xref: /openbmc/linux/drivers/mtd/nand/spi/gigadevice.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Author:
4  *	Chuanhong Guo <gch981213@gmail.com>
5  */
6 
7 #include <linux/device.h>
8 #include <linux/kernel.h>
9 #include <linux/mtd/spinand.h>
10 
11 #define SPINAND_MFR_GIGADEVICE			0xC8
12 
13 #define GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS	(1 << 4)
14 #define GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS	(3 << 4)
15 
16 #define GD5FXGQ4UEXXG_REG_STATUS2		0xf0
17 
18 #define GD5FXGQ4UXFXXG_STATUS_ECC_MASK		(7 << 4)
19 #define GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS	(0 << 4)
20 #define GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS	(1 << 4)
21 #define GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR	(7 << 4)
22 
23 static SPINAND_OP_VARIANTS(read_cache_variants,
24 		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0),
25 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
26 		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
27 		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
28 		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
29 		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
30 
31 static SPINAND_OP_VARIANTS(read_cache_variants_f,
32 		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 1, NULL, 0),
33 		SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(0, 1, NULL, 0),
34 		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
35 		SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(0, 1, NULL, 0),
36 		SPINAND_PAGE_READ_FROM_CACHE_OP_3A(true, 0, 1, NULL, 0),
37 		SPINAND_PAGE_READ_FROM_CACHE_OP_3A(false, 0, 0, NULL, 0));
38 
39 static SPINAND_OP_VARIANTS(write_cache_variants,
40 		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
41 		SPINAND_PROG_LOAD(true, 0, NULL, 0));
42 
43 static SPINAND_OP_VARIANTS(update_cache_variants,
44 		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
45 		SPINAND_PROG_LOAD(false, 0, NULL, 0));
46 
47 static int gd5fxgq4xa_ooblayout_ecc(struct mtd_info *mtd, int section,
48 				  struct mtd_oob_region *region)
49 {
50 	if (section > 3)
51 		return -ERANGE;
52 
53 	region->offset = (16 * section) + 8;
54 	region->length = 8;
55 
56 	return 0;
57 }
58 
59 static int gd5fxgq4xa_ooblayout_free(struct mtd_info *mtd, int section,
60 				   struct mtd_oob_region *region)
61 {
62 	if (section > 3)
63 		return -ERANGE;
64 
65 	if (section) {
66 		region->offset = 16 * section;
67 		region->length = 8;
68 	} else {
69 		/* section 0 has one byte reserved for bad block mark */
70 		region->offset = 1;
71 		region->length = 7;
72 	}
73 	return 0;
74 }
75 
76 static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = {
77 	.ecc = gd5fxgq4xa_ooblayout_ecc,
78 	.free = gd5fxgq4xa_ooblayout_free,
79 };
80 
81 static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand,
82 					 u8 status)
83 {
84 	switch (status & STATUS_ECC_MASK) {
85 	case STATUS_ECC_NO_BITFLIPS:
86 		return 0;
87 
88 	case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
89 		/* 1-7 bits are flipped. return the maximum. */
90 		return 7;
91 
92 	case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
93 		return 8;
94 
95 	case STATUS_ECC_UNCOR_ERROR:
96 		return -EBADMSG;
97 
98 	default:
99 		break;
100 	}
101 
102 	return -EINVAL;
103 }
104 
105 static int gd5fxgq4_variant2_ooblayout_ecc(struct mtd_info *mtd, int section,
106 				       struct mtd_oob_region *region)
107 {
108 	if (section)
109 		return -ERANGE;
110 
111 	region->offset = 64;
112 	region->length = 64;
113 
114 	return 0;
115 }
116 
117 static int gd5fxgq4_variant2_ooblayout_free(struct mtd_info *mtd, int section,
118 					struct mtd_oob_region *region)
119 {
120 	if (section)
121 		return -ERANGE;
122 
123 	/* Reserve 1 bytes for the BBM. */
124 	region->offset = 1;
125 	region->length = 63;
126 
127 	return 0;
128 }
129 
130 static const struct mtd_ooblayout_ops gd5fxgq4_variant2_ooblayout = {
131 	.ecc = gd5fxgq4_variant2_ooblayout_ecc,
132 	.free = gd5fxgq4_variant2_ooblayout_free,
133 };
134 
135 static int gd5fxgq4xc_ooblayout_256_ecc(struct mtd_info *mtd, int section,
136 					struct mtd_oob_region *oobregion)
137 {
138 	if (section)
139 		return -ERANGE;
140 
141 	oobregion->offset = 128;
142 	oobregion->length = 128;
143 
144 	return 0;
145 }
146 
147 static int gd5fxgq4xc_ooblayout_256_free(struct mtd_info *mtd, int section,
148 					 struct mtd_oob_region *oobregion)
149 {
150 	if (section)
151 		return -ERANGE;
152 
153 	oobregion->offset = 1;
154 	oobregion->length = 127;
155 
156 	return 0;
157 }
158 
159 static const struct mtd_ooblayout_ops gd5fxgq4xc_oob_256_ops = {
160 	.ecc = gd5fxgq4xc_ooblayout_256_ecc,
161 	.free = gd5fxgq4xc_ooblayout_256_free,
162 };
163 
164 static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand,
165 					u8 status)
166 {
167 	u8 status2;
168 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(GD5FXGQ4UEXXG_REG_STATUS2,
169 						      &status2);
170 	int ret;
171 
172 	switch (status & STATUS_ECC_MASK) {
173 	case STATUS_ECC_NO_BITFLIPS:
174 		return 0;
175 
176 	case GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS:
177 		/*
178 		 * Read status2 register to determine a more fine grained
179 		 * bit error status
180 		 */
181 		ret = spi_mem_exec_op(spinand->spimem, &op);
182 		if (ret)
183 			return ret;
184 
185 		/*
186 		 * 4 ... 7 bits are flipped (1..4 can't be detected, so
187 		 * report the maximum of 4 in this case
188 		 */
189 		/* bits sorted this way (3...0): ECCS1,ECCS0,ECCSE1,ECCSE0 */
190 		return ((status & STATUS_ECC_MASK) >> 2) |
191 			((status2 & STATUS_ECC_MASK) >> 4);
192 
193 	case GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS:
194 		return 8;
195 
196 	case STATUS_ECC_UNCOR_ERROR:
197 		return -EBADMSG;
198 
199 	default:
200 		break;
201 	}
202 
203 	return -EINVAL;
204 }
205 
206 static int gd5fxgq4ufxxg_ecc_get_status(struct spinand_device *spinand,
207 					u8 status)
208 {
209 	switch (status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) {
210 	case GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS:
211 		return 0;
212 
213 	case GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS:
214 		return 3;
215 
216 	case GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR:
217 		return -EBADMSG;
218 
219 	default: /* (2 << 4) through (6 << 4) are 4-8 corrected errors */
220 		return ((status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) >> 4) + 2;
221 	}
222 
223 	return -EINVAL;
224 }
225 
226 static const struct spinand_info gigadevice_spinand_table[] = {
227 	SPINAND_INFO("GD5F1GQ4xA",
228 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf1),
229 		     NAND_MEMORG(1, 2048, 64, 64, 1024, 20, 1, 1, 1),
230 		     NAND_ECCREQ(8, 512),
231 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
232 					      &write_cache_variants,
233 					      &update_cache_variants),
234 		     SPINAND_HAS_QE_BIT,
235 		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
236 				     gd5fxgq4xa_ecc_get_status)),
237 	SPINAND_INFO("GD5F2GQ4xA",
238 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf2),
239 		     NAND_MEMORG(1, 2048, 64, 64, 2048, 40, 1, 1, 1),
240 		     NAND_ECCREQ(8, 512),
241 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
242 					      &write_cache_variants,
243 					      &update_cache_variants),
244 		     SPINAND_HAS_QE_BIT,
245 		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
246 				     gd5fxgq4xa_ecc_get_status)),
247 	SPINAND_INFO("GD5F4GQ4xA",
248 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xf4),
249 		     NAND_MEMORG(1, 2048, 64, 64, 4096, 80, 1, 1, 1),
250 		     NAND_ECCREQ(8, 512),
251 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
252 					      &write_cache_variants,
253 					      &update_cache_variants),
254 		     SPINAND_HAS_QE_BIT,
255 		     SPINAND_ECCINFO(&gd5fxgq4xa_ooblayout,
256 				     gd5fxgq4xa_ecc_get_status)),
257 	SPINAND_INFO("GD5F4GQ4RC",
258 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xa4, 0x68),
259 		     NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
260 		     NAND_ECCREQ(8, 512),
261 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
262 					      &write_cache_variants,
263 					      &update_cache_variants),
264 		     SPINAND_HAS_QE_BIT,
265 		     SPINAND_ECCINFO(&gd5fxgq4xc_oob_256_ops,
266 				     gd5fxgq4ufxxg_ecc_get_status)),
267 	SPINAND_INFO("GD5F4GQ4UC",
268 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xb4, 0x68),
269 		     NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
270 		     NAND_ECCREQ(8, 512),
271 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
272 					      &write_cache_variants,
273 					      &update_cache_variants),
274 		     SPINAND_HAS_QE_BIT,
275 		     SPINAND_ECCINFO(&gd5fxgq4xc_oob_256_ops,
276 				     gd5fxgq4ufxxg_ecc_get_status)),
277 	SPINAND_INFO("GD5F1GQ4UExxG",
278 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE_ADDR, 0xd1),
279 		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
280 		     NAND_ECCREQ(8, 512),
281 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
282 					      &write_cache_variants,
283 					      &update_cache_variants),
284 		     SPINAND_HAS_QE_BIT,
285 		     SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
286 				     gd5fxgq4uexxg_ecc_get_status)),
287 	SPINAND_INFO("GD5F1GQ4UFxxG",
288 		     SPINAND_ID(SPINAND_READID_METHOD_OPCODE, 0xb1, 0x48),
289 		     NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
290 		     NAND_ECCREQ(8, 512),
291 		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
292 					      &write_cache_variants,
293 					      &update_cache_variants),
294 		     SPINAND_HAS_QE_BIT,
295 		     SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
296 				     gd5fxgq4ufxxg_ecc_get_status)),
297 };
298 
299 static const struct spinand_manufacturer_ops gigadevice_spinand_manuf_ops = {
300 };
301 
302 const struct spinand_manufacturer gigadevice_spinand_manufacturer = {
303 	.id = SPINAND_MFR_GIGADEVICE,
304 	.name = "GigaDevice",
305 	.chips = gigadevice_spinand_table,
306 	.nchips = ARRAY_SIZE(gigadevice_spinand_table),
307 	.ops = &gigadevice_spinand_manuf_ops,
308 };
309