xref: /openbmc/linux/drivers/mtd/nftlmount.c (revision 64c70b1c)
1 /*
2  * NFTL mount code with extensive checks
3  *
4  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
5  * Copyright (C) 2000 Netgem S.A.
6  *
7  * $Id: nftlmount.c,v 1.41 2005/11/07 11:14:21 gleixner Exp $
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/kernel.h>
25 #include <asm/errno.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/mtd/mtd.h>
29 #include <linux/mtd/nand.h>
30 #include <linux/mtd/nftl.h>
31 
32 #define SECTORSIZE 512
33 
34 char nftlmountrev[]="$Revision: 1.41 $";
35 
36 extern int nftl_read_oob(struct mtd_info *mtd, loff_t offs, size_t len,
37 			 size_t *retlen, uint8_t *buf);
38 extern int nftl_write_oob(struct mtd_info *mtd, loff_t offs, size_t len,
39 			  size_t *retlen, uint8_t *buf);
40 
41 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
42  *	various device information of the NFTL partition and Bad Unit Table. Update
43  *	the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
44  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
45  */
46 static int find_boot_record(struct NFTLrecord *nftl)
47 {
48 	struct nftl_uci1 h1;
49 	unsigned int block, boot_record_count = 0;
50 	size_t retlen;
51 	u8 buf[SECTORSIZE];
52 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
53 	struct mtd_info *mtd = nftl->mbd.mtd;
54 	unsigned int i;
55 
56         /* Assume logical EraseSize == physical erasesize for starting the scan.
57 	   We'll sort it out later if we find a MediaHeader which says otherwise */
58 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
59 	   the MediaHeader and adjusted the virtual erasesize it presents in
60 	   the mtd device accordingly.  We could even get rid of
61 	   nftl->EraseSize if there were any point in doing so. */
62 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
63         nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize;
64 
65 	nftl->MediaUnit = BLOCK_NIL;
66 	nftl->SpareMediaUnit = BLOCK_NIL;
67 
68 	/* search for a valid boot record */
69 	for (block = 0; block < nftl->nb_blocks; block++) {
70 		int ret;
71 
72 		/* Check for ANAND header first. Then can whinge if it's found but later
73 		   checks fail */
74 		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
75 				&retlen, buf);
76 		/* We ignore ret in case the ECC of the MediaHeader is invalid
77 		   (which is apparently acceptable) */
78 		if (retlen != SECTORSIZE) {
79 			static int warncount = 5;
80 
81 			if (warncount) {
82 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
83 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
84 				if (!--warncount)
85 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
86 			}
87 			continue;
88 		}
89 
90 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
91 			/* ANAND\0 not found. Continue */
92 #if 0
93 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
94 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
95 #endif
96 			continue;
97 		}
98 
99 		/* To be safer with BIOS, also use erase mark as discriminant */
100 		if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
101 					 SECTORSIZE + 8, 8, &retlen,
102 					 (char *)&h1) < 0)) {
103 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
104 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
105 			continue;
106 		}
107 
108 #if 0 /* Some people seem to have devices without ECC or erase marks
109 	 on the Media Header blocks. There are enough other sanity
110 	 checks in here that we can probably do without it.
111       */
112 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
113 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
114 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
115 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
116 			continue;
117 		}
118 
119 		/* Finally reread to check ECC */
120 		if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
121 				     &retlen, buf) < 0)) {
122 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
123 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
124 			continue;
125 		}
126 
127 		/* Paranoia. Check the ANAND header is still there after the ECC read */
128 		if (memcmp(buf, "ANAND", 6)) {
129 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
130 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
131 			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
132 			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
133 			continue;
134 		}
135 #endif
136 		/* OK, we like it. */
137 
138 		if (boot_record_count) {
139 			/* We've already processed one. So we just check if
140 			   this one is the same as the first one we found */
141 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
142 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
143 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
144 				/* if (debug) Print both side by side */
145 				if (boot_record_count < 2) {
146 					/* We haven't yet seen two real ones */
147 					return -1;
148 				}
149 				continue;
150 			}
151 			if (boot_record_count == 1)
152 				nftl->SpareMediaUnit = block;
153 
154 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
155 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
156 
157 
158 			boot_record_count++;
159 			continue;
160 		}
161 
162 		/* This is the first we've seen. Copy the media header structure into place */
163 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
164 
165 		/* Do some sanity checks on it */
166 #if 0
167 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
168 erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
169 device is already correct.
170 		if (mh->UnitSizeFactor == 0) {
171 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
172 		} else if (mh->UnitSizeFactor < 0xfc) {
173 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
174 			       mh->UnitSizeFactor);
175 			return -1;
176 		} else if (mh->UnitSizeFactor != 0xff) {
177 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
178 			       mh->UnitSizeFactor);
179 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
180 			nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize;
181 		}
182 #endif
183 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
184 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
185 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
186 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
187 			       nftl->nb_boot_blocks, nftl->nb_blocks);
188 			return -1;
189 		}
190 
191 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
192 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
193 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
194 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
195 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
196 			return -1;
197 		}
198 
199 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
200 
201 		/* If we're not using the last sectors in the device for some reason,
202 		   reduce nb_blocks accordingly so we forget they're there */
203 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
204 
205 		/* XXX: will be suppressed */
206 		nftl->lastEUN = nftl->nb_blocks - 1;
207 
208 		/* memory alloc */
209 		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
210 		if (!nftl->EUNtable) {
211 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
212 			return -ENOMEM;
213 		}
214 
215 		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
216 		if (!nftl->ReplUnitTable) {
217 			kfree(nftl->EUNtable);
218 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
219 			return -ENOMEM;
220 		}
221 
222 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
223 		for (i = 0; i < nftl->nb_boot_blocks; i++)
224 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
225 		/* mark all remaining blocks as potentially containing data */
226 		for (; i < nftl->nb_blocks; i++) {
227 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
228 		}
229 
230 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
231 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
232 
233 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
234 		for (i = 0; i < nftl->nb_blocks; i++) {
235 #if 0
236 The new DiskOnChip driver already scanned the bad block table.  Just query it.
237 			if ((i & (SECTORSIZE - 1)) == 0) {
238 				/* read one sector for every SECTORSIZE of blocks */
239 				if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
240 						     i + SECTORSIZE, SECTORSIZE, &retlen,
241 						     buf)) < 0) {
242 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
243 					       ret);
244 					kfree(nftl->ReplUnitTable);
245 					kfree(nftl->EUNtable);
246 					return -1;
247 				}
248 			}
249 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
250 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
251 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
252 #endif
253 			if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize))
254 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
255 		}
256 
257 		nftl->MediaUnit = block;
258 		boot_record_count++;
259 
260 	} /* foreach (block) */
261 
262 	return boot_record_count?0:-1;
263 }
264 
265 static int memcmpb(void *a, int c, int n)
266 {
267 	int i;
268 	for (i = 0; i < n; i++) {
269 		if (c != ((unsigned char *)a)[i])
270 			return 1;
271 	}
272 	return 0;
273 }
274 
275 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
276 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
277 			      int check_oob)
278 {
279 	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
280 	struct mtd_info *mtd = nftl->mbd.mtd;
281 	size_t retlen;
282 	int i;
283 
284 	for (i = 0; i < len; i += SECTORSIZE) {
285 		if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
286 			return -1;
287 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
288 			return -1;
289 
290 		if (check_oob) {
291 			if(nftl_read_oob(mtd, address, mtd->oobsize,
292 					 &retlen, &buf[SECTORSIZE]) < 0)
293 				return -1;
294 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
295 				return -1;
296 		}
297 		address += SECTORSIZE;
298 	}
299 
300 	return 0;
301 }
302 
303 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
304  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
305  *
306  * Return: 0 when succeed, -1 on error.
307  *
308  *  ToDo: 1. Is it neceressary to check_free_sector after erasing ??
309  */
310 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
311 {
312 	size_t retlen;
313 	unsigned int nb_erases, erase_mark;
314 	struct nftl_uci1 uci;
315 	struct erase_info *instr = &nftl->instr;
316 	struct mtd_info *mtd = nftl->mbd.mtd;
317 
318 	/* Read the Unit Control Information #1 for Wear-Leveling */
319 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
320 			  8, &retlen, (char *)&uci) < 0)
321 		goto default_uci1;
322 
323 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
324 	if (erase_mark != ERASE_MARK) {
325 	default_uci1:
326 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
327 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
328 		uci.WearInfo = cpu_to_le32(0);
329 	}
330 
331 	memset(instr, 0, sizeof(struct erase_info));
332 
333 	/* XXX: use async erase interface, XXX: test return code */
334 	instr->mtd = nftl->mbd.mtd;
335 	instr->addr = block * nftl->EraseSize;
336 	instr->len = nftl->EraseSize;
337 	mtd->erase(mtd, instr);
338 
339 	if (instr->state == MTD_ERASE_FAILED) {
340 		printk("Error while formatting block %d\n", block);
341 		goto fail;
342 	}
343 
344 		/* increase and write Wear-Leveling info */
345 		nb_erases = le32_to_cpu(uci.WearInfo);
346 		nb_erases++;
347 
348 		/* wrap (almost impossible with current flashs) or free block */
349 		if (nb_erases == 0)
350 			nb_erases = 1;
351 
352 		/* check the "freeness" of Erase Unit before updating metadata
353 		 * FixMe:  is this check really necessary ? since we have check the
354 		 *         return code after the erase operation. */
355 		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
356 			goto fail;
357 
358 		uci.WearInfo = le32_to_cpu(nb_erases);
359 		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
360 				   8, 8, &retlen, (char *)&uci) < 0)
361 			goto fail;
362 		return 0;
363 fail:
364 	/* could not format, update the bad block table (caller is responsible
365 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
366 	nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr);
367 	return -1;
368 }
369 
370 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
371  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
372  *	was being folded when NFTL was interrupted.
373  *
374  *	The check_free_sectors in this function is neceressary. There is a possible
375  *	situation that after writing the Data area, the Block Control Information is
376  *	not updated according (due to power failure or something) which leaves the block
377  *	in an umconsistent state. So we have to check if a block is really FREE in this
378  *	case. */
379 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
380 {
381 	struct mtd_info *mtd = nftl->mbd.mtd;
382 	unsigned int block, i, status;
383 	struct nftl_bci bci;
384 	int sectors_per_block;
385 	size_t retlen;
386 
387 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
388 	block = first_block;
389 	for (;;) {
390 		for (i = 0; i < sectors_per_block; i++) {
391 			if (nftl_read_oob(mtd,
392 					  block * nftl->EraseSize + i * SECTORSIZE,
393 					  8, &retlen, (char *)&bci) < 0)
394 				status = SECTOR_IGNORE;
395 			else
396 				status = bci.Status | bci.Status1;
397 
398 			switch(status) {
399 			case SECTOR_FREE:
400 				/* verify that the sector is really free. If not, mark
401 				   as ignore */
402 				if (memcmpb(&bci, 0xff, 8) != 0 ||
403 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
404 						       SECTORSIZE, 0) != 0) {
405 					printk("Incorrect free sector %d in block %d: "
406 					       "marking it as ignored\n",
407 					       i, block);
408 
409 					/* sector not free actually : mark it as SECTOR_IGNORE  */
410 					bci.Status = SECTOR_IGNORE;
411 					bci.Status1 = SECTOR_IGNORE;
412 					nftl_write_oob(mtd, block *
413 						       nftl->EraseSize +
414 						       i * SECTORSIZE, 8,
415 						       &retlen, (char *)&bci);
416 				}
417 				break;
418 			default:
419 				break;
420 			}
421 		}
422 
423 		/* proceed to next Erase Unit on the chain */
424 		block = nftl->ReplUnitTable[block];
425 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
426 			printk("incorrect ReplUnitTable[] : %d\n", block);
427 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
428 			break;
429 	}
430 }
431 
432 /* calc_chain_lenght: Walk through a Virtual Unit Chain and estimate chain length */
433 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
434 {
435 	unsigned int length = 0, block = first_block;
436 
437 	for (;;) {
438 		length++;
439 		/* avoid infinite loops, although this is guaranted not to
440 		   happen because of the previous checks */
441 		if (length >= nftl->nb_blocks) {
442 			printk("nftl: length too long %d !\n", length);
443 			break;
444 		}
445 
446 		block = nftl->ReplUnitTable[block];
447 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
448 			printk("incorrect ReplUnitTable[] : %d\n", block);
449 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
450 			break;
451 	}
452 	return length;
453 }
454 
455 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
456  *	Virtual Unit Chain, i.e. all the units are disconnected.
457  *
458  *	It is not stricly correct to begin from the first block of the chain because
459  *	if we stop the code, we may see again a valid chain if there was a first_block
460  *	flag in a block inside it. But is it really a problem ?
461  *
462  * FixMe: Figure out what the last statesment means. What if power failure when we are
463  *	in the for (;;) loop formatting blocks ??
464  */
465 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
466 {
467 	unsigned int block = first_block, block1;
468 
469 	printk("Formatting chain at block %d\n", first_block);
470 
471 	for (;;) {
472 		block1 = nftl->ReplUnitTable[block];
473 
474 		printk("Formatting block %d\n", block);
475 		if (NFTL_formatblock(nftl, block) < 0) {
476 			/* cannot format !!!! Mark it as Bad Unit */
477 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
478 		} else {
479 			nftl->ReplUnitTable[block] = BLOCK_FREE;
480 		}
481 
482 		/* goto next block on the chain */
483 		block = block1;
484 
485 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
486 			printk("incorrect ReplUnitTable[] : %d\n", block);
487 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
488 			break;
489 	}
490 }
491 
492 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
493  *	totally free (only 0xff).
494  *
495  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
496  *	following critia:
497  *	1. */
498 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
499 {
500 	struct mtd_info *mtd = nftl->mbd.mtd;
501 	struct nftl_uci1 h1;
502 	unsigned int erase_mark;
503 	size_t retlen;
504 
505 	/* check erase mark. */
506 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
507 			  &retlen, (char *)&h1) < 0)
508 		return -1;
509 
510 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
511 	if (erase_mark != ERASE_MARK) {
512 		/* if no erase mark, the block must be totally free. This is
513 		   possible in two cases : empty filsystem or interrupted erase (very unlikely) */
514 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
515 			return -1;
516 
517 		/* free block : write erase mark */
518 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
519 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
520 		h1.WearInfo = cpu_to_le32(0);
521 		if (nftl_write_oob(mtd,
522 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
523 				   &retlen, (char *)&h1) < 0)
524 			return -1;
525 	} else {
526 #if 0
527 		/* if erase mark present, need to skip it when doing check */
528 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
529 			/* check free sector */
530 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
531 						SECTORSIZE, 0) != 0)
532 				return -1;
533 
534 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
535 					  16, &retlen, buf) < 0)
536 				return -1;
537 			if (i == SECTORSIZE) {
538 				/* skip erase mark */
539 				if (memcmpb(buf, 0xff, 8))
540 					return -1;
541 			} else {
542 				if (memcmpb(buf, 0xff, 16))
543 					return -1;
544 			}
545 		}
546 #endif
547 	}
548 
549 	return 0;
550 }
551 
552 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
553  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
554  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
555  *	for some reason. A clean up/check of the VUC is neceressary in this case.
556  *
557  * WARNING: return 0 if read error
558  */
559 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
560 {
561 	struct mtd_info *mtd = nftl->mbd.mtd;
562 	struct nftl_uci2 uci;
563 	size_t retlen;
564 
565 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
566 			  8, &retlen, (char *)&uci) < 0)
567 		return 0;
568 
569 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
570 }
571 
572 int NFTL_mount(struct NFTLrecord *s)
573 {
574 	int i;
575 	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
576 	unsigned int block, first_block, is_first_block;
577 	int chain_length, do_format_chain;
578 	struct nftl_uci0 h0;
579 	struct nftl_uci1 h1;
580 	struct mtd_info *mtd = s->mbd.mtd;
581 	size_t retlen;
582 
583 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
584 	if (find_boot_record(s) < 0) {
585 		printk("Could not find valid boot record\n");
586 		return -1;
587 	}
588 
589 	/* init the logical to physical table */
590 	for (i = 0; i < s->nb_blocks; i++) {
591 		s->EUNtable[i] = BLOCK_NIL;
592 	}
593 
594 	/* first pass : explore each block chain */
595 	first_logical_block = 0;
596 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
597 		/* if the block was not already explored, we can look at it */
598 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
599 			block = first_block;
600 			chain_length = 0;
601 			do_format_chain = 0;
602 
603 			for (;;) {
604 				/* read the block header. If error, we format the chain */
605 				if (nftl_read_oob(mtd,
606 						  block * s->EraseSize + 8, 8,
607 						  &retlen, (char *)&h0) < 0 ||
608 				    nftl_read_oob(mtd,
609 						  block * s->EraseSize +
610 						  SECTORSIZE + 8, 8,
611 						  &retlen, (char *)&h1) < 0) {
612 					s->ReplUnitTable[block] = BLOCK_NIL;
613 					do_format_chain = 1;
614 					break;
615 				}
616 
617 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
618 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
619 				nb_erases = le32_to_cpu (h1.WearInfo);
620 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
621 
622 				is_first_block = !(logical_block >> 15);
623 				logical_block = logical_block & 0x7fff;
624 
625 				/* invalid/free block test */
626 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
627 					if (chain_length == 0) {
628 						/* if not currently in a chain, we can handle it safely */
629 						if (check_and_mark_free_block(s, block) < 0) {
630 							/* not really free: format it */
631 							printk("Formatting block %d\n", block);
632 							if (NFTL_formatblock(s, block) < 0) {
633 								/* could not format: reserve the block */
634 								s->ReplUnitTable[block] = BLOCK_RESERVED;
635 							} else {
636 								s->ReplUnitTable[block] = BLOCK_FREE;
637 							}
638 						} else {
639 							/* free block: mark it */
640 							s->ReplUnitTable[block] = BLOCK_FREE;
641 						}
642 						/* directly examine the next block. */
643 						goto examine_ReplUnitTable;
644 					} else {
645 						/* the block was in a chain : this is bad. We
646 						   must format all the chain */
647 						printk("Block %d: free but referenced in chain %d\n",
648 						       block, first_block);
649 						s->ReplUnitTable[block] = BLOCK_NIL;
650 						do_format_chain = 1;
651 						break;
652 					}
653 				}
654 
655 				/* we accept only first blocks here */
656 				if (chain_length == 0) {
657 					/* this block is not the first block in chain :
658 					   ignore it, it will be included in a chain
659 					   later, or marked as not explored */
660 					if (!is_first_block)
661 						goto examine_ReplUnitTable;
662 					first_logical_block = logical_block;
663 				} else {
664 					if (logical_block != first_logical_block) {
665 						printk("Block %d: incorrect logical block: %d expected: %d\n",
666 						       block, logical_block, first_logical_block);
667 						/* the chain is incorrect : we must format it,
668 						   but we need to read it completly */
669 						do_format_chain = 1;
670 					}
671 					if (is_first_block) {
672 						/* we accept that a block is marked as first
673 						   block while being last block in a chain
674 						   only if the chain is being folded */
675 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
676 						    rep_block != 0xffff) {
677 							printk("Block %d: incorrectly marked as first block in chain\n",
678 							       block);
679 							/* the chain is incorrect : we must format it,
680 							   but we need to read it completly */
681 							do_format_chain = 1;
682 						} else {
683 							printk("Block %d: folding in progress - ignoring first block flag\n",
684 							       block);
685 						}
686 					}
687 				}
688 				chain_length++;
689 				if (rep_block == 0xffff) {
690 					/* no more blocks after */
691 					s->ReplUnitTable[block] = BLOCK_NIL;
692 					break;
693 				} else if (rep_block >= s->nb_blocks) {
694 					printk("Block %d: referencing invalid block %d\n",
695 					       block, rep_block);
696 					do_format_chain = 1;
697 					s->ReplUnitTable[block] = BLOCK_NIL;
698 					break;
699 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
700 					/* same problem as previous 'is_first_block' test:
701 					   we accept that the last block of a chain has
702 					   the first_block flag set if folding is in
703 					   progress. We handle here the case where the
704 					   last block appeared first */
705 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
706 					    s->EUNtable[first_logical_block] == rep_block &&
707 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
708 						/* EUNtable[] will be set after */
709 						printk("Block %d: folding in progress - ignoring first block flag\n",
710 						       rep_block);
711 						s->ReplUnitTable[block] = rep_block;
712 						s->EUNtable[first_logical_block] = BLOCK_NIL;
713 					} else {
714 						printk("Block %d: referencing block %d already in another chain\n",
715 						       block, rep_block);
716 						/* XXX: should handle correctly fold in progress chains */
717 						do_format_chain = 1;
718 						s->ReplUnitTable[block] = BLOCK_NIL;
719 					}
720 					break;
721 				} else {
722 					/* this is OK */
723 					s->ReplUnitTable[block] = rep_block;
724 					block = rep_block;
725 				}
726 			}
727 
728 			/* the chain was completely explored. Now we can decide
729 			   what to do with it */
730 			if (do_format_chain) {
731 				/* invalid chain : format it */
732 				format_chain(s, first_block);
733 			} else {
734 				unsigned int first_block1, chain_to_format, chain_length1;
735 				int fold_mark;
736 
737 				/* valid chain : get foldmark */
738 				fold_mark = get_fold_mark(s, first_block);
739 				if (fold_mark == 0) {
740 					/* cannot get foldmark : format the chain */
741 					printk("Could read foldmark at block %d\n", first_block);
742 					format_chain(s, first_block);
743 				} else {
744 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
745 						check_sectors_in_chain(s, first_block);
746 
747 					/* now handle the case where we find two chains at the
748 					   same virtual address : we select the longer one,
749 					   because the shorter one is the one which was being
750 					   folded if the folding was not done in place */
751 					first_block1 = s->EUNtable[first_logical_block];
752 					if (first_block1 != BLOCK_NIL) {
753 						/* XXX: what to do if same length ? */
754 						chain_length1 = calc_chain_length(s, first_block1);
755 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
756 						       first_block1, chain_length1, first_block, chain_length);
757 
758 						if (chain_length >= chain_length1) {
759 							chain_to_format = first_block1;
760 							s->EUNtable[first_logical_block] = first_block;
761 						} else {
762 							chain_to_format = first_block;
763 						}
764 						format_chain(s, chain_to_format);
765 					} else {
766 						s->EUNtable[first_logical_block] = first_block;
767 					}
768 				}
769 			}
770 		}
771 	examine_ReplUnitTable:;
772 	}
773 
774 	/* second pass to format unreferenced blocks  and init free block count */
775 	s->numfreeEUNs = 0;
776 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
777 
778 	for (block = 0; block < s->nb_blocks; block++) {
779 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
780 			printk("Unreferenced block %d, formatting it\n", block);
781 			if (NFTL_formatblock(s, block) < 0)
782 				s->ReplUnitTable[block] = BLOCK_RESERVED;
783 			else
784 				s->ReplUnitTable[block] = BLOCK_FREE;
785 		}
786 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
787 			s->numfreeEUNs++;
788 			s->LastFreeEUN = block;
789 		}
790 	}
791 
792 	return 0;
793 }
794