; 1084 } 1085 } 1086 return ret; 1087 } 1088 1089 void spi_nor_unlock_and_unprep(struct spi_nor *nor) 1090 { 1091 if (nor->controller_ops && nor->controller_ops->unprepare) 1092 nor->controller_ops->unprepare(nor); 1093 mutex_unlock(&nor->lock); 1094 } 1095 1096 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr) 1097 { 1098 if (!nor->params->convert_addr) 1099 return addr; 1100 1101 return nor->params->convert_addr(nor, addr); 1102 } 1103 1104 /* 1105 * Initiate the erasure of a single sector 1106 */ 1107 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) 1108 { 1109 int i; 1110 1111 addr = spi_nor_convert_addr(nor, addr); 1112 1113 if (nor->spimem) { 1114 struct spi_mem_op op = 1115 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode, 1116 nor->addr_nbytes, addr); 1117 1118 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 1119 1120 return spi_mem_exec_op(nor->spimem, &op); 1121 } else if (nor->controller_ops->erase) { 1122 return spi_nor_controller_ops_erase(nor, addr); 1123 } 1124 1125 /* 1126 * Default implementation, if driver doesn't have a specialized HW 1127 * control 1128 */ 1129 for (i = nor->addr_nbytes - 1; i >= 0; i--) { 1130 nor->bouncebuf[i] = addr & 0xff; 1131 addr >>= 8; 1132 } 1133 1134 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode, 1135 nor->bouncebuf, nor->addr_nbytes); 1136 } 1137 1138 /** 1139 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend 1140 * @erase: pointer to a structure that describes a SPI NOR erase type 1141 * @dividend: dividend value 1142 * @remainder: pointer to u32 remainder (will be updated) 1143 * 1144 * Return: the result of the division 1145 */ 1146 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase, 1147 u64 dividend, u32 *remainder) 1148 { 1149 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 1150 *remainder = (u32)dividend & erase->size_mask; 1151 return dividend >> erase->size_shift; 1152 } 1153 1154 /** 1155 * spi_nor_find_best_erase_type() - find the best erase type for the given 1156 * offset in the serial flash memory and the 1157 * number of bytes to erase. The region in 1158 * which the address fits is expected to be 1159 * provided. 1160 * @map: the erase map of the SPI NOR 1161 * @region: pointer to a structure that describes a SPI NOR erase region 1162 * @addr: offset in the serial flash memory 1163 * @len: number of bytes to erase 1164 * 1165 * Return: a pointer to the best fitted erase type, NULL otherwise. 1166 */ 1167 static const struct spi_nor_erase_type * 1168 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map, 1169 const struct spi_nor_erase_region *region, 1170 u64 addr, u32 len) 1171 { 1172 const struct spi_nor_erase_type *erase; 1173 u32 rem; 1174 int i; 1175 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK; 1176 1177 /* 1178 * Erase types are ordered by size, with the smallest erase type at 1179 * index 0. 1180 */ 1181 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 1182 /* Does the erase region support the tested erase type? */ 1183 if (!(erase_mask & BIT(i))) 1184 continue; 1185 1186 erase = &map->erase_type[i]; 1187 1188 /* Alignment is not mandatory for overlaid regions */ 1189 if (region->offset & SNOR_OVERLAID_REGION && 1190 region->size <= len) 1191 return erase; 1192 1193 /* Don't erase more than what the user has asked for. */ 1194 if (erase->size > len) 1195 continue; 1196 1197 spi_nor_div_by_erase_size(erase, addr, &rem); 1198 if (!rem) 1199 return erase; 1200 } 1201 1202 return NULL; 1203 } 1204 1205 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region) 1206 { 1207 return region->offset & SNOR_LAST_REGION; 1208 } 1209 1210 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region) 1211 { 1212 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size; 1213 } 1214 1215 /** 1216 * spi_nor_region_next() - get the next spi nor region 1217 * @region: pointer to a structure that describes a SPI NOR erase region 1218 * 1219 * Return: the next spi nor region or NULL if last region. 1220 */ 1221 struct spi_nor_erase_region * 1222 spi_nor_region_next(struct spi_nor_erase_region *region) 1223 { 1224 if (spi_nor_region_is_last(region)) 1225 return NULL; 1226 region++; 1227 return region; 1228 } 1229 1230 /** 1231 * spi_nor_find_erase_region() - find the region of the serial flash memory in 1232 * which the offset fits 1233 * @map: the erase map of the SPI NOR 1234 * @addr: offset in the serial flash memory 1235 * 1236 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno) 1237 * otherwise. 1238 */ 1239 static struct spi_nor_erase_region * 1240 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr) 1241 { 1242 struct spi_nor_erase_region *region = map->regions; 1243 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; 1244 u64 region_end = region_start + region->size; 1245 1246 while (addr < region_start || addr >= region_end) { 1247 region = spi_nor_region_next(region); 1248 if (!region) 1249 return ERR_PTR(-EINVAL); 1250 1251 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK; 1252 region_end = region_start + region->size; 1253 } 1254 1255 return region; 1256 } 1257 1258 /** 1259 * spi_nor_init_erase_cmd() - initialize an erase command 1260 * @region: pointer to a structure that describes a SPI NOR erase region 1261 * @erase: pointer to a structure that describes a SPI NOR erase type 1262 * 1263 * Return: the pointer to the allocated erase command, ERR_PTR(-errno) 1264 * otherwise. 1265 */ 1266 static struct spi_nor_erase_command * 1267 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region, 1268 const struct spi_nor_erase_type *erase) 1269 { 1270 struct spi_nor_erase_command *cmd; 1271 1272 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); 1273 if (!cmd) 1274 return ERR_PTR(-ENOMEM); 1275 1276 INIT_LIST_HEAD(&cmd->list); 1277 cmd->opcode = erase->opcode; 1278 cmd->count = 1; 1279 1280 if (region->offset & SNOR_OVERLAID_REGION) 1281 cmd->size = region->size; 1282 else 1283 cmd->size = erase->size; 1284 1285 return cmd; 1286 } 1287 1288 /** 1289 * spi_nor_destroy_erase_cmd_list() - destroy erase command list 1290 * @erase_list: list of erase commands 1291 */ 1292 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list) 1293 { 1294 struct spi_nor_erase_command *cmd, *next; 1295 1296 list_for_each_entry_safe(cmd, next, erase_list, list) { 1297 list_del(&cmd->list); 1298 kfree(cmd); 1299 } 1300 } 1301 1302 /** 1303 * spi_nor_init_erase_cmd_list() - initialize erase command list 1304 * @nor: pointer to a 'struct spi_nor' 1305 * @erase_list: list of erase commands to be executed once we validate that the 1306 * erase can be performed 1307 * @addr: offset in the serial flash memory 1308 * @len: number of bytes to erase 1309 * 1310 * Builds the list of best fitted erase commands and verifies if the erase can 1311 * be performed. 1312 * 1313 * Return: 0 on success, -errno otherwise. 1314 */ 1315 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor, 1316 struct list_head *erase_list, 1317 u64 addr, u32 len) 1318 { 1319 const struct spi_nor_erase_map *map = &nor->params->erase_map; 1320 const struct spi_nor_erase_type *erase, *prev_erase = NULL; 1321 struct spi_nor_erase_region *region; 1322 struct spi_nor_erase_command *cmd = NULL; 1323 u64 region_end; 1324 int ret = -EINVAL; 1325 1326 region = spi_nor_find_erase_region(map, addr); 1327 if (IS_ERR(region)) 1328 return PTR_ERR(region); 1329 1330 region_end = spi_nor_region_end(region); 1331 1332 while (len) { 1333 erase = spi_nor_find_best_erase_type(map, region, addr, len); 1334 if (!erase) 1335 goto destroy_erase_cmd_list; 1336 1337 if (prev_erase != erase || 1338 erase->size != cmd->size || 1339 region->offset & SNOR_OVERLAID_REGION) { 1340 cmd = spi_nor_init_erase_cmd(region, erase); 1341 if (IS_ERR(cmd)) { 1342 ret = PTR_ERR(cmd); 1343 goto destroy_erase_cmd_list; 1344 } 1345 1346 list_add_tail(&cmd->list, erase_list); 1347 } else { 1348 cmd->count++; 1349 } 1350 1351 addr += cmd->size; 1352 len -= cmd->size; 1353 1354 if (len && addr >= region_end) { 1355 region = spi_nor_region_next(region); 1356 if (!region) 1357 goto destroy_erase_cmd_list; 1358 region_end = spi_nor_region_end(region); 1359 } 1360 1361 prev_erase = erase; 1362 } 1363 1364 return 0; 1365 1366 destroy_erase_cmd_list: 1367 spi_nor_destroy_erase_cmd_list(erase_list); 1368 return ret; 1369 } 1370 1371 /** 1372 * spi_nor_erase_multi_sectors() - perform a non-uniform erase 1373 * @nor: pointer to a 'struct spi_nor' 1374 * @addr: offset in the serial flash memory 1375 * @len: number of bytes to erase 1376 * 1377 * Build a list of best fitted erase commands and execute it once we validate 1378 * that the erase can be performed. 1379 * 1380 * Return: 0 on success, -errno otherwise. 1381 */ 1382 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len) 1383 { 1384 LIST_HEAD(erase_list); 1385 struct spi_nor_erase_command *cmd, *next; 1386 int ret; 1387 1388 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len); 1389 if (ret) 1390 return ret; 1391 1392 list_for_each_entry_safe(cmd, next, &erase_list, list) { 1393 nor->erase_opcode = cmd->opcode; 1394 while (cmd->count) { 1395 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n", 1396 cmd->size, cmd->opcode, cmd->count); 1397 1398 ret = spi_nor_write_enable(nor); 1399 if (ret) 1400 goto destroy_erase_cmd_list; 1401 1402 ret = spi_nor_erase_sector(nor, addr); 1403 if (ret) 1404 goto destroy_erase_cmd_list; 1405 1406 ret = spi_nor_wait_till_ready(nor); 1407 if (ret) 1408 goto destroy_erase_cmd_list; 1409 1410 addr += cmd->size; 1411 cmd->count--; 1412 } 1413 list_del(&cmd->list); 1414 kfree(cmd); 1415 } 1416 1417 return 0; 1418 1419 destroy_erase_cmd_list: 1420 spi_nor_destroy_erase_cmd_list(&erase_list); 1421 return ret; 1422 } 1423 1424 /* 1425 * Erase an address range on the nor chip. The address range may extend 1426 * one or more erase sectors. Return an error if there is a problem erasing. 1427 */ 1428 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) 1429 { 1430 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1431 u32 addr, len; 1432 uint32_t rem; 1433 int ret; 1434 1435 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, 1436 (long long)instr->len); 1437 1438 if (spi_nor_has_uniform_erase(nor)) { 1439 div_u64_rem(instr->len, mtd->erasesize, &rem); 1440 if (rem) 1441 return -EINVAL; 1442 } 1443 1444 addr = instr->addr; 1445 len = instr->len; 1446 1447 ret = spi_nor_lock_and_prep(nor); 1448 if (ret) 1449 return ret; 1450 1451 /* whole-chip erase? */ 1452 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { 1453 unsigned long timeout; 1454 1455 ret = spi_nor_write_enable(nor); 1456 if (ret) 1457 goto erase_err; 1458 1459 ret = spi_nor_erase_chip(nor); 1460 if (ret) 1461 goto erase_err; 1462 1463 /* 1464 * Scale the timeout linearly with the size of the flash, with 1465 * a minimum calibrated to an old 2MB flash. We could try to 1466 * pull these from CFI/SFDP, but these values should be good 1467 * enough for now. 1468 */ 1469 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, 1470 CHIP_ERASE_2MB_READY_WAIT_JIFFIES * 1471 (unsigned long)(mtd->size / SZ_2M)); 1472 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); 1473 if (ret) 1474 goto erase_err; 1475 1476 /* REVISIT in some cases we could speed up erasing large regions 1477 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up 1478 * to use "small sector erase", but that's not always optimal. 1479 */ 1480 1481 /* "sector"-at-a-time erase */ 1482 } else if (spi_nor_has_uniform_erase(nor)) { 1483 while (len) { 1484 ret = spi_nor_write_enable(nor); 1485 if (ret) 1486 goto erase_err; 1487 1488 ret = spi_nor_erase_sector(nor, addr); 1489 if (ret) 1490 goto erase_err; 1491 1492 ret = spi_nor_wait_till_ready(nor); 1493 if (ret) 1494 goto erase_err; 1495 1496 addr += mtd->erasesize; 1497 len -= mtd->erasesize; 1498 } 1499 1500 /* erase multiple sectors */ 1501 } else { 1502 ret = spi_nor_erase_multi_sectors(nor, addr, len); 1503 if (ret) 1504 goto erase_err; 1505 } 1506 1507 ret = spi_nor_write_disable(nor); 1508 1509 erase_err: 1510 spi_nor_unlock_and_unprep(nor); 1511 1512 return ret; 1513 } 1514 1515 /** 1516 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status 1517 * Register 1. 1518 * @nor: pointer to a 'struct spi_nor' 1519 * 1520 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories. 1521 * 1522 * Return: 0 on success, -errno otherwise. 1523 */ 1524 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor) 1525 { 1526 int ret; 1527 1528 ret = spi_nor_read_sr(nor, nor->bouncebuf); 1529 if (ret) 1530 return ret; 1531 1532 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6) 1533 return 0; 1534 1535 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6; 1536 1537 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]); 1538 } 1539 1540 /** 1541 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status 1542 * Register 2. 1543 * @nor: pointer to a 'struct spi_nor'. 1544 * 1545 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories. 1546 * 1547 * Return: 0 on success, -errno otherwise. 1548 */ 1549 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor) 1550 { 1551 int ret; 1552 1553 if (nor->flags & SNOR_F_NO_READ_CR) 1554 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1); 1555 1556 ret = spi_nor_read_cr(nor, nor->bouncebuf); 1557 if (ret) 1558 return ret; 1559 1560 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1) 1561 return 0; 1562 1563 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1; 1564 1565 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]); 1566 } 1567 1568 /** 1569 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2. 1570 * @nor: pointer to a 'struct spi_nor' 1571 * 1572 * Set the Quad Enable (QE) bit in the Status Register 2. 1573 * 1574 * This is one of the procedures to set the QE bit described in the SFDP 1575 * (JESD216 rev B) specification but no manufacturer using this procedure has 1576 * been identified yet, hence the name of the function. 1577 * 1578 * Return: 0 on success, -errno otherwise. 1579 */ 1580 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor) 1581 { 1582 u8 *sr2 = nor->bouncebuf; 1583 int ret; 1584 u8 sr2_written; 1585 1586 /* Check current Quad Enable bit value. */ 1587 ret = spi_nor_read_sr2(nor, sr2); 1588 if (ret) 1589 return ret; 1590 if (*sr2 & SR2_QUAD_EN_BIT7) 1591 return 0; 1592 1593 /* Update the Quad Enable bit. */ 1594 *sr2 |= SR2_QUAD_EN_BIT7; 1595 1596 ret = spi_nor_write_sr2(nor, sr2); 1597 if (ret) 1598 return ret; 1599 1600 sr2_written = *sr2; 1601 1602 /* Read back and check it. */ 1603 ret = spi_nor_read_sr2(nor, sr2); 1604 if (ret) 1605 return ret; 1606 1607 if (*sr2 != sr2_written) { 1608 dev_dbg(nor->dev, "SR2: Read back test failed\n"); 1609 return -EIO; 1610 } 1611 1612 return 0; 1613 } 1614 1615 static const struct spi_nor_manufacturer *manufacturers[] = { 1616 &spi_nor_atmel, 1617 &spi_nor_catalyst, 1618 &spi_nor_eon, 1619 &spi_nor_esmt, 1620 &spi_nor_everspin, 1621 &spi_nor_fujitsu, 1622 &spi_nor_gigadevice, 1623 &spi_nor_intel, 1624 &spi_nor_issi, 1625 &spi_nor_macronix, 1626 &spi_nor_micron, 1627 &spi_nor_st, 1628 &spi_nor_spansion, 1629 &spi_nor_sst, 1630 &spi_nor_winbond, 1631 &spi_nor_xilinx, 1632 &spi_nor_xmc, 1633 }; 1634 1635 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor, 1636 const u8 *id) 1637 { 1638 const struct flash_info *part; 1639 unsigned int i, j; 1640 1641 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 1642 for (j = 0; j < manufacturers[i]->nparts; j++) { 1643 part = &manufacturers[i]->parts[j]; 1644 if (part->id_len && 1645 !memcmp(part->id, id, part->id_len)) { 1646 nor->manufacturer = manufacturers[i]; 1647 return part; 1648 } 1649 } 1650 } 1651 1652 return NULL; 1653 } 1654 1655 static const struct flash_info *spi_nor_detect(struct spi_nor *nor) 1656 { 1657 const struct flash_info *info; 1658 u8 *id = nor->bouncebuf; 1659 int ret; 1660 1661 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto); 1662 if (ret) { 1663 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret); 1664 return ERR_PTR(ret); 1665 } 1666 1667 info = spi_nor_match_id(nor, id); 1668 if (!info) { 1669 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n", 1670 SPI_NOR_MAX_ID_LEN, id); 1671 return ERR_PTR(-ENODEV); 1672 } 1673 return info; 1674 } 1675 1676 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, 1677 size_t *retlen, u_char *buf) 1678 { 1679 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1680 ssize_t ret; 1681 1682 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); 1683 1684 ret = spi_nor_lock_and_prep(nor); 1685 if (ret) 1686 return ret; 1687 1688 while (len) { 1689 loff_t addr = from; 1690 1691 addr = spi_nor_convert_addr(nor, addr); 1692 1693 ret = spi_nor_read_data(nor, addr, len, buf); 1694 if (ret == 0) { 1695 /* We shouldn't see 0-length reads */ 1696 ret = -EIO; 1697 goto read_err; 1698 } 1699 if (ret < 0) 1700 goto read_err; 1701 1702 WARN_ON(ret > len); 1703 *retlen += ret; 1704 buf += ret; 1705 from += ret; 1706 len -= ret; 1707 } 1708 ret = 0; 1709 1710 read_err: 1711 spi_nor_unlock_and_unprep(nor); 1712 return ret; 1713 } 1714 1715 /* 1716 * Write an address range to the nor chip. Data must be written in 1717 * FLASH_PAGESIZE chunks. The address range may be any size provided 1718 * it is within the physical boundaries. 1719 */ 1720 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, 1721 size_t *retlen, const u_char *buf) 1722 { 1723 struct spi_nor *nor = mtd_to_spi_nor(mtd); 1724 size_t page_offset, page_remain, i; 1725 ssize_t ret; 1726 u32 page_size = nor->params->page_size; 1727 1728 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); 1729 1730 ret = spi_nor_lock_and_prep(nor); 1731 if (ret) 1732 return ret; 1733 1734 for (i = 0; i < len; ) { 1735 ssize_t written; 1736 loff_t addr = to + i; 1737 1738 /* 1739 * If page_size is a power of two, the offset can be quickly 1740 * calculated with an AND operation. On the other cases we 1741 * need to do a modulus operation (more expensive). 1742 */ 1743 if (is_power_of_2(page_size)) { 1744 page_offset = addr & (page_size - 1); 1745 } else { 1746 uint64_t aux = addr; 1747 1748 page_offset = do_div(aux, page_size); 1749 } 1750 /* the size of data remaining on the first page */ 1751 page_remain = min_t(size_t, page_size - page_offset, len - i); 1752 1753 addr = spi_nor_convert_addr(nor, addr); 1754 1755 ret = spi_nor_write_enable(nor); 1756 if (ret) 1757 goto write_err; 1758 1759 ret = spi_nor_write_data(nor, addr, page_remain, buf + i); 1760 if (ret < 0) 1761 goto write_err; 1762 written = ret; 1763 1764 ret = spi_nor_wait_till_ready(nor); 1765 if (ret) 1766 goto write_err; 1767 *retlen += written; 1768 i += written; 1769 } 1770 1771 write_err: 1772 spi_nor_unlock_and_unprep(nor); 1773 return ret; 1774 } 1775 1776 static int spi_nor_check(struct spi_nor *nor) 1777 { 1778 if (!nor->dev || 1779 (!nor->spimem && !nor->controller_ops) || 1780 (!nor->spimem && nor->controller_ops && 1781 (!nor->controller_ops->read || 1782 !nor->controller_ops->write || 1783 !nor->controller_ops->read_reg || 1784 !nor->controller_ops->write_reg))) { 1785 pr_err("spi-nor: please fill all the necessary fields!\n"); 1786 return -EINVAL; 1787 } 1788 1789 if (nor->spimem && nor->controller_ops) { 1790 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n"); 1791 return -EINVAL; 1792 } 1793 1794 return 0; 1795 } 1796 1797 void 1798 spi_nor_set_read_settings(struct spi_nor_read_command *read, 1799 u8 num_mode_clocks, 1800 u8 num_wait_states, 1801 u8 opcode, 1802 enum spi_nor_protocol proto) 1803 { 1804 read->num_mode_clocks = num_mode_clocks; 1805 read->num_wait_states = num_wait_states; 1806 read->opcode = opcode; 1807 read->proto = proto; 1808 } 1809 1810 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode, 1811 enum spi_nor_protocol proto) 1812 { 1813 pp->opcode = opcode; 1814 pp->proto = proto; 1815 } 1816 1817 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size) 1818 { 1819 size_t i; 1820 1821 for (i = 0; i < size; i++) 1822 if (table[i][0] == (int)hwcaps) 1823 return table[i][1]; 1824 1825 return -EINVAL; 1826 } 1827 1828 int spi_nor_hwcaps_read2cmd(u32 hwcaps) 1829 { 1830 static const int hwcaps_read2cmd[][2] = { 1831 { SNOR_HWCAPS_READ, SNOR_CMD_READ }, 1832 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST }, 1833 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR }, 1834 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 }, 1835 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 }, 1836 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 }, 1837 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR }, 1838 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 }, 1839 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 }, 1840 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 }, 1841 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR }, 1842 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 }, 1843 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 }, 1844 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 }, 1845 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR }, 1846 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR }, 1847 }; 1848 1849 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd, 1850 ARRAY_SIZE(hwcaps_read2cmd)); 1851 } 1852 1853 int spi_nor_hwcaps_pp2cmd(u32 hwcaps) 1854 { 1855 static const int hwcaps_pp2cmd[][2] = { 1856 { SNOR_HWCAPS_PP, SNOR_CMD_PP }, 1857 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 }, 1858 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 }, 1859 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 }, 1860 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 }, 1861 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 }, 1862 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 }, 1863 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR }, 1864 }; 1865 1866 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd, 1867 ARRAY_SIZE(hwcaps_pp2cmd)); 1868 } 1869 1870 /** 1871 * spi_nor_spimem_check_op - check if the operation is supported 1872 * by controller 1873 *@nor: pointer to a 'struct spi_nor' 1874 *@op: pointer to op template to be checked 1875 * 1876 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1877 */ 1878 static int spi_nor_spimem_check_op(struct spi_nor *nor, 1879 struct spi_mem_op *op) 1880 { 1881 /* 1882 * First test with 4 address bytes. The opcode itself might 1883 * be a 3B addressing opcode but we don't care, because 1884 * SPI controller implementation should not check the opcode, 1885 * but just the sequence. 1886 */ 1887 op->addr.nbytes = 4; 1888 if (!spi_mem_supports_op(nor->spimem, op)) { 1889 if (nor->params->size > SZ_16M) 1890 return -EOPNOTSUPP; 1891 1892 /* If flash size <= 16MB, 3 address bytes are sufficient */ 1893 op->addr.nbytes = 3; 1894 if (!spi_mem_supports_op(nor->spimem, op)) 1895 return -EOPNOTSUPP; 1896 } 1897 1898 return 0; 1899 } 1900 1901 /** 1902 * spi_nor_spimem_check_readop - check if the read op is supported 1903 * by controller 1904 *@nor: pointer to a 'struct spi_nor' 1905 *@read: pointer to op template to be checked 1906 * 1907 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1908 */ 1909 static int spi_nor_spimem_check_readop(struct spi_nor *nor, 1910 const struct spi_nor_read_command *read) 1911 { 1912 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode); 1913 1914 spi_nor_spimem_setup_op(nor, &op, read->proto); 1915 1916 /* convert the dummy cycles to the number of bytes */ 1917 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8; 1918 if (spi_nor_protocol_is_dtr(nor->read_proto)) 1919 op.dummy.nbytes *= 2; 1920 1921 return spi_nor_spimem_check_op(nor, &op); 1922 } 1923 1924 /** 1925 * spi_nor_spimem_check_pp - check if the page program op is supported 1926 * by controller 1927 *@nor: pointer to a 'struct spi_nor' 1928 *@pp: pointer to op template to be checked 1929 * 1930 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise. 1931 */ 1932 static int spi_nor_spimem_check_pp(struct spi_nor *nor, 1933 const struct spi_nor_pp_command *pp) 1934 { 1935 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode); 1936 1937 spi_nor_spimem_setup_op(nor, &op, pp->proto); 1938 1939 return spi_nor_spimem_check_op(nor, &op); 1940 } 1941 1942 /** 1943 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol 1944 * based on SPI controller capabilities 1945 * @nor: pointer to a 'struct spi_nor' 1946 * @hwcaps: pointer to resulting capabilities after adjusting 1947 * according to controller and flash's capability 1948 */ 1949 static void 1950 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps) 1951 { 1952 struct spi_nor_flash_parameter *params = nor->params; 1953 unsigned int cap; 1954 1955 /* X-X-X modes are not supported yet, mask them all. */ 1956 *hwcaps &= ~SNOR_HWCAPS_X_X_X; 1957 1958 /* 1959 * If the reset line is broken, we do not want to enter a stateful 1960 * mode. 1961 */ 1962 if (nor->flags & SNOR_F_BROKEN_RESET) 1963 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR); 1964 1965 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) { 1966 int rdidx, ppidx; 1967 1968 if (!(*hwcaps & BIT(cap))) 1969 continue; 1970 1971 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap)); 1972 if (rdidx >= 0 && 1973 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx])) 1974 *hwcaps &= ~BIT(cap); 1975 1976 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap)); 1977 if (ppidx < 0) 1978 continue; 1979 1980 if (spi_nor_spimem_check_pp(nor, 1981 ¶ms->page_programs[ppidx])) 1982 *hwcaps &= ~BIT(cap); 1983 } 1984 } 1985 1986 /** 1987 * spi_nor_set_erase_type() - set a SPI NOR erase type 1988 * @erase: pointer to a structure that describes a SPI NOR erase type 1989 * @size: the size of the sector/block erased by the erase type 1990 * @opcode: the SPI command op code to erase the sector/block 1991 */ 1992 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size, 1993 u8 opcode) 1994 { 1995 erase->size = size; 1996 erase->opcode = opcode; 1997 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */ 1998 erase->size_shift = ffs(erase->size) - 1; 1999 erase->size_mask = (1 << erase->size_shift) - 1; 2000 } 2001 2002 /** 2003 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map 2004 * @map: the erase map of the SPI NOR 2005 * @erase_mask: bitmask encoding erase types that can erase the entire 2006 * flash memory 2007 * @flash_size: the spi nor flash memory size 2008 */ 2009 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map, 2010 u8 erase_mask, u64 flash_size) 2011 { 2012 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */ 2013 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) | 2014 SNOR_LAST_REGION; 2015 map->uniform_region.size = flash_size; 2016 map->regions = &map->uniform_region; 2017 map->uniform_erase_type = erase_mask; 2018 } 2019 2020 int spi_nor_post_bfpt_fixups(struct spi_nor *nor, 2021 const struct sfdp_parameter_header *bfpt_header, 2022 const struct sfdp_bfpt *bfpt) 2023 { 2024 int ret; 2025 2026 if (nor->manufacturer && nor->manufacturer->fixups && 2027 nor->manufacturer->fixups->post_bfpt) { 2028 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header, 2029 bfpt); 2030 if (ret) 2031 return ret; 2032 } 2033 2034 if (nor->info->fixups && nor->info->fixups->post_bfpt) 2035 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt); 2036 2037 return 0; 2038 } 2039 2040 static int spi_nor_select_read(struct spi_nor *nor, 2041 u32 shared_hwcaps) 2042 { 2043 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1; 2044 const struct spi_nor_read_command *read; 2045 2046 if (best_match < 0) 2047 return -EINVAL; 2048 2049 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match)); 2050 if (cmd < 0) 2051 return -EINVAL; 2052 2053 read = &nor->params->reads[cmd]; 2054 nor->read_opcode = read->opcode; 2055 nor->read_proto = read->proto; 2056 2057 /* 2058 * In the SPI NOR framework, we don't need to make the difference 2059 * between mode clock cycles and wait state clock cycles. 2060 * Indeed, the value of the mode clock cycles is used by a QSPI 2061 * flash memory to know whether it should enter or leave its 0-4-4 2062 * (Continuous Read / XIP) mode. 2063 * eXecution In Place is out of the scope of the mtd sub-system. 2064 * Hence we choose to merge both mode and wait state clock cycles 2065 * into the so called dummy clock cycles. 2066 */ 2067 nor->read_dummy = read->num_mode_clocks + read->num_wait_states; 2068 return 0; 2069 } 2070 2071 static int spi_nor_select_pp(struct spi_nor *nor, 2072 u32 shared_hwcaps) 2073 { 2074 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1; 2075 const struct spi_nor_pp_command *pp; 2076 2077 if (best_match < 0) 2078 return -EINVAL; 2079 2080 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match)); 2081 if (cmd < 0) 2082 return -EINVAL; 2083 2084 pp = &nor->params->page_programs[cmd]; 2085 nor->program_opcode = pp->opcode; 2086 nor->write_proto = pp->proto; 2087 return 0; 2088 } 2089 2090 /** 2091 * spi_nor_select_uniform_erase() - select optimum uniform erase type 2092 * @map: the erase map of the SPI NOR 2093 * @wanted_size: the erase type size to search for. Contains the value of 2094 * info->sector_size or of the "small sector" size in case 2095 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined. 2096 * 2097 * Once the optimum uniform sector erase command is found, disable all the 2098 * other. 2099 * 2100 * Return: pointer to erase type on success, NULL otherwise. 2101 */ 2102 static const struct spi_nor_erase_type * 2103 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map, 2104 const u32 wanted_size) 2105 { 2106 const struct spi_nor_erase_type *tested_erase, *erase = NULL; 2107 int i; 2108 u8 uniform_erase_type = map->uniform_erase_type; 2109 2110 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2111 if (!(uniform_erase_type & BIT(i))) 2112 continue; 2113 2114 tested_erase = &map->erase_type[i]; 2115 2116 /* 2117 * If the current erase size is the one, stop here: 2118 * we have found the right uniform Sector Erase command. 2119 */ 2120 if (tested_erase->size == wanted_size) { 2121 erase = tested_erase; 2122 break; 2123 } 2124 2125 /* 2126 * Otherwise, the current erase size is still a valid candidate. 2127 * Select the biggest valid candidate. 2128 */ 2129 if (!erase && tested_erase->size) 2130 erase = tested_erase; 2131 /* keep iterating to find the wanted_size */ 2132 } 2133 2134 if (!erase) 2135 return NULL; 2136 2137 /* Disable all other Sector Erase commands. */ 2138 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK; 2139 map->uniform_erase_type |= BIT(erase - map->erase_type); 2140 return erase; 2141 } 2142 2143 static int spi_nor_select_erase(struct spi_nor *nor) 2144 { 2145 struct spi_nor_erase_map *map = &nor->params->erase_map; 2146 const struct spi_nor_erase_type *erase = NULL; 2147 struct mtd_info *mtd = &nor->mtd; 2148 u32 wanted_size = nor->info->sector_size; 2149 int i; 2150 2151 /* 2152 * The previous implementation handling Sector Erase commands assumed 2153 * that the SPI flash memory has an uniform layout then used only one 2154 * of the supported erase sizes for all Sector Erase commands. 2155 * So to be backward compatible, the new implementation also tries to 2156 * manage the SPI flash memory as uniform with a single erase sector 2157 * size, when possible. 2158 */ 2159 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS 2160 /* prefer "small sector" erase if possible */ 2161 wanted_size = 4096u; 2162 #endif 2163 2164 if (spi_nor_has_uniform_erase(nor)) { 2165 erase = spi_nor_select_uniform_erase(map, wanted_size); 2166 if (!erase) 2167 return -EINVAL; 2168 nor->erase_opcode = erase->opcode; 2169 mtd->erasesize = erase->size; 2170 return 0; 2171 } 2172 2173 /* 2174 * For non-uniform SPI flash memory, set mtd->erasesize to the 2175 * maximum erase sector size. No need to set nor->erase_opcode. 2176 */ 2177 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) { 2178 if (map->erase_type[i].size) { 2179 erase = &map->erase_type[i]; 2180 break; 2181 } 2182 } 2183 2184 if (!erase) 2185 return -EINVAL; 2186 2187 mtd->erasesize = erase->size; 2188 return 0; 2189 } 2190 2191 static int spi_nor_default_setup(struct spi_nor *nor, 2192 const struct spi_nor_hwcaps *hwcaps) 2193 { 2194 struct spi_nor_flash_parameter *params = nor->params; 2195 u32 ignored_mask, shared_mask; 2196 int err; 2197 2198 /* 2199 * Keep only the hardware capabilities supported by both the SPI 2200 * controller and the SPI flash memory. 2201 */ 2202 shared_mask = hwcaps->mask & params->hwcaps.mask; 2203 2204 if (nor->spimem) { 2205 /* 2206 * When called from spi_nor_probe(), all caps are set and we 2207 * need to discard some of them based on what the SPI 2208 * controller actually supports (using spi_mem_supports_op()). 2209 */ 2210 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask); 2211 } else { 2212 /* 2213 * SPI n-n-n protocols are not supported when the SPI 2214 * controller directly implements the spi_nor interface. 2215 * Yet another reason to switch to spi-mem. 2216 */ 2217 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR; 2218 if (shared_mask & ignored_mask) { 2219 dev_dbg(nor->dev, 2220 "SPI n-n-n protocols are not supported.\n"); 2221 shared_mask &= ~ignored_mask; 2222 } 2223 } 2224 2225 /* Select the (Fast) Read command. */ 2226 err = spi_nor_select_read(nor, shared_mask); 2227 if (err) { 2228 dev_dbg(nor->dev, 2229 "can't select read settings supported by both the SPI controller and memory.\n"); 2230 return err; 2231 } 2232 2233 /* Select the Page Program command. */ 2234 err = spi_nor_select_pp(nor, shared_mask); 2235 if (err) { 2236 dev_dbg(nor->dev, 2237 "can't select write settings supported by both the SPI controller and memory.\n"); 2238 return err; 2239 } 2240 2241 /* Select the Sector Erase command. */ 2242 err = spi_nor_select_erase(nor); 2243 if (err) { 2244 dev_dbg(nor->dev, 2245 "can't select erase settings supported by both the SPI controller and memory.\n"); 2246 return err; 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int spi_nor_set_addr_nbytes(struct spi_nor *nor) 2253 { 2254 if (nor->params->addr_nbytes) { 2255 nor->addr_nbytes = nor->params->addr_nbytes; 2256 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) { 2257 /* 2258 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So 2259 * in this protocol an odd addr_nbytes cannot be used because 2260 * then the address phase would only span a cycle and a half. 2261 * Half a cycle would be left over. We would then have to start 2262 * the dummy phase in the middle of a cycle and so too the data 2263 * phase, and we will end the transaction with half a cycle left 2264 * over. 2265 * 2266 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to 2267 * avoid this situation. 2268 */ 2269 nor->addr_nbytes = 4; 2270 } else if (nor->info->addr_nbytes) { 2271 nor->addr_nbytes = nor->info->addr_nbytes; 2272 } else { 2273 nor->addr_nbytes = 3; 2274 } 2275 2276 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) { 2277 /* enable 4-byte addressing if the device exceeds 16MiB */ 2278 nor->addr_nbytes = 4; 2279 } 2280 2281 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) { 2282 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n", 2283 nor->addr_nbytes); 2284 return -EINVAL; 2285 } 2286 2287 /* Set 4byte opcodes when possible. */ 2288 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES && 2289 !(nor->flags & SNOR_F_HAS_4BAIT)) 2290 spi_nor_set_4byte_opcodes(nor); 2291 2292 return 0; 2293 } 2294 2295 static int spi_nor_setup(struct spi_nor *nor, 2296 const struct spi_nor_hwcaps *hwcaps) 2297 { 2298 int ret; 2299 2300 if (nor->params->setup) 2301 ret = nor->params->setup(nor, hwcaps); 2302 else 2303 ret = spi_nor_default_setup(nor, hwcaps); 2304 if (ret) 2305 return ret; 2306 2307 return spi_nor_set_addr_nbytes(nor); 2308 } 2309 2310 /** 2311 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and 2312 * settings based on MFR register and ->default_init() hook. 2313 * @nor: pointer to a 'struct spi_nor'. 2314 */ 2315 static void spi_nor_manufacturer_init_params(struct spi_nor *nor) 2316 { 2317 if (nor->manufacturer && nor->manufacturer->fixups && 2318 nor->manufacturer->fixups->default_init) 2319 nor->manufacturer->fixups->default_init(nor); 2320 2321 if (nor->info->fixups && nor->info->fixups->default_init) 2322 nor->info->fixups->default_init(nor); 2323 } 2324 2325 /** 2326 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and 2327 * settings based on nor->info->sfdp_flags. This method should be called only by 2328 * flashes that do not define SFDP tables. If the flash supports SFDP but the 2329 * information is wrong and the settings from this function can not be retrieved 2330 * by parsing SFDP, one should instead use the fixup hooks and update the wrong 2331 * bits. 2332 * @nor: pointer to a 'struct spi_nor'. 2333 */ 2334 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor) 2335 { 2336 struct spi_nor_flash_parameter *params = nor->params; 2337 struct spi_nor_erase_map *map = ¶ms->erase_map; 2338 const u8 no_sfdp_flags = nor->info->no_sfdp_flags; 2339 u8 i, erase_mask; 2340 2341 if (no_sfdp_flags & SPI_NOR_DUAL_READ) { 2342 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; 2343 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2], 2344 0, 8, SPINOR_OP_READ_1_1_2, 2345 SNOR_PROTO_1_1_2); 2346 } 2347 2348 if (no_sfdp_flags & SPI_NOR_QUAD_READ) { 2349 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; 2350 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4], 2351 0, 8, SPINOR_OP_READ_1_1_4, 2352 SNOR_PROTO_1_1_4); 2353 } 2354 2355 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) { 2356 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; 2357 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], 2358 0, 8, SPINOR_OP_READ_1_1_8, 2359 SNOR_PROTO_1_1_8); 2360 } 2361 2362 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) { 2363 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; 2364 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR], 2365 0, 20, SPINOR_OP_READ_FAST, 2366 SNOR_PROTO_8_8_8_DTR); 2367 } 2368 2369 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) { 2370 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; 2371 /* 2372 * Since xSPI Page Program opcode is backward compatible with 2373 * Legacy SPI, use Legacy SPI opcode there as well. 2374 */ 2375 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], 2376 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR); 2377 } 2378 2379 /* 2380 * Sector Erase settings. Sort Erase Types in ascending order, with the 2381 * smallest erase size starting at BIT(0). 2382 */ 2383 erase_mask = 0; 2384 i = 0; 2385 if (no_sfdp_flags & SECT_4K) { 2386 erase_mask |= BIT(i); 2387 spi_nor_set_erase_type(&map->erase_type[i], 4096u, 2388 SPINOR_OP_BE_4K); 2389 i++; 2390 } 2391 erase_mask |= BIT(i); 2392 spi_nor_set_erase_type(&map->erase_type[i], nor->info->sector_size, 2393 SPINOR_OP_SE); 2394 spi_nor_init_uniform_erase_map(map, erase_mask, params->size); 2395 } 2396 2397 /** 2398 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined 2399 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP. 2400 * @nor: pointer to a 'struct spi_nor' 2401 */ 2402 static void spi_nor_init_flags(struct spi_nor *nor) 2403 { 2404 struct device_node *np = spi_nor_get_flash_node(nor); 2405 const u16 flags = nor->info->flags; 2406 2407 if (of_property_read_bool(np, "broken-flash-reset")) 2408 nor->flags |= SNOR_F_BROKEN_RESET; 2409 2410 if (flags & SPI_NOR_SWP_IS_VOLATILE) 2411 nor->flags |= SNOR_F_SWP_IS_VOLATILE; 2412 2413 if (flags & SPI_NOR_HAS_LOCK) 2414 nor->flags |= SNOR_F_HAS_LOCK; 2415 2416 if (flags & SPI_NOR_HAS_TB) { 2417 nor->flags |= SNOR_F_HAS_SR_TB; 2418 if (flags & SPI_NOR_TB_SR_BIT6) 2419 nor->flags |= SNOR_F_HAS_SR_TB_BIT6; 2420 } 2421 2422 if (flags & SPI_NOR_4BIT_BP) { 2423 nor->flags |= SNOR_F_HAS_4BIT_BP; 2424 if (flags & SPI_NOR_BP3_SR_BIT6) 2425 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6; 2426 } 2427 2428 if (flags & NO_CHIP_ERASE) 2429 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; 2430 } 2431 2432 /** 2433 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not 2434 * be discovered by SFDP for this particular flash because the SFDP table that 2435 * indicates this support is not defined in the flash. In case the table for 2436 * this support is defined but has wrong values, one should instead use a 2437 * post_sfdp() hook to set the SNOR_F equivalent flag. 2438 * @nor: pointer to a 'struct spi_nor' 2439 */ 2440 static void spi_nor_init_fixup_flags(struct spi_nor *nor) 2441 { 2442 const u8 fixup_flags = nor->info->fixup_flags; 2443 2444 if (fixup_flags & SPI_NOR_4B_OPCODES) 2445 nor->flags |= SNOR_F_4B_OPCODES; 2446 2447 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE) 2448 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; 2449 } 2450 2451 /** 2452 * spi_nor_late_init_params() - Late initialization of default flash parameters. 2453 * @nor: pointer to a 'struct spi_nor' 2454 * 2455 * Used to initialize flash parameters that are not declared in the JESD216 2456 * SFDP standard, or where SFDP tables are not defined at all. 2457 * Will replace the spi_nor_manufacturer_init_params() method. 2458 */ 2459 static void spi_nor_late_init_params(struct spi_nor *nor) 2460 { 2461 if (nor->manufacturer && nor->manufacturer->fixups && 2462 nor->manufacturer->fixups->late_init) 2463 nor->manufacturer->fixups->late_init(nor); 2464 2465 if (nor->info->fixups && nor->info->fixups->late_init) 2466 nor->info->fixups->late_init(nor); 2467 2468 spi_nor_init_flags(nor); 2469 spi_nor_init_fixup_flags(nor); 2470 2471 /* 2472 * NOR protection support. When locking_ops are not provided, we pick 2473 * the default ones. 2474 */ 2475 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops) 2476 spi_nor_init_default_locking_ops(nor); 2477 } 2478 2479 /** 2480 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash 2481 * parameters and settings based on JESD216 SFDP standard. 2482 * @nor: pointer to a 'struct spi_nor'. 2483 * 2484 * The method has a roll-back mechanism: in case the SFDP parsing fails, the 2485 * legacy flash parameters and settings will be restored. 2486 */ 2487 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor) 2488 { 2489 struct spi_nor_flash_parameter sfdp_params; 2490 2491 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params)); 2492 2493 if (spi_nor_parse_sfdp(nor)) { 2494 memcpy(nor->params, &sfdp_params, sizeof(*nor->params)); 2495 nor->flags &= ~SNOR_F_4B_OPCODES; 2496 } 2497 } 2498 2499 /** 2500 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash 2501 * parameters and settings. 2502 * @nor: pointer to a 'struct spi_nor'. 2503 * 2504 * The method assumes that flash doesn't support SFDP so it initializes flash 2505 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten 2506 * when parsing SFDP, if supported. 2507 */ 2508 static void spi_nor_init_params_deprecated(struct spi_nor *nor) 2509 { 2510 spi_nor_no_sfdp_init_params(nor); 2511 2512 spi_nor_manufacturer_init_params(nor); 2513 2514 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ | 2515 SPI_NOR_QUAD_READ | 2516 SPI_NOR_OCTAL_READ | 2517 SPI_NOR_OCTAL_DTR_READ)) 2518 spi_nor_sfdp_init_params_deprecated(nor); 2519 } 2520 2521 /** 2522 * spi_nor_init_default_params() - Default initialization of flash parameters 2523 * and settings. Done for all flashes, regardless is they define SFDP tables 2524 * or not. 2525 * @nor: pointer to a 'struct spi_nor'. 2526 */ 2527 static void spi_nor_init_default_params(struct spi_nor *nor) 2528 { 2529 struct spi_nor_flash_parameter *params = nor->params; 2530 const struct flash_info *info = nor->info; 2531 struct device_node *np = spi_nor_get_flash_node(nor); 2532 2533 params->quad_enable = spi_nor_sr2_bit1_quad_enable; 2534 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode; 2535 params->otp.org = &info->otp_org; 2536 2537 /* Default to 16-bit Write Status (01h) Command */ 2538 nor->flags |= SNOR_F_HAS_16BIT_SR; 2539 2540 /* Set SPI NOR sizes. */ 2541 params->writesize = 1; 2542 params->size = (u64)info->sector_size * info->n_sectors; 2543 params->page_size = info->page_size; 2544 2545 if (!(info->flags & SPI_NOR_NO_FR)) { 2546 /* Default to Fast Read for DT and non-DT platform devices. */ 2547 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST; 2548 2549 /* Mask out Fast Read if not requested at DT instantiation. */ 2550 if (np && !of_property_read_bool(np, "m25p,fast-read")) 2551 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST; 2552 } 2553 2554 /* (Fast) Read settings. */ 2555 params->hwcaps.mask |= SNOR_HWCAPS_READ; 2556 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ], 2557 0, 0, SPINOR_OP_READ, 2558 SNOR_PROTO_1_1_1); 2559 2560 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST) 2561 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST], 2562 0, 8, SPINOR_OP_READ_FAST, 2563 SNOR_PROTO_1_1_1); 2564 /* Page Program settings. */ 2565 params->hwcaps.mask |= SNOR_HWCAPS_PP; 2566 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], 2567 SPINOR_OP_PP, SNOR_PROTO_1_1_1); 2568 } 2569 2570 /** 2571 * spi_nor_init_params() - Initialize the flash's parameters and settings. 2572 * @nor: pointer to a 'struct spi_nor'. 2573 * 2574 * The flash parameters and settings are initialized based on a sequence of 2575 * calls that are ordered by priority: 2576 * 2577 * 1/ Default flash parameters initialization. The initializations are done 2578 * based on nor->info data: 2579 * spi_nor_info_init_params() 2580 * 2581 * which can be overwritten by: 2582 * 2/ Manufacturer flash parameters initialization. The initializations are 2583 * done based on MFR register, or when the decisions can not be done solely 2584 * based on MFR, by using specific flash_info tweeks, ->default_init(): 2585 * spi_nor_manufacturer_init_params() 2586 * 2587 * which can be overwritten by: 2588 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and 2589 * should be more accurate that the above. 2590 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params() 2591 * 2592 * Please note that there is a ->post_bfpt() fixup hook that can overwrite 2593 * the flash parameters and settings immediately after parsing the Basic 2594 * Flash Parameter Table. 2595 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed. 2596 * It is used to tweak various flash parameters when information provided 2597 * by the SFDP tables are wrong. 2598 * 2599 * which can be overwritten by: 2600 * 4/ Late flash parameters initialization, used to initialize flash 2601 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP 2602 * tables are not defined at all. 2603 * spi_nor_late_init_params() 2604 * 2605 * Return: 0 on success, -errno otherwise. 2606 */ 2607 static int spi_nor_init_params(struct spi_nor *nor) 2608 { 2609 int ret; 2610 2611 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL); 2612 if (!nor->params) 2613 return -ENOMEM; 2614 2615 spi_nor_init_default_params(nor); 2616 2617 if (nor->info->parse_sfdp) { 2618 ret = spi_nor_parse_sfdp(nor); 2619 if (ret) { 2620 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n"); 2621 return ret; 2622 } 2623 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) { 2624 spi_nor_no_sfdp_init_params(nor); 2625 } else { 2626 spi_nor_init_params_deprecated(nor); 2627 } 2628 2629 spi_nor_late_init_params(nor); 2630 2631 return 0; 2632 } 2633 2634 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed 2635 * @nor: pointer to a 'struct spi_nor' 2636 * @enable: whether to enable or disable Octal DTR 2637 * 2638 * Return: 0 on success, -errno otherwise. 2639 */ 2640 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable) 2641 { 2642 int ret; 2643 2644 if (!nor->params->octal_dtr_enable) 2645 return 0; 2646 2647 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR && 2648 nor->write_proto == SNOR_PROTO_8_8_8_DTR)) 2649 return 0; 2650 2651 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE)) 2652 return 0; 2653 2654 ret = nor->params->octal_dtr_enable(nor, enable); 2655 if (ret) 2656 return ret; 2657 2658 if (enable) 2659 nor->reg_proto = SNOR_PROTO_8_8_8_DTR; 2660 else 2661 nor->reg_proto = SNOR_PROTO_1_1_1; 2662 2663 return 0; 2664 } 2665 2666 /** 2667 * spi_nor_quad_enable() - enable Quad I/O if needed. 2668 * @nor: pointer to a 'struct spi_nor' 2669 * 2670 * Return: 0 on success, -errno otherwise. 2671 */ 2672 static int spi_nor_quad_enable(struct spi_nor *nor) 2673 { 2674 if (!nor->params->quad_enable) 2675 return 0; 2676 2677 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 || 2678 spi_nor_get_protocol_width(nor->write_proto) == 4)) 2679 return 0; 2680 2681 return nor->params->quad_enable(nor); 2682 } 2683 2684 static int spi_nor_init(struct spi_nor *nor) 2685 { 2686 int err; 2687 2688 err = spi_nor_octal_dtr_enable(nor, true); 2689 if (err) { 2690 dev_dbg(nor->dev, "octal mode not supported\n"); 2691 return err; 2692 } 2693 2694 err = spi_nor_quad_enable(nor); 2695 if (err) { 2696 dev_dbg(nor->dev, "quad mode not supported\n"); 2697 return err; 2698 } 2699 2700 /* 2701 * Some SPI NOR flashes are write protected by default after a power-on 2702 * reset cycle, in order to avoid inadvertent writes during power-up. 2703 * Backward compatibility imposes to unlock the entire flash memory 2704 * array at power-up by default. Depending on the kernel configuration 2705 * (1) do nothing, (2) always unlock the entire flash array or (3) 2706 * unlock the entire flash array only when the software write 2707 * protection bits are volatile. The latter is indicated by 2708 * SNOR_F_SWP_IS_VOLATILE. 2709 */ 2710 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) || 2711 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) && 2712 nor->flags & SNOR_F_SWP_IS_VOLATILE)) 2713 spi_nor_try_unlock_all(nor); 2714 2715 if (nor->addr_nbytes == 4 && 2716 nor->read_proto != SNOR_PROTO_8_8_8_DTR && 2717 !(nor->flags & SNOR_F_4B_OPCODES)) { 2718 /* 2719 * If the RESET# pin isn't hooked up properly, or the system 2720 * otherwise doesn't perform a reset command in the boot 2721 * sequence, it's impossible to 100% protect against unexpected 2722 * reboots (e.g., crashes). Warn the user (or hopefully, system 2723 * designer) that this is bad. 2724 */ 2725 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET, 2726 "enabling reset hack; may not recover from unexpected reboots\n"); 2727 return nor->params->set_4byte_addr_mode(nor, true); 2728 } 2729 2730 return 0; 2731 } 2732 2733 /** 2734 * spi_nor_soft_reset() - Perform a software reset 2735 * @nor: pointer to 'struct spi_nor' 2736 * 2737 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets 2738 * the device to its power-on-reset state. This is useful when the software has 2739 * made some changes to device (volatile) registers and needs to reset it before 2740 * shutting down, for example. 2741 * 2742 * Not every flash supports this sequence. The same set of opcodes might be used 2743 * for some other operation on a flash that does not support this. Support for 2744 * this sequence can be discovered via SFDP in the BFPT table. 2745 * 2746 * Return: 0 on success, -errno otherwise. 2747 */ 2748 static void spi_nor_soft_reset(struct spi_nor *nor) 2749 { 2750 struct spi_mem_op op; 2751 int ret; 2752 2753 op = (struct spi_mem_op)SPINOR_SRSTEN_OP; 2754 2755 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 2756 2757 ret = spi_mem_exec_op(nor->spimem, &op); 2758 if (ret) { 2759 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 2760 return; 2761 } 2762 2763 op = (struct spi_mem_op)SPINOR_SRST_OP; 2764 2765 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); 2766 2767 ret = spi_mem_exec_op(nor->spimem, &op); 2768 if (ret) { 2769 dev_warn(nor->dev, "Software reset failed: %d\n", ret); 2770 return; 2771 } 2772 2773 /* 2774 * Software Reset is not instant, and the delay varies from flash to 2775 * flash. Looking at a few flashes, most range somewhere below 100 2776 * microseconds. So, sleep for a range of 200-400 us. 2777 */ 2778 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX); 2779 } 2780 2781 /* mtd suspend handler */ 2782 static int spi_nor_suspend(struct mtd_info *mtd) 2783 { 2784 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2785 int ret; 2786 2787 /* Disable octal DTR mode if we enabled it. */ 2788 ret = spi_nor_octal_dtr_enable(nor, false); 2789 if (ret) 2790 dev_err(nor->dev, "suspend() failed\n"); 2791 2792 return ret; 2793 } 2794 2795 /* mtd resume handler */ 2796 static void spi_nor_resume(struct mtd_info *mtd) 2797 { 2798 struct spi_nor *nor = mtd_to_spi_nor(mtd); 2799 struct device *dev = nor->dev; 2800 int ret; 2801 2802 /* re-initialize the nor chip */ 2803 ret = spi_nor_init(nor); 2804 if (ret) 2805 dev_err(dev, "resume() failed\n"); 2806 } 2807 2808 static int spi_nor_get_device(struct mtd_info *mtd) 2809 { 2810 struct mtd_info *master = mtd_get_master(mtd); 2811 struct spi_nor *nor = mtd_to_spi_nor(master); 2812 struct device *dev; 2813 2814 if (nor->spimem) 2815 dev = nor->spimem->spi->controller->dev.parent; 2816 else 2817 dev = nor->dev; 2818 2819 if (!try_module_get(dev->driver->owner)) 2820 return -ENODEV; 2821 2822 return 0; 2823 } 2824 2825 static void spi_nor_put_device(struct mtd_info *mtd) 2826 { 2827 struct mtd_info *master = mtd_get_master(mtd); 2828 struct spi_nor *nor = mtd_to_spi_nor(master); 2829 struct device *dev; 2830 2831 if (nor->spimem) 2832 dev = nor->spimem->spi->controller->dev.parent; 2833 else 2834 dev = nor->dev; 2835 2836 module_put(dev->driver->owner); 2837 } 2838 2839 void spi_nor_restore(struct spi_nor *nor) 2840 { 2841 /* restore the addressing mode */ 2842 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) && 2843 nor->flags & SNOR_F_BROKEN_RESET) 2844 nor->params->set_4byte_addr_mode(nor, false); 2845 2846 if (nor->flags & SNOR_F_SOFT_RESET) 2847 spi_nor_soft_reset(nor); 2848 } 2849 EXPORT_SYMBOL_GPL(spi_nor_restore); 2850 2851 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor, 2852 const char *name) 2853 { 2854 unsigned int i, j; 2855 2856 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) { 2857 for (j = 0; j < manufacturers[i]->nparts; j++) { 2858 if (!strcmp(name, manufacturers[i]->parts[j].name)) { 2859 nor->manufacturer = manufacturers[i]; 2860 return &manufacturers[i]->parts[j]; 2861 } 2862 } 2863 } 2864 2865 return NULL; 2866 } 2867 2868 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor, 2869 const char *name) 2870 { 2871 const struct flash_info *info = NULL; 2872 2873 if (name) 2874 info = spi_nor_match_name(nor, name); 2875 /* Try to auto-detect if chip name wasn't specified or not found */ 2876 if (!info) 2877 return spi_nor_detect(nor); 2878 2879 /* 2880 * If caller has specified name of flash model that can normally be 2881 * detected using JEDEC, let's verify it. 2882 */ 2883 if (name && info->id_len) { 2884 const struct flash_info *jinfo; 2885 2886 jinfo = spi_nor_detect(nor); 2887 if (IS_ERR(jinfo)) { 2888 return jinfo; 2889 } else if (jinfo != info) { 2890 /* 2891 * JEDEC knows better, so overwrite platform ID. We 2892 * can't trust partitions any longer, but we'll let 2893 * mtd apply them anyway, since some partitions may be 2894 * marked read-only, and we don't want to lose that 2895 * information, even if it's not 100% accurate. 2896 */ 2897 dev_warn(nor->dev, "found %s, expected %s\n", 2898 jinfo->name, info->name); 2899 info = jinfo; 2900 } 2901 } 2902 2903 return info; 2904 } 2905 2906 static void spi_nor_set_mtd_info(struct spi_nor *nor) 2907 { 2908 struct mtd_info *mtd = &nor->mtd; 2909 struct device *dev = nor->dev; 2910 2911 spi_nor_set_mtd_locking_ops(nor); 2912 spi_nor_set_mtd_otp_ops(nor); 2913 2914 mtd->dev.parent = dev; 2915 if (!mtd->name) 2916 mtd->name = dev_name(dev); 2917 mtd->type = MTD_NORFLASH; 2918 mtd->flags = MTD_CAP_NORFLASH; 2919 if (nor->info->flags & SPI_NOR_NO_ERASE) 2920 mtd->flags |= MTD_NO_ERASE; 2921 else 2922 mtd->_erase = spi_nor_erase; 2923 mtd->writesize = nor->params->writesize; 2924 mtd->writebufsize = nor->params->page_size; 2925 mtd->size = nor->params->size; 2926 mtd->_read = spi_nor_read; 2927 /* Might be already set by some SST flashes. */ 2928 if (!mtd->_write) 2929 mtd->_write = spi_nor_write; 2930 mtd->_suspend = spi_nor_suspend; 2931 mtd->_resume = spi_nor_resume; 2932 mtd->_get_device = spi_nor_get_device; 2933 mtd->_put_device = spi_nor_put_device; 2934 } 2935 2936 int spi_nor_scan(struct spi_nor *nor, const char *name, 2937 const struct spi_nor_hwcaps *hwcaps) 2938 { 2939 const struct flash_info *info; 2940 struct device *dev = nor->dev; 2941 struct mtd_info *mtd = &nor->mtd; 2942 int ret; 2943 int i; 2944 2945 ret = spi_nor_check(nor); 2946 if (ret) 2947 return ret; 2948 2949 /* Reset SPI protocol for all commands. */ 2950 nor->reg_proto = SNOR_PROTO_1_1_1; 2951 nor->read_proto = SNOR_PROTO_1_1_1; 2952 nor->write_proto = SNOR_PROTO_1_1_1; 2953 2954 /* 2955 * We need the bounce buffer early to read/write registers when going 2956 * through the spi-mem layer (buffers have to be DMA-able). 2957 * For spi-mem drivers, we'll reallocate a new buffer if 2958 * nor->params->page_size turns out to be greater than PAGE_SIZE (which 2959 * shouldn't happen before long since NOR pages are usually less 2960 * than 1KB) after spi_nor_scan() returns. 2961 */ 2962 nor->bouncebuf_size = PAGE_SIZE; 2963 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size, 2964 GFP_KERNEL); 2965 if (!nor->bouncebuf) 2966 return -ENOMEM; 2967 2968 info = spi_nor_get_flash_info(nor, name); 2969 if (IS_ERR(info)) 2970 return PTR_ERR(info); 2971 2972 nor->info = info; 2973 2974 mutex_init(&nor->lock); 2975 2976 /* Init flash parameters based on flash_info struct and SFDP */ 2977 ret = spi_nor_init_params(nor); 2978 if (ret) 2979 return ret; 2980 2981 /* 2982 * Configure the SPI memory: 2983 * - select op codes for (Fast) Read, Page Program and Sector Erase. 2984 * - set the number of dummy cycles (mode cycles + wait states). 2985 * - set the SPI protocols for register and memory accesses. 2986 * - set the number of address bytes. 2987 */ 2988 ret = spi_nor_setup(nor, hwcaps); 2989 if (ret) 2990 return ret; 2991 2992 /* Send all the required SPI flash commands to initialize device */ 2993 ret = spi_nor_init(nor); 2994 if (ret) 2995 return ret; 2996 2997 /* No mtd_info fields should be used up to this point. */ 2998 spi_nor_set_mtd_info(nor); 2999 3000 dev_info(dev, "%s (%lld Kbytes)\n", info->name, 3001 (long long)mtd->size >> 10); 3002 3003 dev_dbg(dev, 3004 "mtd .name = %s, .size = 0x%llx (%lldMiB), " 3005 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", 3006 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), 3007 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); 3008 3009 if (mtd->numeraseregions) 3010 for (i = 0; i < mtd->numeraseregions; i++) 3011 dev_dbg(dev, 3012 "mtd.eraseregions[%d] = { .offset = 0x%llx, " 3013 ".erasesize = 0x%.8x (%uKiB), " 3014 ".numblocks = %d }\n", 3015 i, (long long)mtd->eraseregions[i].offset, 3016 mtd->eraseregions[i].erasesize, 3017 mtd->eraseregions[i].erasesize / 1024, 3018 mtd->eraseregions[i].numblocks); 3019 return 0; 3020 } 3021 EXPORT_SYMBOL_GPL(spi_nor_scan); 3022 3023 static int spi_nor_create_read_dirmap(struct spi_nor *nor) 3024 { 3025 struct spi_mem_dirmap_info info = { 3026 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0), 3027 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3028 SPI_MEM_OP_DUMMY(nor->read_dummy, 0), 3029 SPI_MEM_OP_DATA_IN(0, NULL, 0)), 3030 .offset = 0, 3031 .length = nor->params->size, 3032 }; 3033 struct spi_mem_op *op = &info.op_tmpl; 3034 3035 spi_nor_spimem_setup_op(nor, op, nor->read_proto); 3036 3037 /* convert the dummy cycles to the number of bytes */ 3038 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8; 3039 if (spi_nor_protocol_is_dtr(nor->read_proto)) 3040 op->dummy.nbytes *= 2; 3041 3042 /* 3043 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3044 * of data bytes is non-zero, the data buswidth won't be set here. So, 3045 * do it explicitly. 3046 */ 3047 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto); 3048 3049 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3050 &info); 3051 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc); 3052 } 3053 3054 static int spi_nor_create_write_dirmap(struct spi_nor *nor) 3055 { 3056 struct spi_mem_dirmap_info info = { 3057 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0), 3058 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0), 3059 SPI_MEM_OP_NO_DUMMY, 3060 SPI_MEM_OP_DATA_OUT(0, NULL, 0)), 3061 .offset = 0, 3062 .length = nor->params->size, 3063 }; 3064 struct spi_mem_op *op = &info.op_tmpl; 3065 3066 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) 3067 op->addr.nbytes = 0; 3068 3069 spi_nor_spimem_setup_op(nor, op, nor->write_proto); 3070 3071 /* 3072 * Since spi_nor_spimem_setup_op() only sets buswidth when the number 3073 * of data bytes is non-zero, the data buswidth won't be set here. So, 3074 * do it explicitly. 3075 */ 3076 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto); 3077 3078 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem, 3079 &info); 3080 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc); 3081 } 3082 3083 static int spi_nor_probe(struct spi_mem *spimem) 3084 { 3085 struct spi_device *spi = spimem->spi; 3086 struct flash_platform_data *data = dev_get_platdata(&spi->dev); 3087 struct spi_nor *nor; 3088 /* 3089 * Enable all caps by default. The core will mask them after 3090 * checking what's really supported using spi_mem_supports_op(). 3091 */ 3092 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL }; 3093 char *flash_name; 3094 int ret; 3095 3096 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL); 3097 if (!nor) 3098 return -ENOMEM; 3099 3100 nor->spimem = spimem; 3101 nor->dev = &spi->dev; 3102 spi_nor_set_flash_node(nor, spi->dev.of_node); 3103 3104 spi_mem_set_drvdata(spimem, nor); 3105 3106 if (data && data->name) 3107 nor->mtd.name = data->name; 3108 3109 if (!nor->mtd.name) 3110 nor->mtd.name = spi_mem_get_name(spimem); 3111 3112 /* 3113 * For some (historical?) reason many platforms provide two different 3114 * names in flash_platform_data: "name" and "type". Quite often name is 3115 * set to "m25p80" and then "type" provides a real chip name. 3116 * If that's the case, respect "type" and ignore a "name". 3117 */ 3118 if (data && data->type) 3119 flash_name = data->type; 3120 else if (!strcmp(spi->modalias, "spi-nor")) 3121 flash_name = NULL; /* auto-detect */ 3122 else 3123 flash_name = spi->modalias; 3124 3125 ret = spi_nor_scan(nor, flash_name, &hwcaps); 3126 if (ret) 3127 return ret; 3128 3129 spi_nor_debugfs_register(nor); 3130 3131 /* 3132 * None of the existing parts have > 512B pages, but let's play safe 3133 * and add this logic so that if anyone ever adds support for such 3134 * a NOR we don't end up with buffer overflows. 3135 */ 3136 if (nor->params->page_size > PAGE_SIZE) { 3137 nor->bouncebuf_size = nor->params->page_size; 3138 devm_kfree(nor->dev, nor->bouncebuf); 3139 nor->bouncebuf = devm_kmalloc(nor->dev, 3140 nor->bouncebuf_size, 3141 GFP_KERNEL); 3142 if (!nor->bouncebuf) 3143 return -ENOMEM; 3144 } 3145 3146 ret = spi_nor_create_read_dirmap(nor); 3147 if (ret) 3148 return ret; 3149 3150 ret = spi_nor_create_write_dirmap(nor); 3151 if (ret) 3152 return ret; 3153 3154 return mtd_device_register(&nor->mtd, data ? data->parts : NULL, 3155 data ? data->nr_parts : 0); 3156 } 3157 3158 static int spi_nor_remove(struct spi_mem *spimem) 3159 { 3160 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3161 3162 spi_nor_restore(nor); 3163 3164 /* Clean up MTD stuff. */ 3165 return mtd_device_unregister(&nor->mtd); 3166 } 3167 3168 static void spi_nor_shutdown(struct spi_mem *spimem) 3169 { 3170 struct spi_nor *nor = spi_mem_get_drvdata(spimem); 3171 3172 spi_nor_restore(nor); 3173 } 3174 3175 /* 3176 * Do NOT add to this array without reading the following: 3177 * 3178 * Historically, many flash devices are bound to this driver by their name. But 3179 * since most of these flash are compatible to some extent, and their 3180 * differences can often be differentiated by the JEDEC read-ID command, we 3181 * encourage new users to add support to the spi-nor library, and simply bind 3182 * against a generic string here (e.g., "jedec,spi-nor"). 3183 * 3184 * Many flash names are kept here in this list to keep them available 3185 * as module aliases for existing platforms. 3186 */ 3187 static const struct spi_device_id spi_nor_dev_ids[] = { 3188 /* 3189 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and 3190 * hack around the fact that the SPI core does not provide uevent 3191 * matching for .of_match_table 3192 */ 3193 {"spi-nor"}, 3194 3195 /* 3196 * Entries not used in DTs that should be safe to drop after replacing 3197 * them with "spi-nor" in platform data. 3198 */ 3199 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, 3200 3201 /* 3202 * Entries that were used in DTs without "jedec,spi-nor" fallback and 3203 * should be kept for backward compatibility. 3204 */ 3205 {"at25df321a"}, {"at25df641"}, {"at26df081a"}, 3206 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, 3207 {"mx25l25635e"},{"mx66l51235l"}, 3208 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, 3209 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, 3210 {"s25fl064k"}, 3211 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, 3212 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, 3213 {"m25p64"}, {"m25p128"}, 3214 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, 3215 {"w25q80bl"}, {"w25q128"}, {"w25q256"}, 3216 3217 /* Flashes that can't be detected using JEDEC */ 3218 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, 3219 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, 3220 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, 3221 3222 /* Everspin MRAMs (non-JEDEC) */ 3223 { "mr25h128" }, /* 128 Kib, 40 MHz */ 3224 { "mr25h256" }, /* 256 Kib, 40 MHz */ 3225 { "mr25h10" }, /* 1 Mib, 40 MHz */ 3226 { "mr25h40" }, /* 4 Mib, 40 MHz */ 3227 3228 { }, 3229 }; 3230 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids); 3231 3232 static const struct of_device_id spi_nor_of_table[] = { 3233 /* 3234 * Generic compatibility for SPI NOR that can be identified by the 3235 * JEDEC READ ID opcode (0x9F). Use this, if possible. 3236 */ 3237 { .compatible = "jedec,spi-nor" }, 3238 { /* sentinel */ }, 3239 }; 3240 MODULE_DEVICE_TABLE(of, spi_nor_of_table); 3241 3242 /* 3243 * REVISIT: many of these chips have deep power-down modes, which 3244 * should clearly be entered on suspend() to minimize power use. 3245 * And also when they're otherwise idle... 3246 */ 3247 static struct spi_mem_driver spi_nor_driver = { 3248 .spidrv = { 3249 .driver = { 3250 .name = "spi-nor", 3251 .of_match_table = spi_nor_of_table, 3252 .dev_groups = spi_nor_sysfs_groups, 3253 }, 3254 .id_table = spi_nor_dev_ids, 3255 }, 3256 .probe = spi_nor_probe, 3257 .remove = spi_nor_remove, 3258 .shutdown = spi_nor_shutdown, 3259 }; 3260 module_spi_mem_driver(spi_nor_driver); 3261 3262 MODULE_LICENSE("GPL v2"); 3263 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); 3264 MODULE_AUTHOR("Mike Lavender"); 3265 MODULE_DESCRIPTION("framework for SPI NOR"); 3266