xref: /openbmc/linux/drivers/mtd/nftlmount.c (revision a91c3fb2)
1 /*
2  * NFTL mount code with extensive checks
3  *
4  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
5  * Copyright © 2000 Netgem S.A.
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <asm/errno.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/nftl.h>
30 
31 #define SECTORSIZE 512
32 
33 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
34  *	various device information of the NFTL partition and Bad Unit Table. Update
35  *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
36  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
37  */
38 static int find_boot_record(struct NFTLrecord *nftl)
39 {
40 	struct nftl_uci1 h1;
41 	unsigned int block, boot_record_count = 0;
42 	size_t retlen;
43 	u8 buf[SECTORSIZE];
44 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
45 	struct mtd_info *mtd = nftl->mbd.mtd;
46 	unsigned int i;
47 
48         /* Assume logical EraseSize == physical erasesize for starting the scan.
49 	   We'll sort it out later if we find a MediaHeader which says otherwise */
50 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
51 	   the MediaHeader and adjusted the virtual erasesize it presents in
52 	   the mtd device accordingly.  We could even get rid of
53 	   nftl->EraseSize if there were any point in doing so. */
54 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
55         nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
56 
57 	nftl->MediaUnit = BLOCK_NIL;
58 	nftl->SpareMediaUnit = BLOCK_NIL;
59 
60 	/* search for a valid boot record */
61 	for (block = 0; block < nftl->nb_blocks; block++) {
62 		int ret;
63 
64 		/* Check for ANAND header first. Then can whinge if it's found but later
65 		   checks fail */
66 		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
67 			       &retlen, buf);
68 		/* We ignore ret in case the ECC of the MediaHeader is invalid
69 		   (which is apparently acceptable) */
70 		if (retlen != SECTORSIZE) {
71 			static int warncount = 5;
72 
73 			if (warncount) {
74 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
75 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
76 				if (!--warncount)
77 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
78 			}
79 			continue;
80 		}
81 
82 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
83 			/* ANAND\0 not found. Continue */
84 #if 0
85 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
86 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
87 #endif
88 			continue;
89 		}
90 
91 		/* To be safer with BIOS, also use erase mark as discriminant */
92 		if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
93 					 SECTORSIZE + 8, 8, &retlen,
94 					 (char *)&h1) < 0)) {
95 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
96 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
97 			continue;
98 		}
99 
100 #if 0 /* Some people seem to have devices without ECC or erase marks
101 	 on the Media Header blocks. There are enough other sanity
102 	 checks in here that we can probably do without it.
103       */
104 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
105 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
106 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
107 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
108 			continue;
109 		}
110 
111 		/* Finally reread to check ECC */
112 		if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
113 				     &retlen, buf) < 0)) {
114 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
115 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
116 			continue;
117 		}
118 
119 		/* Paranoia. Check the ANAND header is still there after the ECC read */
120 		if (memcmp(buf, "ANAND", 6)) {
121 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
122 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
123 			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
124 			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
125 			continue;
126 		}
127 #endif
128 		/* OK, we like it. */
129 
130 		if (boot_record_count) {
131 			/* We've already processed one. So we just check if
132 			   this one is the same as the first one we found */
133 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
134 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
135 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
136 				/* if (debug) Print both side by side */
137 				if (boot_record_count < 2) {
138 					/* We haven't yet seen two real ones */
139 					return -1;
140 				}
141 				continue;
142 			}
143 			if (boot_record_count == 1)
144 				nftl->SpareMediaUnit = block;
145 
146 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
147 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
148 
149 
150 			boot_record_count++;
151 			continue;
152 		}
153 
154 		/* This is the first we've seen. Copy the media header structure into place */
155 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
156 
157 		/* Do some sanity checks on it */
158 #if 0
159 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
160 erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
161 device is already correct.
162 		if (mh->UnitSizeFactor == 0) {
163 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
164 		} else if (mh->UnitSizeFactor < 0xfc) {
165 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
166 			       mh->UnitSizeFactor);
167 			return -1;
168 		} else if (mh->UnitSizeFactor != 0xff) {
169 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
170 			       mh->UnitSizeFactor);
171 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
172 			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
173 		}
174 #endif
175 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
176 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
177 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
178 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
179 			       nftl->nb_boot_blocks, nftl->nb_blocks);
180 			return -1;
181 		}
182 
183 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
184 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
185 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
186 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
187 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
188 			return -1;
189 		}
190 
191 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
192 
193 		/* If we're not using the last sectors in the device for some reason,
194 		   reduce nb_blocks accordingly so we forget they're there */
195 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
196 
197 		/* XXX: will be suppressed */
198 		nftl->lastEUN = nftl->nb_blocks - 1;
199 
200 		/* memory alloc */
201 		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
202 		if (!nftl->EUNtable) {
203 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
204 			return -ENOMEM;
205 		}
206 
207 		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
208 		if (!nftl->ReplUnitTable) {
209 			kfree(nftl->EUNtable);
210 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
211 			return -ENOMEM;
212 		}
213 
214 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
215 		for (i = 0; i < nftl->nb_boot_blocks; i++)
216 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
217 		/* mark all remaining blocks as potentially containing data */
218 		for (; i < nftl->nb_blocks; i++) {
219 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
220 		}
221 
222 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
223 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
224 
225 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
226 		for (i = 0; i < nftl->nb_blocks; i++) {
227 #if 0
228 The new DiskOnChip driver already scanned the bad block table.  Just query it.
229 			if ((i & (SECTORSIZE - 1)) == 0) {
230 				/* read one sector for every SECTORSIZE of blocks */
231 				if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
232 						     i + SECTORSIZE, SECTORSIZE, &retlen,
233 						     buf)) < 0) {
234 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
235 					       ret);
236 					kfree(nftl->ReplUnitTable);
237 					kfree(nftl->EUNtable);
238 					return -1;
239 				}
240 			}
241 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
242 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
243 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
244 #endif
245 			if (mtd_block_isbad(nftl->mbd.mtd,
246 					    i * nftl->EraseSize))
247 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
248 		}
249 
250 		nftl->MediaUnit = block;
251 		boot_record_count++;
252 
253 	} /* foreach (block) */
254 
255 	return boot_record_count?0:-1;
256 }
257 
258 static int memcmpb(void *a, int c, int n)
259 {
260 	int i;
261 	for (i = 0; i < n; i++) {
262 		if (c != ((unsigned char *)a)[i])
263 			return 1;
264 	}
265 	return 0;
266 }
267 
268 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
269 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
270 			      int check_oob)
271 {
272 	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
273 	struct mtd_info *mtd = nftl->mbd.mtd;
274 	size_t retlen;
275 	int i;
276 
277 	for (i = 0; i < len; i += SECTORSIZE) {
278 		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
279 			return -1;
280 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
281 			return -1;
282 
283 		if (check_oob) {
284 			if(nftl_read_oob(mtd, address, mtd->oobsize,
285 					 &retlen, &buf[SECTORSIZE]) < 0)
286 				return -1;
287 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
288 				return -1;
289 		}
290 		address += SECTORSIZE;
291 	}
292 
293 	return 0;
294 }
295 
296 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
297  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
298  *
299  * Return: 0 when succeed, -1 on error.
300  *
301  *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
302  */
303 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
304 {
305 	size_t retlen;
306 	unsigned int nb_erases, erase_mark;
307 	struct nftl_uci1 uci;
308 	struct erase_info *instr = &nftl->instr;
309 	struct mtd_info *mtd = nftl->mbd.mtd;
310 
311 	/* Read the Unit Control Information #1 for Wear-Leveling */
312 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
313 			  8, &retlen, (char *)&uci) < 0)
314 		goto default_uci1;
315 
316 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
317 	if (erase_mark != ERASE_MARK) {
318 	default_uci1:
319 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
320 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
321 		uci.WearInfo = cpu_to_le32(0);
322 	}
323 
324 	memset(instr, 0, sizeof(struct erase_info));
325 
326 	/* XXX: use async erase interface, XXX: test return code */
327 	instr->mtd = nftl->mbd.mtd;
328 	instr->addr = block * nftl->EraseSize;
329 	instr->len = nftl->EraseSize;
330 	mtd_erase(mtd, instr);
331 
332 	if (instr->state == MTD_ERASE_FAILED) {
333 		printk("Error while formatting block %d\n", block);
334 		goto fail;
335 	}
336 
337 		/* increase and write Wear-Leveling info */
338 		nb_erases = le32_to_cpu(uci.WearInfo);
339 		nb_erases++;
340 
341 		/* wrap (almost impossible with current flash) or free block */
342 		if (nb_erases == 0)
343 			nb_erases = 1;
344 
345 		/* check the "freeness" of Erase Unit before updating metadata
346 		 * FixMe:  is this check really necessary ? since we have check the
347 		 *         return code after the erase operation. */
348 		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
349 			goto fail;
350 
351 		uci.WearInfo = le32_to_cpu(nb_erases);
352 		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
353 				   8, 8, &retlen, (char *)&uci) < 0)
354 			goto fail;
355 		return 0;
356 fail:
357 	/* could not format, update the bad block table (caller is responsible
358 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
359 	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
360 	return -1;
361 }
362 
363 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
364  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
365  *	was being folded when NFTL was interrupted.
366  *
367  *	The check_free_sectors in this function is necessary. There is a possible
368  *	situation that after writing the Data area, the Block Control Information is
369  *	not updated according (due to power failure or something) which leaves the block
370  *	in an inconsistent state. So we have to check if a block is really FREE in this
371  *	case. */
372 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
373 {
374 	struct mtd_info *mtd = nftl->mbd.mtd;
375 	unsigned int block, i, status;
376 	struct nftl_bci bci;
377 	int sectors_per_block;
378 	size_t retlen;
379 
380 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
381 	block = first_block;
382 	for (;;) {
383 		for (i = 0; i < sectors_per_block; i++) {
384 			if (nftl_read_oob(mtd,
385 					  block * nftl->EraseSize + i * SECTORSIZE,
386 					  8, &retlen, (char *)&bci) < 0)
387 				status = SECTOR_IGNORE;
388 			else
389 				status = bci.Status | bci.Status1;
390 
391 			switch(status) {
392 			case SECTOR_FREE:
393 				/* verify that the sector is really free. If not, mark
394 				   as ignore */
395 				if (memcmpb(&bci, 0xff, 8) != 0 ||
396 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
397 						       SECTORSIZE, 0) != 0) {
398 					printk("Incorrect free sector %d in block %d: "
399 					       "marking it as ignored\n",
400 					       i, block);
401 
402 					/* sector not free actually : mark it as SECTOR_IGNORE  */
403 					bci.Status = SECTOR_IGNORE;
404 					bci.Status1 = SECTOR_IGNORE;
405 					nftl_write_oob(mtd, block *
406 						       nftl->EraseSize +
407 						       i * SECTORSIZE, 8,
408 						       &retlen, (char *)&bci);
409 				}
410 				break;
411 			default:
412 				break;
413 			}
414 		}
415 
416 		/* proceed to next Erase Unit on the chain */
417 		block = nftl->ReplUnitTable[block];
418 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
419 			printk("incorrect ReplUnitTable[] : %d\n", block);
420 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
421 			break;
422 	}
423 }
424 
425 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
426 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
427 {
428 	unsigned int length = 0, block = first_block;
429 
430 	for (;;) {
431 		length++;
432 		/* avoid infinite loops, although this is guaranteed not to
433 		   happen because of the previous checks */
434 		if (length >= nftl->nb_blocks) {
435 			printk("nftl: length too long %d !\n", length);
436 			break;
437 		}
438 
439 		block = nftl->ReplUnitTable[block];
440 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
441 			printk("incorrect ReplUnitTable[] : %d\n", block);
442 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
443 			break;
444 	}
445 	return length;
446 }
447 
448 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
449  *	Virtual Unit Chain, i.e. all the units are disconnected.
450  *
451  *	It is not strictly correct to begin from the first block of the chain because
452  *	if we stop the code, we may see again a valid chain if there was a first_block
453  *	flag in a block inside it. But is it really a problem ?
454  *
455  * FixMe: Figure out what the last statement means. What if power failure when we are
456  *	in the for (;;) loop formatting blocks ??
457  */
458 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
459 {
460 	unsigned int block = first_block, block1;
461 
462 	printk("Formatting chain at block %d\n", first_block);
463 
464 	for (;;) {
465 		block1 = nftl->ReplUnitTable[block];
466 
467 		printk("Formatting block %d\n", block);
468 		if (NFTL_formatblock(nftl, block) < 0) {
469 			/* cannot format !!!! Mark it as Bad Unit */
470 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
471 		} else {
472 			nftl->ReplUnitTable[block] = BLOCK_FREE;
473 		}
474 
475 		/* goto next block on the chain */
476 		block = block1;
477 
478 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
479 			printk("incorrect ReplUnitTable[] : %d\n", block);
480 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
481 			break;
482 	}
483 }
484 
485 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
486  *	totally free (only 0xff).
487  *
488  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
489  *	following criteria:
490  *	1. */
491 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
492 {
493 	struct mtd_info *mtd = nftl->mbd.mtd;
494 	struct nftl_uci1 h1;
495 	unsigned int erase_mark;
496 	size_t retlen;
497 
498 	/* check erase mark. */
499 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
500 			  &retlen, (char *)&h1) < 0)
501 		return -1;
502 
503 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
504 	if (erase_mark != ERASE_MARK) {
505 		/* if no erase mark, the block must be totally free. This is
506 		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
507 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
508 			return -1;
509 
510 		/* free block : write erase mark */
511 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
512 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
513 		h1.WearInfo = cpu_to_le32(0);
514 		if (nftl_write_oob(mtd,
515 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
516 				   &retlen, (char *)&h1) < 0)
517 			return -1;
518 	} else {
519 #if 0
520 		/* if erase mark present, need to skip it when doing check */
521 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
522 			/* check free sector */
523 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
524 						SECTORSIZE, 0) != 0)
525 				return -1;
526 
527 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
528 					  16, &retlen, buf) < 0)
529 				return -1;
530 			if (i == SECTORSIZE) {
531 				/* skip erase mark */
532 				if (memcmpb(buf, 0xff, 8))
533 					return -1;
534 			} else {
535 				if (memcmpb(buf, 0xff, 16))
536 					return -1;
537 			}
538 		}
539 #endif
540 	}
541 
542 	return 0;
543 }
544 
545 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
546  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
547  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
548  *	for some reason. A clean up/check of the VUC is necessary in this case.
549  *
550  * WARNING: return 0 if read error
551  */
552 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
553 {
554 	struct mtd_info *mtd = nftl->mbd.mtd;
555 	struct nftl_uci2 uci;
556 	size_t retlen;
557 
558 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
559 			  8, &retlen, (char *)&uci) < 0)
560 		return 0;
561 
562 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
563 }
564 
565 int NFTL_mount(struct NFTLrecord *s)
566 {
567 	int i;
568 	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
569 	unsigned int block, first_block, is_first_block;
570 	int chain_length, do_format_chain;
571 	struct nftl_uci0 h0;
572 	struct nftl_uci1 h1;
573 	struct mtd_info *mtd = s->mbd.mtd;
574 	size_t retlen;
575 
576 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
577 	if (find_boot_record(s) < 0) {
578 		printk("Could not find valid boot record\n");
579 		return -1;
580 	}
581 
582 	/* init the logical to physical table */
583 	for (i = 0; i < s->nb_blocks; i++) {
584 		s->EUNtable[i] = BLOCK_NIL;
585 	}
586 
587 	/* first pass : explore each block chain */
588 	first_logical_block = 0;
589 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
590 		/* if the block was not already explored, we can look at it */
591 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
592 			block = first_block;
593 			chain_length = 0;
594 			do_format_chain = 0;
595 
596 			for (;;) {
597 				/* read the block header. If error, we format the chain */
598 				if (nftl_read_oob(mtd,
599 						  block * s->EraseSize + 8, 8,
600 						  &retlen, (char *)&h0) < 0 ||
601 				    nftl_read_oob(mtd,
602 						  block * s->EraseSize +
603 						  SECTORSIZE + 8, 8,
604 						  &retlen, (char *)&h1) < 0) {
605 					s->ReplUnitTable[block] = BLOCK_NIL;
606 					do_format_chain = 1;
607 					break;
608 				}
609 
610 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
611 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
612 				nb_erases = le32_to_cpu (h1.WearInfo);
613 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
614 
615 				is_first_block = !(logical_block >> 15);
616 				logical_block = logical_block & 0x7fff;
617 
618 				/* invalid/free block test */
619 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
620 					if (chain_length == 0) {
621 						/* if not currently in a chain, we can handle it safely */
622 						if (check_and_mark_free_block(s, block) < 0) {
623 							/* not really free: format it */
624 							printk("Formatting block %d\n", block);
625 							if (NFTL_formatblock(s, block) < 0) {
626 								/* could not format: reserve the block */
627 								s->ReplUnitTable[block] = BLOCK_RESERVED;
628 							} else {
629 								s->ReplUnitTable[block] = BLOCK_FREE;
630 							}
631 						} else {
632 							/* free block: mark it */
633 							s->ReplUnitTable[block] = BLOCK_FREE;
634 						}
635 						/* directly examine the next block. */
636 						goto examine_ReplUnitTable;
637 					} else {
638 						/* the block was in a chain : this is bad. We
639 						   must format all the chain */
640 						printk("Block %d: free but referenced in chain %d\n",
641 						       block, first_block);
642 						s->ReplUnitTable[block] = BLOCK_NIL;
643 						do_format_chain = 1;
644 						break;
645 					}
646 				}
647 
648 				/* we accept only first blocks here */
649 				if (chain_length == 0) {
650 					/* this block is not the first block in chain :
651 					   ignore it, it will be included in a chain
652 					   later, or marked as not explored */
653 					if (!is_first_block)
654 						goto examine_ReplUnitTable;
655 					first_logical_block = logical_block;
656 				} else {
657 					if (logical_block != first_logical_block) {
658 						printk("Block %d: incorrect logical block: %d expected: %d\n",
659 						       block, logical_block, first_logical_block);
660 						/* the chain is incorrect : we must format it,
661 						   but we need to read it completely */
662 						do_format_chain = 1;
663 					}
664 					if (is_first_block) {
665 						/* we accept that a block is marked as first
666 						   block while being last block in a chain
667 						   only if the chain is being folded */
668 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
669 						    rep_block != 0xffff) {
670 							printk("Block %d: incorrectly marked as first block in chain\n",
671 							       block);
672 							/* the chain is incorrect : we must format it,
673 							   but we need to read it completely */
674 							do_format_chain = 1;
675 						} else {
676 							printk("Block %d: folding in progress - ignoring first block flag\n",
677 							       block);
678 						}
679 					}
680 				}
681 				chain_length++;
682 				if (rep_block == 0xffff) {
683 					/* no more blocks after */
684 					s->ReplUnitTable[block] = BLOCK_NIL;
685 					break;
686 				} else if (rep_block >= s->nb_blocks) {
687 					printk("Block %d: referencing invalid block %d\n",
688 					       block, rep_block);
689 					do_format_chain = 1;
690 					s->ReplUnitTable[block] = BLOCK_NIL;
691 					break;
692 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
693 					/* same problem as previous 'is_first_block' test:
694 					   we accept that the last block of a chain has
695 					   the first_block flag set if folding is in
696 					   progress. We handle here the case where the
697 					   last block appeared first */
698 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
699 					    s->EUNtable[first_logical_block] == rep_block &&
700 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
701 						/* EUNtable[] will be set after */
702 						printk("Block %d: folding in progress - ignoring first block flag\n",
703 						       rep_block);
704 						s->ReplUnitTable[block] = rep_block;
705 						s->EUNtable[first_logical_block] = BLOCK_NIL;
706 					} else {
707 						printk("Block %d: referencing block %d already in another chain\n",
708 						       block, rep_block);
709 						/* XXX: should handle correctly fold in progress chains */
710 						do_format_chain = 1;
711 						s->ReplUnitTable[block] = BLOCK_NIL;
712 					}
713 					break;
714 				} else {
715 					/* this is OK */
716 					s->ReplUnitTable[block] = rep_block;
717 					block = rep_block;
718 				}
719 			}
720 
721 			/* the chain was completely explored. Now we can decide
722 			   what to do with it */
723 			if (do_format_chain) {
724 				/* invalid chain : format it */
725 				format_chain(s, first_block);
726 			} else {
727 				unsigned int first_block1, chain_to_format, chain_length1;
728 				int fold_mark;
729 
730 				/* valid chain : get foldmark */
731 				fold_mark = get_fold_mark(s, first_block);
732 				if (fold_mark == 0) {
733 					/* cannot get foldmark : format the chain */
734 					printk("Could read foldmark at block %d\n", first_block);
735 					format_chain(s, first_block);
736 				} else {
737 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
738 						check_sectors_in_chain(s, first_block);
739 
740 					/* now handle the case where we find two chains at the
741 					   same virtual address : we select the longer one,
742 					   because the shorter one is the one which was being
743 					   folded if the folding was not done in place */
744 					first_block1 = s->EUNtable[first_logical_block];
745 					if (first_block1 != BLOCK_NIL) {
746 						/* XXX: what to do if same length ? */
747 						chain_length1 = calc_chain_length(s, first_block1);
748 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
749 						       first_block1, chain_length1, first_block, chain_length);
750 
751 						if (chain_length >= chain_length1) {
752 							chain_to_format = first_block1;
753 							s->EUNtable[first_logical_block] = first_block;
754 						} else {
755 							chain_to_format = first_block;
756 						}
757 						format_chain(s, chain_to_format);
758 					} else {
759 						s->EUNtable[first_logical_block] = first_block;
760 					}
761 				}
762 			}
763 		}
764 	examine_ReplUnitTable:;
765 	}
766 
767 	/* second pass to format unreferenced blocks  and init free block count */
768 	s->numfreeEUNs = 0;
769 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
770 
771 	for (block = 0; block < s->nb_blocks; block++) {
772 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
773 			printk("Unreferenced block %d, formatting it\n", block);
774 			if (NFTL_formatblock(s, block) < 0)
775 				s->ReplUnitTable[block] = BLOCK_RESERVED;
776 			else
777 				s->ReplUnitTable[block] = BLOCK_FREE;
778 		}
779 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
780 			s->numfreeEUNs++;
781 			s->LastFreeEUN = block;
782 		}
783 	}
784 
785 	return 0;
786 }
787