xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_init_cfg_cache(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	struct device *dev = &spinand->spimem->spi->dev;
145 	unsigned int target;
146 	int ret;
147 
148 	spinand->cfg_cache = devm_kcalloc(dev,
149 					  nand->memorg.ntargets,
150 					  sizeof(*spinand->cfg_cache),
151 					  GFP_KERNEL);
152 	if (!spinand->cfg_cache)
153 		return -ENOMEM;
154 
155 	for (target = 0; target < nand->memorg.ntargets; target++) {
156 		ret = spinand_select_target(spinand, target);
157 		if (ret)
158 			return ret;
159 
160 		/*
161 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
162 		 * here to bypass the config cache.
163 		 */
164 		ret = spinand_read_reg_op(spinand, REG_CFG,
165 					  &spinand->cfg_cache[target]);
166 		if (ret)
167 			return ret;
168 	}
169 
170 	return 0;
171 }
172 
173 static int spinand_init_quad_enable(struct spinand_device *spinand)
174 {
175 	bool enable = false;
176 
177 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
178 		return 0;
179 
180 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
181 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
182 	    spinand->op_templates.update_cache->data.buswidth == 4)
183 		enable = true;
184 
185 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
186 			       enable ? CFG_QUAD_ENABLE : 0);
187 }
188 
189 static int spinand_ecc_enable(struct spinand_device *spinand,
190 			      bool enable)
191 {
192 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
193 			       enable ? CFG_ECC_ENABLE : 0);
194 }
195 
196 static int spinand_write_enable_op(struct spinand_device *spinand)
197 {
198 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
199 
200 	return spi_mem_exec_op(spinand->spimem, &op);
201 }
202 
203 static int spinand_load_page_op(struct spinand_device *spinand,
204 				const struct nand_page_io_req *req)
205 {
206 	struct nand_device *nand = spinand_to_nand(spinand);
207 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
208 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
209 
210 	return spi_mem_exec_op(spinand->spimem, &op);
211 }
212 
213 static int spinand_read_from_cache_op(struct spinand_device *spinand,
214 				      const struct nand_page_io_req *req)
215 {
216 	struct nand_device *nand = spinand_to_nand(spinand);
217 	struct mtd_info *mtd = nanddev_to_mtd(nand);
218 	struct spi_mem_dirmap_desc *rdesc;
219 	unsigned int nbytes = 0;
220 	void *buf = NULL;
221 	u16 column = 0;
222 	ssize_t ret;
223 
224 	if (req->datalen) {
225 		buf = spinand->databuf;
226 		nbytes = nanddev_page_size(nand);
227 		column = 0;
228 	}
229 
230 	if (req->ooblen) {
231 		nbytes += nanddev_per_page_oobsize(nand);
232 		if (!buf) {
233 			buf = spinand->oobbuf;
234 			column = nanddev_page_size(nand);
235 		}
236 	}
237 
238 	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
239 
240 	while (nbytes) {
241 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
242 		if (ret < 0)
243 			return ret;
244 
245 		if (!ret || ret > nbytes)
246 			return -EIO;
247 
248 		nbytes -= ret;
249 		column += ret;
250 		buf += ret;
251 	}
252 
253 	if (req->datalen)
254 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
255 		       req->datalen);
256 
257 	if (req->ooblen) {
258 		if (req->mode == MTD_OPS_AUTO_OOB)
259 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
260 						    spinand->oobbuf,
261 						    req->ooboffs,
262 						    req->ooblen);
263 		else
264 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
265 			       req->ooblen);
266 	}
267 
268 	return 0;
269 }
270 
271 static int spinand_write_to_cache_op(struct spinand_device *spinand,
272 				     const struct nand_page_io_req *req)
273 {
274 	struct nand_device *nand = spinand_to_nand(spinand);
275 	struct mtd_info *mtd = nanddev_to_mtd(nand);
276 	struct spi_mem_dirmap_desc *wdesc;
277 	unsigned int nbytes, column = 0;
278 	void *buf = spinand->databuf;
279 	ssize_t ret;
280 
281 	/*
282 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
283 	 * the cache content to 0xFF (depends on vendor implementation), so we
284 	 * must fill the page cache entirely even if we only want to program
285 	 * the data portion of the page, otherwise we might corrupt the BBM or
286 	 * user data previously programmed in OOB area.
287 	 */
288 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
289 	memset(spinand->databuf, 0xff, nbytes);
290 
291 	if (req->datalen)
292 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
293 		       req->datalen);
294 
295 	if (req->ooblen) {
296 		if (req->mode == MTD_OPS_AUTO_OOB)
297 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
298 						    spinand->oobbuf,
299 						    req->ooboffs,
300 						    req->ooblen);
301 		else
302 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
303 			       req->ooblen);
304 	}
305 
306 	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
307 
308 	while (nbytes) {
309 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
310 		if (ret < 0)
311 			return ret;
312 
313 		if (!ret || ret > nbytes)
314 			return -EIO;
315 
316 		nbytes -= ret;
317 		column += ret;
318 		buf += ret;
319 	}
320 
321 	return 0;
322 }
323 
324 static int spinand_program_op(struct spinand_device *spinand,
325 			      const struct nand_page_io_req *req)
326 {
327 	struct nand_device *nand = spinand_to_nand(spinand);
328 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
329 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
330 
331 	return spi_mem_exec_op(spinand->spimem, &op);
332 }
333 
334 static int spinand_erase_op(struct spinand_device *spinand,
335 			    const struct nand_pos *pos)
336 {
337 	struct nand_device *nand = spinand_to_nand(spinand);
338 	unsigned int row = nanddev_pos_to_row(nand, pos);
339 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
340 
341 	return spi_mem_exec_op(spinand->spimem, &op);
342 }
343 
344 static int spinand_wait(struct spinand_device *spinand, u8 *s)
345 {
346 	unsigned long timeo =  jiffies + msecs_to_jiffies(400);
347 	u8 status;
348 	int ret;
349 
350 	do {
351 		ret = spinand_read_status(spinand, &status);
352 		if (ret)
353 			return ret;
354 
355 		if (!(status & STATUS_BUSY))
356 			goto out;
357 	} while (time_before(jiffies, timeo));
358 
359 	/*
360 	 * Extra read, just in case the STATUS_READY bit has changed
361 	 * since our last check
362 	 */
363 	ret = spinand_read_status(spinand, &status);
364 	if (ret)
365 		return ret;
366 
367 out:
368 	if (s)
369 		*s = status;
370 
371 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
372 }
373 
374 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
375 			      u8 ndummy, u8 *buf)
376 {
377 	struct spi_mem_op op = SPINAND_READID_OP(
378 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
379 	int ret;
380 
381 	ret = spi_mem_exec_op(spinand->spimem, &op);
382 	if (!ret)
383 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
384 
385 	return ret;
386 }
387 
388 static int spinand_reset_op(struct spinand_device *spinand)
389 {
390 	struct spi_mem_op op = SPINAND_RESET_OP;
391 	int ret;
392 
393 	ret = spi_mem_exec_op(spinand->spimem, &op);
394 	if (ret)
395 		return ret;
396 
397 	return spinand_wait(spinand, NULL);
398 }
399 
400 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
401 {
402 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
403 }
404 
405 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
406 {
407 	struct nand_device *nand = spinand_to_nand(spinand);
408 
409 	if (spinand->eccinfo.get_status)
410 		return spinand->eccinfo.get_status(spinand, status);
411 
412 	switch (status & STATUS_ECC_MASK) {
413 	case STATUS_ECC_NO_BITFLIPS:
414 		return 0;
415 
416 	case STATUS_ECC_HAS_BITFLIPS:
417 		/*
418 		 * We have no way to know exactly how many bitflips have been
419 		 * fixed, so let's return the maximum possible value so that
420 		 * wear-leveling layers move the data immediately.
421 		 */
422 		return nand->eccreq.strength;
423 
424 	case STATUS_ECC_UNCOR_ERROR:
425 		return -EBADMSG;
426 
427 	default:
428 		break;
429 	}
430 
431 	return -EINVAL;
432 }
433 
434 static int spinand_read_page(struct spinand_device *spinand,
435 			     const struct nand_page_io_req *req,
436 			     bool ecc_enabled)
437 {
438 	u8 status;
439 	int ret;
440 
441 	ret = spinand_load_page_op(spinand, req);
442 	if (ret)
443 		return ret;
444 
445 	ret = spinand_wait(spinand, &status);
446 	if (ret < 0)
447 		return ret;
448 
449 	ret = spinand_read_from_cache_op(spinand, req);
450 	if (ret)
451 		return ret;
452 
453 	if (!ecc_enabled)
454 		return 0;
455 
456 	return spinand_check_ecc_status(spinand, status);
457 }
458 
459 static int spinand_write_page(struct spinand_device *spinand,
460 			      const struct nand_page_io_req *req)
461 {
462 	u8 status;
463 	int ret;
464 
465 	ret = spinand_write_enable_op(spinand);
466 	if (ret)
467 		return ret;
468 
469 	ret = spinand_write_to_cache_op(spinand, req);
470 	if (ret)
471 		return ret;
472 
473 	ret = spinand_program_op(spinand, req);
474 	if (ret)
475 		return ret;
476 
477 	ret = spinand_wait(spinand, &status);
478 	if (!ret && (status & STATUS_PROG_FAILED))
479 		ret = -EIO;
480 
481 	return ret;
482 }
483 
484 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
485 			    struct mtd_oob_ops *ops)
486 {
487 	struct spinand_device *spinand = mtd_to_spinand(mtd);
488 	struct nand_device *nand = mtd_to_nanddev(mtd);
489 	unsigned int max_bitflips = 0;
490 	struct nand_io_iter iter;
491 	bool enable_ecc = false;
492 	bool ecc_failed = false;
493 	int ret = 0;
494 
495 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
496 		enable_ecc = true;
497 
498 	mutex_lock(&spinand->lock);
499 
500 	nanddev_io_for_each_page(nand, from, ops, &iter) {
501 		ret = spinand_select_target(spinand, iter.req.pos.target);
502 		if (ret)
503 			break;
504 
505 		ret = spinand_ecc_enable(spinand, enable_ecc);
506 		if (ret)
507 			break;
508 
509 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
510 		if (ret < 0 && ret != -EBADMSG)
511 			break;
512 
513 		if (ret == -EBADMSG) {
514 			ecc_failed = true;
515 			mtd->ecc_stats.failed++;
516 		} else {
517 			mtd->ecc_stats.corrected += ret;
518 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
519 		}
520 
521 		ret = 0;
522 		ops->retlen += iter.req.datalen;
523 		ops->oobretlen += iter.req.ooblen;
524 	}
525 
526 	mutex_unlock(&spinand->lock);
527 
528 	if (ecc_failed && !ret)
529 		ret = -EBADMSG;
530 
531 	return ret ? ret : max_bitflips;
532 }
533 
534 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
535 			     struct mtd_oob_ops *ops)
536 {
537 	struct spinand_device *spinand = mtd_to_spinand(mtd);
538 	struct nand_device *nand = mtd_to_nanddev(mtd);
539 	struct nand_io_iter iter;
540 	bool enable_ecc = false;
541 	int ret = 0;
542 
543 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
544 		enable_ecc = true;
545 
546 	mutex_lock(&spinand->lock);
547 
548 	nanddev_io_for_each_page(nand, to, ops, &iter) {
549 		ret = spinand_select_target(spinand, iter.req.pos.target);
550 		if (ret)
551 			break;
552 
553 		ret = spinand_ecc_enable(spinand, enable_ecc);
554 		if (ret)
555 			break;
556 
557 		ret = spinand_write_page(spinand, &iter.req);
558 		if (ret)
559 			break;
560 
561 		ops->retlen += iter.req.datalen;
562 		ops->oobretlen += iter.req.ooblen;
563 	}
564 
565 	mutex_unlock(&spinand->lock);
566 
567 	return ret;
568 }
569 
570 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
571 {
572 	struct spinand_device *spinand = nand_to_spinand(nand);
573 	u8 marker[2] = { };
574 	struct nand_page_io_req req = {
575 		.pos = *pos,
576 		.ooblen = sizeof(marker),
577 		.ooboffs = 0,
578 		.oobbuf.in = marker,
579 		.mode = MTD_OPS_RAW,
580 	};
581 
582 	spinand_select_target(spinand, pos->target);
583 	spinand_read_page(spinand, &req, false);
584 	if (marker[0] != 0xff || marker[1] != 0xff)
585 		return true;
586 
587 	return false;
588 }
589 
590 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
591 {
592 	struct nand_device *nand = mtd_to_nanddev(mtd);
593 	struct spinand_device *spinand = nand_to_spinand(nand);
594 	struct nand_pos pos;
595 	int ret;
596 
597 	nanddev_offs_to_pos(nand, offs, &pos);
598 	mutex_lock(&spinand->lock);
599 	ret = nanddev_isbad(nand, &pos);
600 	mutex_unlock(&spinand->lock);
601 
602 	return ret;
603 }
604 
605 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
606 {
607 	struct spinand_device *spinand = nand_to_spinand(nand);
608 	u8 marker[2] = { };
609 	struct nand_page_io_req req = {
610 		.pos = *pos,
611 		.ooboffs = 0,
612 		.ooblen = sizeof(marker),
613 		.oobbuf.out = marker,
614 		.mode = MTD_OPS_RAW,
615 	};
616 	int ret;
617 
618 	ret = spinand_select_target(spinand, pos->target);
619 	if (ret)
620 		return ret;
621 
622 	ret = spinand_write_enable_op(spinand);
623 	if (ret)
624 		return ret;
625 
626 	return spinand_write_page(spinand, &req);
627 }
628 
629 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
630 {
631 	struct nand_device *nand = mtd_to_nanddev(mtd);
632 	struct spinand_device *spinand = nand_to_spinand(nand);
633 	struct nand_pos pos;
634 	int ret;
635 
636 	nanddev_offs_to_pos(nand, offs, &pos);
637 	mutex_lock(&spinand->lock);
638 	ret = nanddev_markbad(nand, &pos);
639 	mutex_unlock(&spinand->lock);
640 
641 	return ret;
642 }
643 
644 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
645 {
646 	struct spinand_device *spinand = nand_to_spinand(nand);
647 	u8 status;
648 	int ret;
649 
650 	ret = spinand_select_target(spinand, pos->target);
651 	if (ret)
652 		return ret;
653 
654 	ret = spinand_write_enable_op(spinand);
655 	if (ret)
656 		return ret;
657 
658 	ret = spinand_erase_op(spinand, pos);
659 	if (ret)
660 		return ret;
661 
662 	ret = spinand_wait(spinand, &status);
663 	if (!ret && (status & STATUS_ERASE_FAILED))
664 		ret = -EIO;
665 
666 	return ret;
667 }
668 
669 static int spinand_mtd_erase(struct mtd_info *mtd,
670 			     struct erase_info *einfo)
671 {
672 	struct spinand_device *spinand = mtd_to_spinand(mtd);
673 	int ret;
674 
675 	mutex_lock(&spinand->lock);
676 	ret = nanddev_mtd_erase(mtd, einfo);
677 	mutex_unlock(&spinand->lock);
678 
679 	return ret;
680 }
681 
682 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
683 {
684 	struct spinand_device *spinand = mtd_to_spinand(mtd);
685 	struct nand_device *nand = mtd_to_nanddev(mtd);
686 	struct nand_pos pos;
687 	int ret;
688 
689 	nanddev_offs_to_pos(nand, offs, &pos);
690 	mutex_lock(&spinand->lock);
691 	ret = nanddev_isreserved(nand, &pos);
692 	mutex_unlock(&spinand->lock);
693 
694 	return ret;
695 }
696 
697 static int spinand_create_dirmap(struct spinand_device *spinand,
698 				 unsigned int plane)
699 {
700 	struct nand_device *nand = spinand_to_nand(spinand);
701 	struct spi_mem_dirmap_info info = {
702 		.length = nanddev_page_size(nand) +
703 			  nanddev_per_page_oobsize(nand),
704 	};
705 	struct spi_mem_dirmap_desc *desc;
706 
707 	/* The plane number is passed in MSB just above the column address */
708 	info.offset = plane << fls(nand->memorg.pagesize);
709 
710 	info.op_tmpl = *spinand->op_templates.update_cache;
711 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
712 					  spinand->spimem, &info);
713 	if (IS_ERR(desc))
714 		return PTR_ERR(desc);
715 
716 	spinand->dirmaps[plane].wdesc = desc;
717 
718 	info.op_tmpl = *spinand->op_templates.read_cache;
719 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
720 					  spinand->spimem, &info);
721 	if (IS_ERR(desc))
722 		return PTR_ERR(desc);
723 
724 	spinand->dirmaps[plane].rdesc = desc;
725 
726 	return 0;
727 }
728 
729 static int spinand_create_dirmaps(struct spinand_device *spinand)
730 {
731 	struct nand_device *nand = spinand_to_nand(spinand);
732 	int i, ret;
733 
734 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
735 					sizeof(*spinand->dirmaps) *
736 					nand->memorg.planes_per_lun,
737 					GFP_KERNEL);
738 	if (!spinand->dirmaps)
739 		return -ENOMEM;
740 
741 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
742 		ret = spinand_create_dirmap(spinand, i);
743 		if (ret)
744 			return ret;
745 	}
746 
747 	return 0;
748 }
749 
750 static const struct nand_ops spinand_ops = {
751 	.erase = spinand_erase,
752 	.markbad = spinand_markbad,
753 	.isbad = spinand_isbad,
754 };
755 
756 static const struct spinand_manufacturer *spinand_manufacturers[] = {
757 	&gigadevice_spinand_manufacturer,
758 	&macronix_spinand_manufacturer,
759 	&micron_spinand_manufacturer,
760 	&paragon_spinand_manufacturer,
761 	&toshiba_spinand_manufacturer,
762 	&winbond_spinand_manufacturer,
763 };
764 
765 static int spinand_manufacturer_match(struct spinand_device *spinand,
766 				      enum spinand_readid_method rdid_method)
767 {
768 	u8 *id = spinand->id.data;
769 	unsigned int i;
770 	int ret;
771 
772 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
773 		const struct spinand_manufacturer *manufacturer =
774 			spinand_manufacturers[i];
775 
776 		if (id[0] != manufacturer->id)
777 			continue;
778 
779 		ret = spinand_match_and_init(spinand,
780 					     manufacturer->chips,
781 					     manufacturer->nchips,
782 					     rdid_method);
783 		if (ret < 0)
784 			continue;
785 
786 		spinand->manufacturer = manufacturer;
787 		return 0;
788 	}
789 	return -ENOTSUPP;
790 }
791 
792 static int spinand_id_detect(struct spinand_device *spinand)
793 {
794 	u8 *id = spinand->id.data;
795 	int ret;
796 
797 	ret = spinand_read_id_op(spinand, 0, 0, id);
798 	if (ret)
799 		return ret;
800 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
801 	if (!ret)
802 		return 0;
803 
804 	ret = spinand_read_id_op(spinand, 1, 0, id);
805 	if (ret)
806 		return ret;
807 	ret = spinand_manufacturer_match(spinand,
808 					 SPINAND_READID_METHOD_OPCODE_ADDR);
809 	if (!ret)
810 		return 0;
811 
812 	ret = spinand_read_id_op(spinand, 0, 1, id);
813 	if (ret)
814 		return ret;
815 	ret = spinand_manufacturer_match(spinand,
816 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
817 
818 	return ret;
819 }
820 
821 static int spinand_manufacturer_init(struct spinand_device *spinand)
822 {
823 	if (spinand->manufacturer->ops->init)
824 		return spinand->manufacturer->ops->init(spinand);
825 
826 	return 0;
827 }
828 
829 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
830 {
831 	/* Release manufacturer private data */
832 	if (spinand->manufacturer->ops->cleanup)
833 		return spinand->manufacturer->ops->cleanup(spinand);
834 }
835 
836 static const struct spi_mem_op *
837 spinand_select_op_variant(struct spinand_device *spinand,
838 			  const struct spinand_op_variants *variants)
839 {
840 	struct nand_device *nand = spinand_to_nand(spinand);
841 	unsigned int i;
842 
843 	for (i = 0; i < variants->nops; i++) {
844 		struct spi_mem_op op = variants->ops[i];
845 		unsigned int nbytes;
846 		int ret;
847 
848 		nbytes = nanddev_per_page_oobsize(nand) +
849 			 nanddev_page_size(nand);
850 
851 		while (nbytes) {
852 			op.data.nbytes = nbytes;
853 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
854 			if (ret)
855 				break;
856 
857 			if (!spi_mem_supports_op(spinand->spimem, &op))
858 				break;
859 
860 			nbytes -= op.data.nbytes;
861 		}
862 
863 		if (!nbytes)
864 			return &variants->ops[i];
865 	}
866 
867 	return NULL;
868 }
869 
870 /**
871  * spinand_match_and_init() - Try to find a match between a device ID and an
872  *			      entry in a spinand_info table
873  * @spinand: SPI NAND object
874  * @table: SPI NAND device description table
875  * @table_size: size of the device description table
876  * @rdid_method: read id method to match
877  *
878  * Match between a device ID retrieved through the READ_ID command and an
879  * entry in the SPI NAND description table. If a match is found, the spinand
880  * object will be initialized with information provided by the matching
881  * spinand_info entry.
882  *
883  * Return: 0 on success, a negative error code otherwise.
884  */
885 int spinand_match_and_init(struct spinand_device *spinand,
886 			   const struct spinand_info *table,
887 			   unsigned int table_size,
888 			   enum spinand_readid_method rdid_method)
889 {
890 	u8 *id = spinand->id.data;
891 	struct nand_device *nand = spinand_to_nand(spinand);
892 	unsigned int i;
893 
894 	for (i = 0; i < table_size; i++) {
895 		const struct spinand_info *info = &table[i];
896 		const struct spi_mem_op *op;
897 
898 		if (rdid_method != info->devid.method)
899 			continue;
900 
901 		if (memcmp(id + 1, info->devid.id, info->devid.len))
902 			continue;
903 
904 		nand->memorg = table[i].memorg;
905 		nand->eccreq = table[i].eccreq;
906 		spinand->eccinfo = table[i].eccinfo;
907 		spinand->flags = table[i].flags;
908 		spinand->id.len = 1 + table[i].devid.len;
909 		spinand->select_target = table[i].select_target;
910 
911 		op = spinand_select_op_variant(spinand,
912 					       info->op_variants.read_cache);
913 		if (!op)
914 			return -ENOTSUPP;
915 
916 		spinand->op_templates.read_cache = op;
917 
918 		op = spinand_select_op_variant(spinand,
919 					       info->op_variants.write_cache);
920 		if (!op)
921 			return -ENOTSUPP;
922 
923 		spinand->op_templates.write_cache = op;
924 
925 		op = spinand_select_op_variant(spinand,
926 					       info->op_variants.update_cache);
927 		spinand->op_templates.update_cache = op;
928 
929 		return 0;
930 	}
931 
932 	return -ENOTSUPP;
933 }
934 
935 static int spinand_detect(struct spinand_device *spinand)
936 {
937 	struct device *dev = &spinand->spimem->spi->dev;
938 	struct nand_device *nand = spinand_to_nand(spinand);
939 	int ret;
940 
941 	ret = spinand_reset_op(spinand);
942 	if (ret)
943 		return ret;
944 
945 	ret = spinand_id_detect(spinand);
946 	if (ret) {
947 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
948 			spinand->id.data);
949 		return ret;
950 	}
951 
952 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
953 		dev_err(dev,
954 			"SPI NANDs with more than one die must implement ->select_target()\n");
955 		return -EINVAL;
956 	}
957 
958 	dev_info(&spinand->spimem->spi->dev,
959 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
960 	dev_info(&spinand->spimem->spi->dev,
961 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
962 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
963 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
964 
965 	return 0;
966 }
967 
968 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
969 				       struct mtd_oob_region *region)
970 {
971 	return -ERANGE;
972 }
973 
974 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
975 					struct mtd_oob_region *region)
976 {
977 	if (section)
978 		return -ERANGE;
979 
980 	/* Reserve 2 bytes for the BBM. */
981 	region->offset = 2;
982 	region->length = 62;
983 
984 	return 0;
985 }
986 
987 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
988 	.ecc = spinand_noecc_ooblayout_ecc,
989 	.free = spinand_noecc_ooblayout_free,
990 };
991 
992 static int spinand_init(struct spinand_device *spinand)
993 {
994 	struct device *dev = &spinand->spimem->spi->dev;
995 	struct mtd_info *mtd = spinand_to_mtd(spinand);
996 	struct nand_device *nand = mtd_to_nanddev(mtd);
997 	int ret, i;
998 
999 	/*
1000 	 * We need a scratch buffer because the spi_mem interface requires that
1001 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1002 	 */
1003 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1004 	if (!spinand->scratchbuf)
1005 		return -ENOMEM;
1006 
1007 	ret = spinand_detect(spinand);
1008 	if (ret)
1009 		goto err_free_bufs;
1010 
1011 	/*
1012 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1013 	 * may use this buffer for DMA access.
1014 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1015 	 */
1016 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1017 			       nanddev_per_page_oobsize(nand),
1018 			       GFP_KERNEL);
1019 	if (!spinand->databuf) {
1020 		ret = -ENOMEM;
1021 		goto err_free_bufs;
1022 	}
1023 
1024 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1025 
1026 	ret = spinand_init_cfg_cache(spinand);
1027 	if (ret)
1028 		goto err_free_bufs;
1029 
1030 	ret = spinand_init_quad_enable(spinand);
1031 	if (ret)
1032 		goto err_free_bufs;
1033 
1034 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1035 	if (ret)
1036 		goto err_free_bufs;
1037 
1038 	ret = spinand_manufacturer_init(spinand);
1039 	if (ret) {
1040 		dev_err(dev,
1041 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1042 			ret);
1043 		goto err_free_bufs;
1044 	}
1045 
1046 	ret = spinand_create_dirmaps(spinand);
1047 	if (ret) {
1048 		dev_err(dev,
1049 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1050 			ret);
1051 		goto err_manuf_cleanup;
1052 	}
1053 
1054 	/* After power up, all blocks are locked, so unlock them here. */
1055 	for (i = 0; i < nand->memorg.ntargets; i++) {
1056 		ret = spinand_select_target(spinand, i);
1057 		if (ret)
1058 			goto err_manuf_cleanup;
1059 
1060 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1061 		if (ret)
1062 			goto err_manuf_cleanup;
1063 	}
1064 
1065 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1066 	if (ret)
1067 		goto err_manuf_cleanup;
1068 
1069 	/*
1070 	 * Right now, we don't support ECC, so let the whole oob
1071 	 * area is available for user.
1072 	 */
1073 	mtd->_read_oob = spinand_mtd_read;
1074 	mtd->_write_oob = spinand_mtd_write;
1075 	mtd->_block_isbad = spinand_mtd_block_isbad;
1076 	mtd->_block_markbad = spinand_mtd_block_markbad;
1077 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1078 	mtd->_erase = spinand_mtd_erase;
1079 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1080 
1081 	if (spinand->eccinfo.ooblayout)
1082 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1083 	else
1084 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1085 
1086 	ret = mtd_ooblayout_count_freebytes(mtd);
1087 	if (ret < 0)
1088 		goto err_cleanup_nanddev;
1089 
1090 	mtd->oobavail = ret;
1091 
1092 	/* Propagate ECC information to mtd_info */
1093 	mtd->ecc_strength = nand->eccreq.strength;
1094 	mtd->ecc_step_size = nand->eccreq.step_size;
1095 
1096 	return 0;
1097 
1098 err_cleanup_nanddev:
1099 	nanddev_cleanup(nand);
1100 
1101 err_manuf_cleanup:
1102 	spinand_manufacturer_cleanup(spinand);
1103 
1104 err_free_bufs:
1105 	kfree(spinand->databuf);
1106 	kfree(spinand->scratchbuf);
1107 	return ret;
1108 }
1109 
1110 static void spinand_cleanup(struct spinand_device *spinand)
1111 {
1112 	struct nand_device *nand = spinand_to_nand(spinand);
1113 
1114 	nanddev_cleanup(nand);
1115 	spinand_manufacturer_cleanup(spinand);
1116 	kfree(spinand->databuf);
1117 	kfree(spinand->scratchbuf);
1118 }
1119 
1120 static int spinand_probe(struct spi_mem *mem)
1121 {
1122 	struct spinand_device *spinand;
1123 	struct mtd_info *mtd;
1124 	int ret;
1125 
1126 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1127 			       GFP_KERNEL);
1128 	if (!spinand)
1129 		return -ENOMEM;
1130 
1131 	spinand->spimem = mem;
1132 	spi_mem_set_drvdata(mem, spinand);
1133 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1134 	mutex_init(&spinand->lock);
1135 	mtd = spinand_to_mtd(spinand);
1136 	mtd->dev.parent = &mem->spi->dev;
1137 
1138 	ret = spinand_init(spinand);
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = mtd_device_register(mtd, NULL, 0);
1143 	if (ret)
1144 		goto err_spinand_cleanup;
1145 
1146 	return 0;
1147 
1148 err_spinand_cleanup:
1149 	spinand_cleanup(spinand);
1150 
1151 	return ret;
1152 }
1153 
1154 static int spinand_remove(struct spi_mem *mem)
1155 {
1156 	struct spinand_device *spinand;
1157 	struct mtd_info *mtd;
1158 	int ret;
1159 
1160 	spinand = spi_mem_get_drvdata(mem);
1161 	mtd = spinand_to_mtd(spinand);
1162 
1163 	ret = mtd_device_unregister(mtd);
1164 	if (ret)
1165 		return ret;
1166 
1167 	spinand_cleanup(spinand);
1168 
1169 	return 0;
1170 }
1171 
1172 static const struct spi_device_id spinand_ids[] = {
1173 	{ .name = "spi-nand" },
1174 	{ /* sentinel */ },
1175 };
1176 
1177 #ifdef CONFIG_OF
1178 static const struct of_device_id spinand_of_ids[] = {
1179 	{ .compatible = "spi-nand" },
1180 	{ /* sentinel */ },
1181 };
1182 #endif
1183 
1184 static struct spi_mem_driver spinand_drv = {
1185 	.spidrv = {
1186 		.id_table = spinand_ids,
1187 		.driver = {
1188 			.name = "spi-nand",
1189 			.of_match_table = of_match_ptr(spinand_of_ids),
1190 		},
1191 	},
1192 	.probe = spinand_probe,
1193 	.remove = spinand_remove,
1194 };
1195 module_spi_mem_driver(spinand_drv);
1196 
1197 MODULE_DESCRIPTION("SPI NAND framework");
1198 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1199 MODULE_LICENSE("GPL v2");
1200