xref: /openbmc/linux/drivers/mtd/nftlmount.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NFTL mount code with extensive checks
4  *
5  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
6  * Copyright © 2000 Netgem S.A.
7  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
8  */
9 
10 #include <linux/kernel.h>
11 #include <asm/errno.h>
12 #include <linux/delay.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/rawnand.h>
16 #include <linux/mtd/nftl.h>
17 
18 #define SECTORSIZE 512
19 
20 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
21  *	various device information of the NFTL partition and Bad Unit Table. Update
22  *	the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
23  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
24  */
25 static int find_boot_record(struct NFTLrecord *nftl)
26 {
27 	struct nftl_uci1 h1;
28 	unsigned int block, boot_record_count = 0;
29 	size_t retlen;
30 	u8 buf[SECTORSIZE];
31 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
32 	struct mtd_info *mtd = nftl->mbd.mtd;
33 	unsigned int i;
34 
35         /* Assume logical EraseSize == physical erasesize for starting the scan.
36 	   We'll sort it out later if we find a MediaHeader which says otherwise */
37 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
38 	   the MediaHeader and adjusted the virtual erasesize it presents in
39 	   the mtd device accordingly.  We could even get rid of
40 	   nftl->EraseSize if there were any point in doing so. */
41 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
42         nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
43 
44 	nftl->MediaUnit = BLOCK_NIL;
45 	nftl->SpareMediaUnit = BLOCK_NIL;
46 
47 	/* search for a valid boot record */
48 	for (block = 0; block < nftl->nb_blocks; block++) {
49 		int ret;
50 
51 		/* Check for ANAND header first. Then can whinge if it's found but later
52 		   checks fail */
53 		ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
54 			       &retlen, buf);
55 		/* We ignore ret in case the ECC of the MediaHeader is invalid
56 		   (which is apparently acceptable) */
57 		if (retlen != SECTORSIZE) {
58 			static int warncount = 5;
59 
60 			if (warncount) {
61 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
62 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
63 				if (!--warncount)
64 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
65 			}
66 			continue;
67 		}
68 
69 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
70 			/* ANAND\0 not found. Continue */
71 #if 0
72 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
73 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
74 #endif
75 			continue;
76 		}
77 
78 		/* To be safer with BIOS, also use erase mark as discriminant */
79 		ret = nftl_read_oob(mtd, block * nftl->EraseSize +
80 					 SECTORSIZE + 8, 8, &retlen,
81 					 (char *)&h1);
82 		if (ret < 0) {
83 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
84 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
85 			continue;
86 		}
87 
88 #if 0 /* Some people seem to have devices without ECC or erase marks
89 	 on the Media Header blocks. There are enough other sanity
90 	 checks in here that we can probably do without it.
91       */
92 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
93 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
94 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
95 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
96 			continue;
97 		}
98 
99 		/* Finally reread to check ECC */
100 		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
101 				&retlen, buf);
102 		if (ret < 0) {
103 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
104 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
105 			continue;
106 		}
107 
108 		/* Paranoia. Check the ANAND header is still there after the ECC read */
109 		if (memcmp(buf, "ANAND", 6)) {
110 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
111 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
112 			printk(KERN_NOTICE "New data are: %6ph\n", buf);
113 			continue;
114 		}
115 #endif
116 		/* OK, we like it. */
117 
118 		if (boot_record_count) {
119 			/* We've already processed one. So we just check if
120 			   this one is the same as the first one we found */
121 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
122 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
123 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
124 				/* if (debug) Print both side by side */
125 				if (boot_record_count < 2) {
126 					/* We haven't yet seen two real ones */
127 					return -1;
128 				}
129 				continue;
130 			}
131 			if (boot_record_count == 1)
132 				nftl->SpareMediaUnit = block;
133 
134 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
135 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
136 
137 
138 			boot_record_count++;
139 			continue;
140 		}
141 
142 		/* This is the first we've seen. Copy the media header structure into place */
143 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
144 
145 		/* Do some sanity checks on it */
146 #if 0
147 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
148 erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
149 device is already correct.
150 		if (mh->UnitSizeFactor == 0) {
151 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
152 		} else if (mh->UnitSizeFactor < 0xfc) {
153 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
154 			       mh->UnitSizeFactor);
155 			return -1;
156 		} else if (mh->UnitSizeFactor != 0xff) {
157 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
158 			       mh->UnitSizeFactor);
159 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
160 			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
161 		}
162 #endif
163 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
164 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
165 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
166 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
167 			       nftl->nb_boot_blocks, nftl->nb_blocks);
168 			return -1;
169 		}
170 
171 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
172 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
173 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
174 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
175 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
176 			return -1;
177 		}
178 
179 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
180 
181 		/* If we're not using the last sectors in the device for some reason,
182 		   reduce nb_blocks accordingly so we forget they're there */
183 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
184 
185 		/* XXX: will be suppressed */
186 		nftl->lastEUN = nftl->nb_blocks - 1;
187 
188 		/* memory alloc */
189 		nftl->EUNtable = kmalloc_array(nftl->nb_blocks, sizeof(u16),
190 					       GFP_KERNEL);
191 		if (!nftl->EUNtable) {
192 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
193 			return -ENOMEM;
194 		}
195 
196 		nftl->ReplUnitTable = kmalloc_array(nftl->nb_blocks,
197 						    sizeof(u16),
198 						    GFP_KERNEL);
199 		if (!nftl->ReplUnitTable) {
200 			kfree(nftl->EUNtable);
201 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
202 			return -ENOMEM;
203 		}
204 
205 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
206 		for (i = 0; i < nftl->nb_boot_blocks; i++)
207 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
208 		/* mark all remaining blocks as potentially containing data */
209 		for (; i < nftl->nb_blocks; i++) {
210 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
211 		}
212 
213 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
214 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
215 
216 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
217 		for (i = 0; i < nftl->nb_blocks; i++) {
218 #if 0
219 The new DiskOnChip driver already scanned the bad block table.  Just query it.
220 			if ((i & (SECTORSIZE - 1)) == 0) {
221 				/* read one sector for every SECTORSIZE of blocks */
222 				ret = mtd->read(nftl->mbd.mtd,
223 						block * nftl->EraseSize + i +
224 						SECTORSIZE, SECTORSIZE,
225 						&retlen, buf);
226 				if (ret < 0) {
227 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
228 					       ret);
229 					kfree(nftl->ReplUnitTable);
230 					kfree(nftl->EUNtable);
231 					return -1;
232 				}
233 			}
234 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
235 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
236 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
237 #endif
238 			if (mtd_block_isbad(nftl->mbd.mtd,
239 					    i * nftl->EraseSize))
240 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
241 		}
242 
243 		nftl->MediaUnit = block;
244 		boot_record_count++;
245 
246 	} /* foreach (block) */
247 
248 	return boot_record_count?0:-1;
249 }
250 
251 static int memcmpb(void *a, int c, int n)
252 {
253 	int i;
254 	for (i = 0; i < n; i++) {
255 		if (c != ((unsigned char *)a)[i])
256 			return 1;
257 	}
258 	return 0;
259 }
260 
261 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
262 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
263 			      int check_oob)
264 {
265 	struct mtd_info *mtd = nftl->mbd.mtd;
266 	size_t retlen;
267 	int i, ret;
268 	u8 *buf;
269 
270 	buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL);
271 	if (!buf)
272 		return -1;
273 
274 	ret = -1;
275 	for (i = 0; i < len; i += SECTORSIZE) {
276 		if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
277 			goto out;
278 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
279 			goto out;
280 
281 		if (check_oob) {
282 			if(nftl_read_oob(mtd, address, mtd->oobsize,
283 					 &retlen, &buf[SECTORSIZE]) < 0)
284 				goto out;
285 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
286 				goto out;
287 		}
288 		address += SECTORSIZE;
289 	}
290 
291 	ret = 0;
292 
293 out:
294 	kfree(buf);
295 	return ret;
296 }
297 
298 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
299  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
300  *
301  * Return: 0 when succeed, -1 on error.
302  *
303  *  ToDo: 1. Is it necessary to check_free_sector after erasing ??
304  */
305 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
306 {
307 	size_t retlen;
308 	unsigned int nb_erases, erase_mark;
309 	struct nftl_uci1 uci;
310 	struct erase_info *instr = &nftl->instr;
311 	struct mtd_info *mtd = nftl->mbd.mtd;
312 
313 	/* Read the Unit Control Information #1 for Wear-Leveling */
314 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
315 			  8, &retlen, (char *)&uci) < 0)
316 		goto default_uci1;
317 
318 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
319 	if (erase_mark != ERASE_MARK) {
320 	default_uci1:
321 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
322 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
323 		uci.WearInfo = cpu_to_le32(0);
324 	}
325 
326 	memset(instr, 0, sizeof(struct erase_info));
327 
328 	/* XXX: use async erase interface, XXX: test return code */
329 	instr->addr = block * nftl->EraseSize;
330 	instr->len = nftl->EraseSize;
331 	if (mtd_erase(mtd, instr)) {
332 		printk("Error while formatting block %d\n", block);
333 		goto fail;
334 	}
335 
336 	/* increase and write Wear-Leveling info */
337 	nb_erases = le32_to_cpu(uci.WearInfo);
338 	nb_erases++;
339 
340 	/* wrap (almost impossible with current flash) or free block */
341 	if (nb_erases == 0)
342 		nb_erases = 1;
343 
344 	/* check the "freeness" of Erase Unit before updating metadata
345 	 * FixMe:  is this check really necessary ? since we have check the
346 	 *         return code after the erase operation.
347 	 */
348 	if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
349 		goto fail;
350 
351 	uci.WearInfo = le32_to_cpu(nb_erases);
352 	if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
353 			   8, 8, &retlen, (char *)&uci) < 0)
354 		goto fail;
355 	return 0;
356 fail:
357 	/* could not format, update the bad block table (caller is responsible
358 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
359 	mtd_block_markbad(nftl->mbd.mtd, instr->addr);
360 	return -1;
361 }
362 
363 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
364  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
365  *	was being folded when NFTL was interrupted.
366  *
367  *	The check_free_sectors in this function is necessary. There is a possible
368  *	situation that after writing the Data area, the Block Control Information is
369  *	not updated according (due to power failure or something) which leaves the block
370  *	in an inconsistent state. So we have to check if a block is really FREE in this
371  *	case. */
372 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
373 {
374 	struct mtd_info *mtd = nftl->mbd.mtd;
375 	unsigned int block, i, status;
376 	struct nftl_bci bci;
377 	int sectors_per_block;
378 	size_t retlen;
379 
380 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
381 	block = first_block;
382 	for (;;) {
383 		for (i = 0; i < sectors_per_block; i++) {
384 			if (nftl_read_oob(mtd,
385 					  block * nftl->EraseSize + i * SECTORSIZE,
386 					  8, &retlen, (char *)&bci) < 0)
387 				status = SECTOR_IGNORE;
388 			else
389 				status = bci.Status | bci.Status1;
390 
391 			switch(status) {
392 			case SECTOR_FREE:
393 				/* verify that the sector is really free. If not, mark
394 				   as ignore */
395 				if (memcmpb(&bci, 0xff, 8) != 0 ||
396 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
397 						       SECTORSIZE, 0) != 0) {
398 					printk("Incorrect free sector %d in block %d: "
399 					       "marking it as ignored\n",
400 					       i, block);
401 
402 					/* sector not free actually : mark it as SECTOR_IGNORE  */
403 					bci.Status = SECTOR_IGNORE;
404 					bci.Status1 = SECTOR_IGNORE;
405 					nftl_write_oob(mtd, block *
406 						       nftl->EraseSize +
407 						       i * SECTORSIZE, 8,
408 						       &retlen, (char *)&bci);
409 				}
410 				break;
411 			default:
412 				break;
413 			}
414 		}
415 
416 		/* proceed to next Erase Unit on the chain */
417 		block = nftl->ReplUnitTable[block];
418 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
419 			printk("incorrect ReplUnitTable[] : %d\n", block);
420 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
421 			break;
422 	}
423 }
424 
425 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
426 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
427 {
428 	unsigned int length = 0, block = first_block;
429 
430 	for (;;) {
431 		length++;
432 		/* avoid infinite loops, although this is guaranteed not to
433 		   happen because of the previous checks */
434 		if (length >= nftl->nb_blocks) {
435 			printk("nftl: length too long %d !\n", length);
436 			break;
437 		}
438 
439 		block = nftl->ReplUnitTable[block];
440 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
441 			printk("incorrect ReplUnitTable[] : %d\n", block);
442 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
443 			break;
444 	}
445 	return length;
446 }
447 
448 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
449  *	Virtual Unit Chain, i.e. all the units are disconnected.
450  *
451  *	It is not strictly correct to begin from the first block of the chain because
452  *	if we stop the code, we may see again a valid chain if there was a first_block
453  *	flag in a block inside it. But is it really a problem ?
454  *
455  * FixMe: Figure out what the last statement means. What if power failure when we are
456  *	in the for (;;) loop formatting blocks ??
457  */
458 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
459 {
460 	unsigned int block = first_block, block1;
461 
462 	printk("Formatting chain at block %d\n", first_block);
463 
464 	for (;;) {
465 		block1 = nftl->ReplUnitTable[block];
466 
467 		printk("Formatting block %d\n", block);
468 		if (NFTL_formatblock(nftl, block) < 0) {
469 			/* cannot format !!!! Mark it as Bad Unit */
470 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
471 		} else {
472 			nftl->ReplUnitTable[block] = BLOCK_FREE;
473 		}
474 
475 		/* goto next block on the chain */
476 		block = block1;
477 
478 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
479 			printk("incorrect ReplUnitTable[] : %d\n", block);
480 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
481 			break;
482 	}
483 }
484 
485 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
486  *	totally free (only 0xff).
487  *
488  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
489  *	following criteria:
490  *	1. */
491 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
492 {
493 	struct mtd_info *mtd = nftl->mbd.mtd;
494 	struct nftl_uci1 h1;
495 	unsigned int erase_mark;
496 	size_t retlen;
497 
498 	/* check erase mark. */
499 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
500 			  &retlen, (char *)&h1) < 0)
501 		return -1;
502 
503 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
504 	if (erase_mark != ERASE_MARK) {
505 		/* if no erase mark, the block must be totally free. This is
506 		   possible in two cases : empty filesystem or interrupted erase (very unlikely) */
507 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
508 			return -1;
509 
510 		/* free block : write erase mark */
511 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
512 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
513 		h1.WearInfo = cpu_to_le32(0);
514 		if (nftl_write_oob(mtd,
515 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
516 				   &retlen, (char *)&h1) < 0)
517 			return -1;
518 	} else {
519 #if 0
520 		/* if erase mark present, need to skip it when doing check */
521 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
522 			/* check free sector */
523 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
524 						SECTORSIZE, 0) != 0)
525 				return -1;
526 
527 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
528 					  16, &retlen, buf) < 0)
529 				return -1;
530 			if (i == SECTORSIZE) {
531 				/* skip erase mark */
532 				if (memcmpb(buf, 0xff, 8))
533 					return -1;
534 			} else {
535 				if (memcmpb(buf, 0xff, 16))
536 					return -1;
537 			}
538 		}
539 #endif
540 	}
541 
542 	return 0;
543 }
544 
545 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
546  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
547  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
548  *	for some reason. A clean up/check of the VUC is necessary in this case.
549  *
550  * WARNING: return 0 if read error
551  */
552 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
553 {
554 	struct mtd_info *mtd = nftl->mbd.mtd;
555 	struct nftl_uci2 uci;
556 	size_t retlen;
557 
558 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
559 			  8, &retlen, (char *)&uci) < 0)
560 		return 0;
561 
562 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
563 }
564 
565 int NFTL_mount(struct NFTLrecord *s)
566 {
567 	int i;
568 	unsigned int first_logical_block, logical_block, rep_block, erase_mark;
569 	unsigned int block, first_block, is_first_block;
570 	int chain_length, do_format_chain;
571 	struct nftl_uci0 h0;
572 	struct nftl_uci1 h1;
573 	struct mtd_info *mtd = s->mbd.mtd;
574 	size_t retlen;
575 
576 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
577 	if (find_boot_record(s) < 0) {
578 		printk("Could not find valid boot record\n");
579 		return -1;
580 	}
581 
582 	/* init the logical to physical table */
583 	for (i = 0; i < s->nb_blocks; i++) {
584 		s->EUNtable[i] = BLOCK_NIL;
585 	}
586 
587 	/* first pass : explore each block chain */
588 	first_logical_block = 0;
589 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
590 		/* if the block was not already explored, we can look at it */
591 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
592 			block = first_block;
593 			chain_length = 0;
594 			do_format_chain = 0;
595 
596 			for (;;) {
597 				/* read the block header. If error, we format the chain */
598 				if (nftl_read_oob(mtd,
599 						  block * s->EraseSize + 8, 8,
600 						  &retlen, (char *)&h0) < 0 ||
601 				    nftl_read_oob(mtd,
602 						  block * s->EraseSize +
603 						  SECTORSIZE + 8, 8,
604 						  &retlen, (char *)&h1) < 0) {
605 					s->ReplUnitTable[block] = BLOCK_NIL;
606 					do_format_chain = 1;
607 					break;
608 				}
609 
610 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
611 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
612 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
613 
614 				is_first_block = !(logical_block >> 15);
615 				logical_block = logical_block & 0x7fff;
616 
617 				/* invalid/free block test */
618 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
619 					if (chain_length == 0) {
620 						/* if not currently in a chain, we can handle it safely */
621 						if (check_and_mark_free_block(s, block) < 0) {
622 							/* not really free: format it */
623 							printk("Formatting block %d\n", block);
624 							if (NFTL_formatblock(s, block) < 0) {
625 								/* could not format: reserve the block */
626 								s->ReplUnitTable[block] = BLOCK_RESERVED;
627 							} else {
628 								s->ReplUnitTable[block] = BLOCK_FREE;
629 							}
630 						} else {
631 							/* free block: mark it */
632 							s->ReplUnitTable[block] = BLOCK_FREE;
633 						}
634 						/* directly examine the next block. */
635 						goto examine_ReplUnitTable;
636 					} else {
637 						/* the block was in a chain : this is bad. We
638 						   must format all the chain */
639 						printk("Block %d: free but referenced in chain %d\n",
640 						       block, first_block);
641 						s->ReplUnitTable[block] = BLOCK_NIL;
642 						do_format_chain = 1;
643 						break;
644 					}
645 				}
646 
647 				/* we accept only first blocks here */
648 				if (chain_length == 0) {
649 					/* this block is not the first block in chain :
650 					   ignore it, it will be included in a chain
651 					   later, or marked as not explored */
652 					if (!is_first_block)
653 						goto examine_ReplUnitTable;
654 					first_logical_block = logical_block;
655 				} else {
656 					if (logical_block != first_logical_block) {
657 						printk("Block %d: incorrect logical block: %d expected: %d\n",
658 						       block, logical_block, first_logical_block);
659 						/* the chain is incorrect : we must format it,
660 						   but we need to read it completely */
661 						do_format_chain = 1;
662 					}
663 					if (is_first_block) {
664 						/* we accept that a block is marked as first
665 						   block while being last block in a chain
666 						   only if the chain is being folded */
667 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
668 						    rep_block != 0xffff) {
669 							printk("Block %d: incorrectly marked as first block in chain\n",
670 							       block);
671 							/* the chain is incorrect : we must format it,
672 							   but we need to read it completely */
673 							do_format_chain = 1;
674 						} else {
675 							printk("Block %d: folding in progress - ignoring first block flag\n",
676 							       block);
677 						}
678 					}
679 				}
680 				chain_length++;
681 				if (rep_block == 0xffff) {
682 					/* no more blocks after */
683 					s->ReplUnitTable[block] = BLOCK_NIL;
684 					break;
685 				} else if (rep_block >= s->nb_blocks) {
686 					printk("Block %d: referencing invalid block %d\n",
687 					       block, rep_block);
688 					do_format_chain = 1;
689 					s->ReplUnitTable[block] = BLOCK_NIL;
690 					break;
691 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
692 					/* same problem as previous 'is_first_block' test:
693 					   we accept that the last block of a chain has
694 					   the first_block flag set if folding is in
695 					   progress. We handle here the case where the
696 					   last block appeared first */
697 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
698 					    s->EUNtable[first_logical_block] == rep_block &&
699 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
700 						/* EUNtable[] will be set after */
701 						printk("Block %d: folding in progress - ignoring first block flag\n",
702 						       rep_block);
703 						s->ReplUnitTable[block] = rep_block;
704 						s->EUNtable[first_logical_block] = BLOCK_NIL;
705 					} else {
706 						printk("Block %d: referencing block %d already in another chain\n",
707 						       block, rep_block);
708 						/* XXX: should handle correctly fold in progress chains */
709 						do_format_chain = 1;
710 						s->ReplUnitTable[block] = BLOCK_NIL;
711 					}
712 					break;
713 				} else {
714 					/* this is OK */
715 					s->ReplUnitTable[block] = rep_block;
716 					block = rep_block;
717 				}
718 			}
719 
720 			/* the chain was completely explored. Now we can decide
721 			   what to do with it */
722 			if (do_format_chain) {
723 				/* invalid chain : format it */
724 				format_chain(s, first_block);
725 			} else {
726 				unsigned int first_block1, chain_to_format, chain_length1;
727 				int fold_mark;
728 
729 				/* valid chain : get foldmark */
730 				fold_mark = get_fold_mark(s, first_block);
731 				if (fold_mark == 0) {
732 					/* cannot get foldmark : format the chain */
733 					printk("Could read foldmark at block %d\n", first_block);
734 					format_chain(s, first_block);
735 				} else {
736 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
737 						check_sectors_in_chain(s, first_block);
738 
739 					/* now handle the case where we find two chains at the
740 					   same virtual address : we select the longer one,
741 					   because the shorter one is the one which was being
742 					   folded if the folding was not done in place */
743 					first_block1 = s->EUNtable[first_logical_block];
744 					if (first_block1 != BLOCK_NIL) {
745 						/* XXX: what to do if same length ? */
746 						chain_length1 = calc_chain_length(s, first_block1);
747 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
748 						       first_block1, chain_length1, first_block, chain_length);
749 
750 						if (chain_length >= chain_length1) {
751 							chain_to_format = first_block1;
752 							s->EUNtable[first_logical_block] = first_block;
753 						} else {
754 							chain_to_format = first_block;
755 						}
756 						format_chain(s, chain_to_format);
757 					} else {
758 						s->EUNtable[first_logical_block] = first_block;
759 					}
760 				}
761 			}
762 		}
763 	examine_ReplUnitTable:;
764 	}
765 
766 	/* second pass to format unreferenced blocks  and init free block count */
767 	s->numfreeEUNs = 0;
768 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
769 
770 	for (block = 0; block < s->nb_blocks; block++) {
771 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
772 			printk("Unreferenced block %d, formatting it\n", block);
773 			if (NFTL_formatblock(s, block) < 0)
774 				s->ReplUnitTable[block] = BLOCK_RESERVED;
775 			else
776 				s->ReplUnitTable[block] = BLOCK_FREE;
777 		}
778 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
779 			s->numfreeEUNs++;
780 			s->LastFreeEUN = block;
781 		}
782 	}
783 
784 	return 0;
785 }
786