xref: /openbmc/linux/drivers/mtd/spi-nor/controllers/hisi-sfc.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * HiSilicon FMC SPI NOR flash controller driver
4  *
5  * Copyright (c) 2015-2016 HiSilicon Technologies Co., Ltd.
6  */
7 #include <linux/bitops.h>
8 #include <linux/clk.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/mtd/mtd.h>
13 #include <linux/mtd/spi-nor.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 
18 /* Hardware register offsets and field definitions */
19 #define FMC_CFG				0x00
20 #define FMC_CFG_OP_MODE_MASK		BIT_MASK(0)
21 #define FMC_CFG_OP_MODE_BOOT		0
22 #define FMC_CFG_OP_MODE_NORMAL		1
23 #define FMC_CFG_FLASH_SEL(type)		(((type) & 0x3) << 1)
24 #define FMC_CFG_FLASH_SEL_MASK		0x6
25 #define FMC_ECC_TYPE(type)		(((type) & 0x7) << 5)
26 #define FMC_ECC_TYPE_MASK		GENMASK(7, 5)
27 #define SPI_NOR_ADDR_MODE_MASK		BIT_MASK(10)
28 #define SPI_NOR_ADDR_MODE_3BYTES	(0x0 << 10)
29 #define SPI_NOR_ADDR_MODE_4BYTES	(0x1 << 10)
30 #define FMC_GLOBAL_CFG			0x04
31 #define FMC_GLOBAL_CFG_WP_ENABLE	BIT(6)
32 #define FMC_SPI_TIMING_CFG		0x08
33 #define TIMING_CFG_TCSH(nr)		(((nr) & 0xf) << 8)
34 #define TIMING_CFG_TCSS(nr)		(((nr) & 0xf) << 4)
35 #define TIMING_CFG_TSHSL(nr)		((nr) & 0xf)
36 #define CS_HOLD_TIME			0x6
37 #define CS_SETUP_TIME			0x6
38 #define CS_DESELECT_TIME		0xf
39 #define FMC_INT				0x18
40 #define FMC_INT_OP_DONE			BIT(0)
41 #define FMC_INT_CLR			0x20
42 #define FMC_CMD				0x24
43 #define FMC_CMD_CMD1(cmd)		((cmd) & 0xff)
44 #define FMC_ADDRL			0x2c
45 #define FMC_OP_CFG			0x30
46 #define OP_CFG_FM_CS(cs)		((cs) << 11)
47 #define OP_CFG_MEM_IF_TYPE(type)	(((type) & 0x7) << 7)
48 #define OP_CFG_ADDR_NUM(addr)		(((addr) & 0x7) << 4)
49 #define OP_CFG_DUMMY_NUM(dummy)		((dummy) & 0xf)
50 #define FMC_DATA_NUM			0x38
51 #define FMC_DATA_NUM_CNT(cnt)		((cnt) & GENMASK(13, 0))
52 #define FMC_OP				0x3c
53 #define FMC_OP_DUMMY_EN			BIT(8)
54 #define FMC_OP_CMD1_EN			BIT(7)
55 #define FMC_OP_ADDR_EN			BIT(6)
56 #define FMC_OP_WRITE_DATA_EN		BIT(5)
57 #define FMC_OP_READ_DATA_EN		BIT(2)
58 #define FMC_OP_READ_STATUS_EN		BIT(1)
59 #define FMC_OP_REG_OP_START		BIT(0)
60 #define FMC_DMA_LEN			0x40
61 #define FMC_DMA_LEN_SET(len)		((len) & GENMASK(27, 0))
62 #define FMC_DMA_SADDR_D0		0x4c
63 #define HIFMC_DMA_MAX_LEN		(4096)
64 #define HIFMC_DMA_MASK			(HIFMC_DMA_MAX_LEN - 1)
65 #define FMC_OP_DMA			0x68
66 #define OP_CTRL_RD_OPCODE(code)		(((code) & 0xff) << 16)
67 #define OP_CTRL_WR_OPCODE(code)		(((code) & 0xff) << 8)
68 #define OP_CTRL_RW_OP(op)		((op) << 1)
69 #define OP_CTRL_DMA_OP_READY		BIT(0)
70 #define FMC_OP_READ			0x0
71 #define FMC_OP_WRITE			0x1
72 #define FMC_WAIT_TIMEOUT		1000000
73 
74 enum hifmc_iftype {
75 	IF_TYPE_STD,
76 	IF_TYPE_DUAL,
77 	IF_TYPE_DIO,
78 	IF_TYPE_QUAD,
79 	IF_TYPE_QIO,
80 };
81 
82 struct hifmc_priv {
83 	u32 chipselect;
84 	u32 clkrate;
85 	struct hifmc_host *host;
86 };
87 
88 #define HIFMC_MAX_CHIP_NUM		2
89 struct hifmc_host {
90 	struct device *dev;
91 	struct mutex lock;
92 
93 	void __iomem *regbase;
94 	void __iomem *iobase;
95 	struct clk *clk;
96 	void *buffer;
97 	dma_addr_t dma_buffer;
98 
99 	struct spi_nor	*nor[HIFMC_MAX_CHIP_NUM];
100 	u32 num_chip;
101 };
102 
103 static inline int hisi_spi_nor_wait_op_finish(struct hifmc_host *host)
104 {
105 	u32 reg;
106 
107 	return readl_poll_timeout(host->regbase + FMC_INT, reg,
108 		(reg & FMC_INT_OP_DONE), 0, FMC_WAIT_TIMEOUT);
109 }
110 
111 static int hisi_spi_nor_get_if_type(enum spi_nor_protocol proto)
112 {
113 	enum hifmc_iftype if_type;
114 
115 	switch (proto) {
116 	case SNOR_PROTO_1_1_2:
117 		if_type = IF_TYPE_DUAL;
118 		break;
119 	case SNOR_PROTO_1_2_2:
120 		if_type = IF_TYPE_DIO;
121 		break;
122 	case SNOR_PROTO_1_1_4:
123 		if_type = IF_TYPE_QUAD;
124 		break;
125 	case SNOR_PROTO_1_4_4:
126 		if_type = IF_TYPE_QIO;
127 		break;
128 	case SNOR_PROTO_1_1_1:
129 	default:
130 		if_type = IF_TYPE_STD;
131 		break;
132 	}
133 
134 	return if_type;
135 }
136 
137 static void hisi_spi_nor_init(struct hifmc_host *host)
138 {
139 	u32 reg;
140 
141 	reg = TIMING_CFG_TCSH(CS_HOLD_TIME)
142 		| TIMING_CFG_TCSS(CS_SETUP_TIME)
143 		| TIMING_CFG_TSHSL(CS_DESELECT_TIME);
144 	writel(reg, host->regbase + FMC_SPI_TIMING_CFG);
145 }
146 
147 static int hisi_spi_nor_prep(struct spi_nor *nor)
148 {
149 	struct hifmc_priv *priv = nor->priv;
150 	struct hifmc_host *host = priv->host;
151 	int ret;
152 
153 	mutex_lock(&host->lock);
154 
155 	ret = clk_set_rate(host->clk, priv->clkrate);
156 	if (ret)
157 		goto out;
158 
159 	ret = clk_prepare_enable(host->clk);
160 	if (ret)
161 		goto out;
162 
163 	return 0;
164 
165 out:
166 	mutex_unlock(&host->lock);
167 	return ret;
168 }
169 
170 static void hisi_spi_nor_unprep(struct spi_nor *nor)
171 {
172 	struct hifmc_priv *priv = nor->priv;
173 	struct hifmc_host *host = priv->host;
174 
175 	clk_disable_unprepare(host->clk);
176 	mutex_unlock(&host->lock);
177 }
178 
179 static int hisi_spi_nor_op_reg(struct spi_nor *nor,
180 				u8 opcode, size_t len, u8 optype)
181 {
182 	struct hifmc_priv *priv = nor->priv;
183 	struct hifmc_host *host = priv->host;
184 	u32 reg;
185 
186 	reg = FMC_CMD_CMD1(opcode);
187 	writel(reg, host->regbase + FMC_CMD);
188 
189 	reg = FMC_DATA_NUM_CNT(len);
190 	writel(reg, host->regbase + FMC_DATA_NUM);
191 
192 	reg = OP_CFG_FM_CS(priv->chipselect);
193 	writel(reg, host->regbase + FMC_OP_CFG);
194 
195 	writel(0xff, host->regbase + FMC_INT_CLR);
196 	reg = FMC_OP_CMD1_EN | FMC_OP_REG_OP_START | optype;
197 	writel(reg, host->regbase + FMC_OP);
198 
199 	return hisi_spi_nor_wait_op_finish(host);
200 }
201 
202 static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
203 				 size_t len)
204 {
205 	struct hifmc_priv *priv = nor->priv;
206 	struct hifmc_host *host = priv->host;
207 	int ret;
208 
209 	ret = hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_READ_DATA_EN);
210 	if (ret)
211 		return ret;
212 
213 	memcpy_fromio(buf, host->iobase, len);
214 	return 0;
215 }
216 
217 static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode,
218 				  const u8 *buf, size_t len)
219 {
220 	struct hifmc_priv *priv = nor->priv;
221 	struct hifmc_host *host = priv->host;
222 
223 	if (len)
224 		memcpy_toio(host->iobase, buf, len);
225 
226 	return hisi_spi_nor_op_reg(nor, opcode, len, FMC_OP_WRITE_DATA_EN);
227 }
228 
229 static int hisi_spi_nor_dma_transfer(struct spi_nor *nor, loff_t start_off,
230 		dma_addr_t dma_buf, size_t len, u8 op_type)
231 {
232 	struct hifmc_priv *priv = nor->priv;
233 	struct hifmc_host *host = priv->host;
234 	u8 if_type = 0;
235 	u32 reg;
236 
237 	reg = readl(host->regbase + FMC_CFG);
238 	reg &= ~(FMC_CFG_OP_MODE_MASK | SPI_NOR_ADDR_MODE_MASK);
239 	reg |= FMC_CFG_OP_MODE_NORMAL;
240 	reg |= (nor->addr_width == 4) ? SPI_NOR_ADDR_MODE_4BYTES
241 		: SPI_NOR_ADDR_MODE_3BYTES;
242 	writel(reg, host->regbase + FMC_CFG);
243 
244 	writel(start_off, host->regbase + FMC_ADDRL);
245 	writel(dma_buf, host->regbase + FMC_DMA_SADDR_D0);
246 	writel(FMC_DMA_LEN_SET(len), host->regbase + FMC_DMA_LEN);
247 
248 	reg = OP_CFG_FM_CS(priv->chipselect);
249 	if (op_type == FMC_OP_READ)
250 		if_type = hisi_spi_nor_get_if_type(nor->read_proto);
251 	else
252 		if_type = hisi_spi_nor_get_if_type(nor->write_proto);
253 	reg |= OP_CFG_MEM_IF_TYPE(if_type);
254 	if (op_type == FMC_OP_READ)
255 		reg |= OP_CFG_DUMMY_NUM(nor->read_dummy >> 3);
256 	writel(reg, host->regbase + FMC_OP_CFG);
257 
258 	writel(0xff, host->regbase + FMC_INT_CLR);
259 	reg = OP_CTRL_RW_OP(op_type) | OP_CTRL_DMA_OP_READY;
260 	reg |= (op_type == FMC_OP_READ)
261 		? OP_CTRL_RD_OPCODE(nor->read_opcode)
262 		: OP_CTRL_WR_OPCODE(nor->program_opcode);
263 	writel(reg, host->regbase + FMC_OP_DMA);
264 
265 	return hisi_spi_nor_wait_op_finish(host);
266 }
267 
268 static ssize_t hisi_spi_nor_read(struct spi_nor *nor, loff_t from, size_t len,
269 		u_char *read_buf)
270 {
271 	struct hifmc_priv *priv = nor->priv;
272 	struct hifmc_host *host = priv->host;
273 	size_t offset;
274 	int ret;
275 
276 	for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
277 		size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
278 
279 		ret = hisi_spi_nor_dma_transfer(nor,
280 			from + offset, host->dma_buffer, trans, FMC_OP_READ);
281 		if (ret) {
282 			dev_warn(nor->dev, "DMA read timeout\n");
283 			return ret;
284 		}
285 		memcpy(read_buf + offset, host->buffer, trans);
286 	}
287 
288 	return len;
289 }
290 
291 static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to,
292 			size_t len, const u_char *write_buf)
293 {
294 	struct hifmc_priv *priv = nor->priv;
295 	struct hifmc_host *host = priv->host;
296 	size_t offset;
297 	int ret;
298 
299 	for (offset = 0; offset < len; offset += HIFMC_DMA_MAX_LEN) {
300 		size_t trans = min_t(size_t, HIFMC_DMA_MAX_LEN, len - offset);
301 
302 		memcpy(host->buffer, write_buf + offset, trans);
303 		ret = hisi_spi_nor_dma_transfer(nor,
304 			to + offset, host->dma_buffer, trans, FMC_OP_WRITE);
305 		if (ret) {
306 			dev_warn(nor->dev, "DMA write timeout\n");
307 			return ret;
308 		}
309 	}
310 
311 	return len;
312 }
313 
314 static const struct spi_nor_controller_ops hisi_controller_ops = {
315 	.prepare = hisi_spi_nor_prep,
316 	.unprepare = hisi_spi_nor_unprep,
317 	.read_reg = hisi_spi_nor_read_reg,
318 	.write_reg = hisi_spi_nor_write_reg,
319 	.read = hisi_spi_nor_read,
320 	.write = hisi_spi_nor_write,
321 };
322 
323 /**
324  * Get spi flash device information and register it as a mtd device.
325  */
326 static int hisi_spi_nor_register(struct device_node *np,
327 				struct hifmc_host *host)
328 {
329 	const struct spi_nor_hwcaps hwcaps = {
330 		.mask = SNOR_HWCAPS_READ |
331 			SNOR_HWCAPS_READ_FAST |
332 			SNOR_HWCAPS_READ_1_1_2 |
333 			SNOR_HWCAPS_READ_1_1_4 |
334 			SNOR_HWCAPS_PP,
335 	};
336 	struct device *dev = host->dev;
337 	struct spi_nor *nor;
338 	struct hifmc_priv *priv;
339 	struct mtd_info *mtd;
340 	int ret;
341 
342 	nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL);
343 	if (!nor)
344 		return -ENOMEM;
345 
346 	nor->dev = dev;
347 	spi_nor_set_flash_node(nor, np);
348 
349 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
350 	if (!priv)
351 		return -ENOMEM;
352 
353 	ret = of_property_read_u32(np, "reg", &priv->chipselect);
354 	if (ret) {
355 		dev_err(dev, "There's no reg property for %pOF\n",
356 			np);
357 		return ret;
358 	}
359 
360 	ret = of_property_read_u32(np, "spi-max-frequency",
361 			&priv->clkrate);
362 	if (ret) {
363 		dev_err(dev, "There's no spi-max-frequency property for %pOF\n",
364 			np);
365 		return ret;
366 	}
367 	priv->host = host;
368 	nor->priv = priv;
369 	nor->controller_ops = &hisi_controller_ops;
370 
371 	ret = spi_nor_scan(nor, NULL, &hwcaps);
372 	if (ret)
373 		return ret;
374 
375 	mtd = &nor->mtd;
376 	mtd->name = np->name;
377 	ret = mtd_device_register(mtd, NULL, 0);
378 	if (ret)
379 		return ret;
380 
381 	host->nor[host->num_chip] = nor;
382 	host->num_chip++;
383 	return 0;
384 }
385 
386 static void hisi_spi_nor_unregister_all(struct hifmc_host *host)
387 {
388 	int i;
389 
390 	for (i = 0; i < host->num_chip; i++)
391 		mtd_device_unregister(&host->nor[i]->mtd);
392 }
393 
394 static int hisi_spi_nor_register_all(struct hifmc_host *host)
395 {
396 	struct device *dev = host->dev;
397 	struct device_node *np;
398 	int ret;
399 
400 	for_each_available_child_of_node(dev->of_node, np) {
401 		ret = hisi_spi_nor_register(np, host);
402 		if (ret)
403 			goto fail;
404 
405 		if (host->num_chip == HIFMC_MAX_CHIP_NUM) {
406 			dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n");
407 			of_node_put(np);
408 			break;
409 		}
410 	}
411 
412 	return 0;
413 
414 fail:
415 	hisi_spi_nor_unregister_all(host);
416 	return ret;
417 }
418 
419 static int hisi_spi_nor_probe(struct platform_device *pdev)
420 {
421 	struct device *dev = &pdev->dev;
422 	struct resource *res;
423 	struct hifmc_host *host;
424 	int ret;
425 
426 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
427 	if (!host)
428 		return -ENOMEM;
429 
430 	platform_set_drvdata(pdev, host);
431 	host->dev = dev;
432 
433 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "control");
434 	host->regbase = devm_ioremap_resource(dev, res);
435 	if (IS_ERR(host->regbase))
436 		return PTR_ERR(host->regbase);
437 
438 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory");
439 	host->iobase = devm_ioremap_resource(dev, res);
440 	if (IS_ERR(host->iobase))
441 		return PTR_ERR(host->iobase);
442 
443 	host->clk = devm_clk_get(dev, NULL);
444 	if (IS_ERR(host->clk))
445 		return PTR_ERR(host->clk);
446 
447 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
448 	if (ret) {
449 		dev_warn(dev, "Unable to set dma mask\n");
450 		return ret;
451 	}
452 
453 	host->buffer = dmam_alloc_coherent(dev, HIFMC_DMA_MAX_LEN,
454 			&host->dma_buffer, GFP_KERNEL);
455 	if (!host->buffer)
456 		return -ENOMEM;
457 
458 	ret = clk_prepare_enable(host->clk);
459 	if (ret)
460 		return ret;
461 
462 	mutex_init(&host->lock);
463 	hisi_spi_nor_init(host);
464 	ret = hisi_spi_nor_register_all(host);
465 	if (ret)
466 		mutex_destroy(&host->lock);
467 
468 	clk_disable_unprepare(host->clk);
469 	return ret;
470 }
471 
472 static int hisi_spi_nor_remove(struct platform_device *pdev)
473 {
474 	struct hifmc_host *host = platform_get_drvdata(pdev);
475 
476 	hisi_spi_nor_unregister_all(host);
477 	mutex_destroy(&host->lock);
478 	clk_disable_unprepare(host->clk);
479 	return 0;
480 }
481 
482 static const struct of_device_id hisi_spi_nor_dt_ids[] = {
483 	{ .compatible = "hisilicon,fmc-spi-nor"},
484 	{ /* sentinel */ }
485 };
486 MODULE_DEVICE_TABLE(of, hisi_spi_nor_dt_ids);
487 
488 static struct platform_driver hisi_spi_nor_driver = {
489 	.driver = {
490 		.name	= "hisi-sfc",
491 		.of_match_table = hisi_spi_nor_dt_ids,
492 	},
493 	.probe	= hisi_spi_nor_probe,
494 	.remove	= hisi_spi_nor_remove,
495 };
496 module_platform_driver(hisi_spi_nor_driver);
497 
498 MODULE_LICENSE("GPL v2");
499 MODULE_DESCRIPTION("HiSilicon SPI Nor Flash Controller Driver");
500