xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision cd6d421e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_init_cfg_cache(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	struct device *dev = &spinand->spimem->spi->dev;
145 	unsigned int target;
146 	int ret;
147 
148 	spinand->cfg_cache = devm_kcalloc(dev,
149 					  nand->memorg.ntargets,
150 					  sizeof(*spinand->cfg_cache),
151 					  GFP_KERNEL);
152 	if (!spinand->cfg_cache)
153 		return -ENOMEM;
154 
155 	for (target = 0; target < nand->memorg.ntargets; target++) {
156 		ret = spinand_select_target(spinand, target);
157 		if (ret)
158 			return ret;
159 
160 		/*
161 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
162 		 * here to bypass the config cache.
163 		 */
164 		ret = spinand_read_reg_op(spinand, REG_CFG,
165 					  &spinand->cfg_cache[target]);
166 		if (ret)
167 			return ret;
168 	}
169 
170 	return 0;
171 }
172 
173 static int spinand_init_quad_enable(struct spinand_device *spinand)
174 {
175 	bool enable = false;
176 
177 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
178 		return 0;
179 
180 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
181 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
182 	    spinand->op_templates.update_cache->data.buswidth == 4)
183 		enable = true;
184 
185 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
186 			       enable ? CFG_QUAD_ENABLE : 0);
187 }
188 
189 static int spinand_ecc_enable(struct spinand_device *spinand,
190 			      bool enable)
191 {
192 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
193 			       enable ? CFG_ECC_ENABLE : 0);
194 }
195 
196 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
197 {
198 	struct nand_device *nand = spinand_to_nand(spinand);
199 
200 	if (spinand->eccinfo.get_status)
201 		return spinand->eccinfo.get_status(spinand, status);
202 
203 	switch (status & STATUS_ECC_MASK) {
204 	case STATUS_ECC_NO_BITFLIPS:
205 		return 0;
206 
207 	case STATUS_ECC_HAS_BITFLIPS:
208 		/*
209 		 * We have no way to know exactly how many bitflips have been
210 		 * fixed, so let's return the maximum possible value so that
211 		 * wear-leveling layers move the data immediately.
212 		 */
213 		return nanddev_get_ecc_conf(nand)->strength;
214 
215 	case STATUS_ECC_UNCOR_ERROR:
216 		return -EBADMSG;
217 
218 	default:
219 		break;
220 	}
221 
222 	return -EINVAL;
223 }
224 
225 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
226 				       struct mtd_oob_region *region)
227 {
228 	return -ERANGE;
229 }
230 
231 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
232 					struct mtd_oob_region *region)
233 {
234 	if (section)
235 		return -ERANGE;
236 
237 	/* Reserve 2 bytes for the BBM. */
238 	region->offset = 2;
239 	region->length = 62;
240 
241 	return 0;
242 }
243 
244 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
245 	.ecc = spinand_noecc_ooblayout_ecc,
246 	.free = spinand_noecc_ooblayout_free,
247 };
248 
249 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
250 {
251 	struct spinand_device *spinand = nand_to_spinand(nand);
252 	struct mtd_info *mtd = nanddev_to_mtd(nand);
253 	struct spinand_ondie_ecc_conf *engine_conf;
254 
255 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
256 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
257 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
258 
259 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
260 	if (!engine_conf)
261 		return -ENOMEM;
262 
263 	nand->ecc.ctx.priv = engine_conf;
264 
265 	if (spinand->eccinfo.ooblayout)
266 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
267 	else
268 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
269 
270 	return 0;
271 }
272 
273 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
274 {
275 	kfree(nand->ecc.ctx.priv);
276 }
277 
278 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
279 					    struct nand_page_io_req *req)
280 {
281 	struct spinand_device *spinand = nand_to_spinand(nand);
282 	bool enable = (req->mode != MTD_OPS_RAW);
283 
284 	/* Only enable or disable the engine */
285 	return spinand_ecc_enable(spinand, enable);
286 }
287 
288 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
289 					   struct nand_page_io_req *req)
290 {
291 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
292 	struct spinand_device *spinand = nand_to_spinand(nand);
293 
294 	if (req->mode == MTD_OPS_RAW)
295 		return 0;
296 
297 	/* Nothing to do when finishing a page write */
298 	if (req->type == NAND_PAGE_WRITE)
299 		return 0;
300 
301 	/* Finish a page write: check the status, report errors/bitflips */
302 	return spinand_check_ecc_status(spinand, engine_conf->status);
303 }
304 
305 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
306 	.init_ctx = spinand_ondie_ecc_init_ctx,
307 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
308 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
309 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
310 };
311 
312 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
313 	.ops = &spinand_ondie_ecc_engine_ops,
314 };
315 
316 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
317 {
318 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
319 
320 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
321 	    engine_conf)
322 		engine_conf->status = status;
323 }
324 
325 static int spinand_write_enable_op(struct spinand_device *spinand)
326 {
327 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
328 
329 	return spi_mem_exec_op(spinand->spimem, &op);
330 }
331 
332 static int spinand_load_page_op(struct spinand_device *spinand,
333 				const struct nand_page_io_req *req)
334 {
335 	struct nand_device *nand = spinand_to_nand(spinand);
336 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
337 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
338 
339 	return spi_mem_exec_op(spinand->spimem, &op);
340 }
341 
342 static int spinand_read_from_cache_op(struct spinand_device *spinand,
343 				      const struct nand_page_io_req *req)
344 {
345 	struct nand_device *nand = spinand_to_nand(spinand);
346 	struct mtd_info *mtd = spinand_to_mtd(spinand);
347 	struct spi_mem_dirmap_desc *rdesc;
348 	unsigned int nbytes = 0;
349 	void *buf = NULL;
350 	u16 column = 0;
351 	ssize_t ret;
352 
353 	if (req->datalen) {
354 		buf = spinand->databuf;
355 		nbytes = nanddev_page_size(nand);
356 		column = 0;
357 	}
358 
359 	if (req->ooblen) {
360 		nbytes += nanddev_per_page_oobsize(nand);
361 		if (!buf) {
362 			buf = spinand->oobbuf;
363 			column = nanddev_page_size(nand);
364 		}
365 	}
366 
367 	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
368 
369 	while (nbytes) {
370 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
371 		if (ret < 0)
372 			return ret;
373 
374 		if (!ret || ret > nbytes)
375 			return -EIO;
376 
377 		nbytes -= ret;
378 		column += ret;
379 		buf += ret;
380 	}
381 
382 	if (req->datalen)
383 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
384 		       req->datalen);
385 
386 	if (req->ooblen) {
387 		if (req->mode == MTD_OPS_AUTO_OOB)
388 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
389 						    spinand->oobbuf,
390 						    req->ooboffs,
391 						    req->ooblen);
392 		else
393 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
394 			       req->ooblen);
395 	}
396 
397 	return 0;
398 }
399 
400 static int spinand_write_to_cache_op(struct spinand_device *spinand,
401 				     const struct nand_page_io_req *req)
402 {
403 	struct nand_device *nand = spinand_to_nand(spinand);
404 	struct mtd_info *mtd = spinand_to_mtd(spinand);
405 	struct spi_mem_dirmap_desc *wdesc;
406 	unsigned int nbytes, column = 0;
407 	void *buf = spinand->databuf;
408 	ssize_t ret;
409 
410 	/*
411 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
412 	 * the cache content to 0xFF (depends on vendor implementation), so we
413 	 * must fill the page cache entirely even if we only want to program
414 	 * the data portion of the page, otherwise we might corrupt the BBM or
415 	 * user data previously programmed in OOB area.
416 	 *
417 	 * Only reset the data buffer manually, the OOB buffer is prepared by
418 	 * ECC engines ->prepare_io_req() callback.
419 	 */
420 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
421 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
422 
423 	if (req->datalen)
424 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
425 		       req->datalen);
426 
427 	if (req->ooblen) {
428 		if (req->mode == MTD_OPS_AUTO_OOB)
429 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
430 						    spinand->oobbuf,
431 						    req->ooboffs,
432 						    req->ooblen);
433 		else
434 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
435 			       req->ooblen);
436 	}
437 
438 	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
439 
440 	while (nbytes) {
441 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
442 		if (ret < 0)
443 			return ret;
444 
445 		if (!ret || ret > nbytes)
446 			return -EIO;
447 
448 		nbytes -= ret;
449 		column += ret;
450 		buf += ret;
451 	}
452 
453 	return 0;
454 }
455 
456 static int spinand_program_op(struct spinand_device *spinand,
457 			      const struct nand_page_io_req *req)
458 {
459 	struct nand_device *nand = spinand_to_nand(spinand);
460 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
461 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
462 
463 	return spi_mem_exec_op(spinand->spimem, &op);
464 }
465 
466 static int spinand_erase_op(struct spinand_device *spinand,
467 			    const struct nand_pos *pos)
468 {
469 	struct nand_device *nand = spinand_to_nand(spinand);
470 	unsigned int row = nanddev_pos_to_row(nand, pos);
471 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
472 
473 	return spi_mem_exec_op(spinand->spimem, &op);
474 }
475 
476 static int spinand_wait(struct spinand_device *spinand, u8 *s)
477 {
478 	unsigned long timeo =  jiffies + msecs_to_jiffies(400);
479 	u8 status;
480 	int ret;
481 
482 	do {
483 		ret = spinand_read_status(spinand, &status);
484 		if (ret)
485 			return ret;
486 
487 		if (!(status & STATUS_BUSY))
488 			goto out;
489 	} while (time_before(jiffies, timeo));
490 
491 	/*
492 	 * Extra read, just in case the STATUS_READY bit has changed
493 	 * since our last check
494 	 */
495 	ret = spinand_read_status(spinand, &status);
496 	if (ret)
497 		return ret;
498 
499 out:
500 	if (s)
501 		*s = status;
502 
503 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
504 }
505 
506 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
507 			      u8 ndummy, u8 *buf)
508 {
509 	struct spi_mem_op op = SPINAND_READID_OP(
510 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
511 	int ret;
512 
513 	ret = spi_mem_exec_op(spinand->spimem, &op);
514 	if (!ret)
515 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
516 
517 	return ret;
518 }
519 
520 static int spinand_reset_op(struct spinand_device *spinand)
521 {
522 	struct spi_mem_op op = SPINAND_RESET_OP;
523 	int ret;
524 
525 	ret = spi_mem_exec_op(spinand->spimem, &op);
526 	if (ret)
527 		return ret;
528 
529 	return spinand_wait(spinand, NULL);
530 }
531 
532 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
533 {
534 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
535 }
536 
537 static int spinand_read_page(struct spinand_device *spinand,
538 			     const struct nand_page_io_req *req)
539 {
540 	struct nand_device *nand = spinand_to_nand(spinand);
541 	u8 status;
542 	int ret;
543 
544 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
545 	if (ret)
546 		return ret;
547 
548 	ret = spinand_load_page_op(spinand, req);
549 	if (ret)
550 		return ret;
551 
552 	ret = spinand_wait(spinand, &status);
553 	if (ret < 0)
554 		return ret;
555 
556 	spinand_ondie_ecc_save_status(nand, status);
557 
558 	ret = spinand_read_from_cache_op(spinand, req);
559 	if (ret)
560 		return ret;
561 
562 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
563 }
564 
565 static int spinand_write_page(struct spinand_device *spinand,
566 			      const struct nand_page_io_req *req)
567 {
568 	struct nand_device *nand = spinand_to_nand(spinand);
569 	u8 status;
570 	int ret;
571 
572 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
573 	if (ret)
574 		return ret;
575 
576 	ret = spinand_write_enable_op(spinand);
577 	if (ret)
578 		return ret;
579 
580 	ret = spinand_write_to_cache_op(spinand, req);
581 	if (ret)
582 		return ret;
583 
584 	ret = spinand_program_op(spinand, req);
585 	if (ret)
586 		return ret;
587 
588 	ret = spinand_wait(spinand, &status);
589 	if (!ret && (status & STATUS_PROG_FAILED))
590 		return -EIO;
591 
592 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
593 }
594 
595 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
596 			    struct mtd_oob_ops *ops)
597 {
598 	struct spinand_device *spinand = mtd_to_spinand(mtd);
599 	struct nand_device *nand = mtd_to_nanddev(mtd);
600 	unsigned int max_bitflips = 0;
601 	struct nand_io_iter iter;
602 	bool disable_ecc = false;
603 	bool ecc_failed = false;
604 	int ret = 0;
605 
606 	if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
607 		disable_ecc = true;
608 
609 	mutex_lock(&spinand->lock);
610 
611 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
612 		if (disable_ecc)
613 			iter.req.mode = MTD_OPS_RAW;
614 
615 		ret = spinand_select_target(spinand, iter.req.pos.target);
616 		if (ret)
617 			break;
618 
619 		ret = spinand_read_page(spinand, &iter.req);
620 		if (ret < 0 && ret != -EBADMSG)
621 			break;
622 
623 		if (ret == -EBADMSG) {
624 			ecc_failed = true;
625 			mtd->ecc_stats.failed++;
626 		} else {
627 			mtd->ecc_stats.corrected += ret;
628 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
629 		}
630 
631 		ret = 0;
632 		ops->retlen += iter.req.datalen;
633 		ops->oobretlen += iter.req.ooblen;
634 	}
635 
636 	mutex_unlock(&spinand->lock);
637 
638 	if (ecc_failed && !ret)
639 		ret = -EBADMSG;
640 
641 	return ret ? ret : max_bitflips;
642 }
643 
644 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
645 			     struct mtd_oob_ops *ops)
646 {
647 	struct spinand_device *spinand = mtd_to_spinand(mtd);
648 	struct nand_device *nand = mtd_to_nanddev(mtd);
649 	struct nand_io_iter iter;
650 	bool disable_ecc = false;
651 	int ret = 0;
652 
653 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
654 		disable_ecc = true;
655 
656 	mutex_lock(&spinand->lock);
657 
658 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
659 		if (disable_ecc)
660 			iter.req.mode = MTD_OPS_RAW;
661 
662 		ret = spinand_select_target(spinand, iter.req.pos.target);
663 		if (ret)
664 			break;
665 
666 		ret = spinand_write_page(spinand, &iter.req);
667 		if (ret)
668 			break;
669 
670 		ops->retlen += iter.req.datalen;
671 		ops->oobretlen += iter.req.ooblen;
672 	}
673 
674 	mutex_unlock(&spinand->lock);
675 
676 	return ret;
677 }
678 
679 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
680 {
681 	struct spinand_device *spinand = nand_to_spinand(nand);
682 	u8 marker[2] = { };
683 	struct nand_page_io_req req = {
684 		.pos = *pos,
685 		.ooblen = sizeof(marker),
686 		.ooboffs = 0,
687 		.oobbuf.in = marker,
688 		.mode = MTD_OPS_RAW,
689 	};
690 
691 	spinand_select_target(spinand, pos->target);
692 	spinand_read_page(spinand, &req);
693 	if (marker[0] != 0xff || marker[1] != 0xff)
694 		return true;
695 
696 	return false;
697 }
698 
699 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
700 {
701 	struct nand_device *nand = mtd_to_nanddev(mtd);
702 	struct spinand_device *spinand = nand_to_spinand(nand);
703 	struct nand_pos pos;
704 	int ret;
705 
706 	nanddev_offs_to_pos(nand, offs, &pos);
707 	mutex_lock(&spinand->lock);
708 	ret = nanddev_isbad(nand, &pos);
709 	mutex_unlock(&spinand->lock);
710 
711 	return ret;
712 }
713 
714 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
715 {
716 	struct spinand_device *spinand = nand_to_spinand(nand);
717 	u8 marker[2] = { };
718 	struct nand_page_io_req req = {
719 		.pos = *pos,
720 		.ooboffs = 0,
721 		.ooblen = sizeof(marker),
722 		.oobbuf.out = marker,
723 		.mode = MTD_OPS_RAW,
724 	};
725 	int ret;
726 
727 	ret = spinand_select_target(spinand, pos->target);
728 	if (ret)
729 		return ret;
730 
731 	ret = spinand_write_enable_op(spinand);
732 	if (ret)
733 		return ret;
734 
735 	return spinand_write_page(spinand, &req);
736 }
737 
738 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
739 {
740 	struct nand_device *nand = mtd_to_nanddev(mtd);
741 	struct spinand_device *spinand = nand_to_spinand(nand);
742 	struct nand_pos pos;
743 	int ret;
744 
745 	nanddev_offs_to_pos(nand, offs, &pos);
746 	mutex_lock(&spinand->lock);
747 	ret = nanddev_markbad(nand, &pos);
748 	mutex_unlock(&spinand->lock);
749 
750 	return ret;
751 }
752 
753 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
754 {
755 	struct spinand_device *spinand = nand_to_spinand(nand);
756 	u8 status;
757 	int ret;
758 
759 	ret = spinand_select_target(spinand, pos->target);
760 	if (ret)
761 		return ret;
762 
763 	ret = spinand_write_enable_op(spinand);
764 	if (ret)
765 		return ret;
766 
767 	ret = spinand_erase_op(spinand, pos);
768 	if (ret)
769 		return ret;
770 
771 	ret = spinand_wait(spinand, &status);
772 	if (!ret && (status & STATUS_ERASE_FAILED))
773 		ret = -EIO;
774 
775 	return ret;
776 }
777 
778 static int spinand_mtd_erase(struct mtd_info *mtd,
779 			     struct erase_info *einfo)
780 {
781 	struct spinand_device *spinand = mtd_to_spinand(mtd);
782 	int ret;
783 
784 	mutex_lock(&spinand->lock);
785 	ret = nanddev_mtd_erase(mtd, einfo);
786 	mutex_unlock(&spinand->lock);
787 
788 	return ret;
789 }
790 
791 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
792 {
793 	struct spinand_device *spinand = mtd_to_spinand(mtd);
794 	struct nand_device *nand = mtd_to_nanddev(mtd);
795 	struct nand_pos pos;
796 	int ret;
797 
798 	nanddev_offs_to_pos(nand, offs, &pos);
799 	mutex_lock(&spinand->lock);
800 	ret = nanddev_isreserved(nand, &pos);
801 	mutex_unlock(&spinand->lock);
802 
803 	return ret;
804 }
805 
806 static int spinand_create_dirmap(struct spinand_device *spinand,
807 				 unsigned int plane)
808 {
809 	struct nand_device *nand = spinand_to_nand(spinand);
810 	struct spi_mem_dirmap_info info = {
811 		.length = nanddev_page_size(nand) +
812 			  nanddev_per_page_oobsize(nand),
813 	};
814 	struct spi_mem_dirmap_desc *desc;
815 
816 	/* The plane number is passed in MSB just above the column address */
817 	info.offset = plane << fls(nand->memorg.pagesize);
818 
819 	info.op_tmpl = *spinand->op_templates.update_cache;
820 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
821 					  spinand->spimem, &info);
822 	if (IS_ERR(desc))
823 		return PTR_ERR(desc);
824 
825 	spinand->dirmaps[plane].wdesc = desc;
826 
827 	info.op_tmpl = *spinand->op_templates.read_cache;
828 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
829 					  spinand->spimem, &info);
830 	if (IS_ERR(desc))
831 		return PTR_ERR(desc);
832 
833 	spinand->dirmaps[plane].rdesc = desc;
834 
835 	return 0;
836 }
837 
838 static int spinand_create_dirmaps(struct spinand_device *spinand)
839 {
840 	struct nand_device *nand = spinand_to_nand(spinand);
841 	int i, ret;
842 
843 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
844 					sizeof(*spinand->dirmaps) *
845 					nand->memorg.planes_per_lun,
846 					GFP_KERNEL);
847 	if (!spinand->dirmaps)
848 		return -ENOMEM;
849 
850 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
851 		ret = spinand_create_dirmap(spinand, i);
852 		if (ret)
853 			return ret;
854 	}
855 
856 	return 0;
857 }
858 
859 static const struct nand_ops spinand_ops = {
860 	.erase = spinand_erase,
861 	.markbad = spinand_markbad,
862 	.isbad = spinand_isbad,
863 };
864 
865 static const struct spinand_manufacturer *spinand_manufacturers[] = {
866 	&gigadevice_spinand_manufacturer,
867 	&macronix_spinand_manufacturer,
868 	&micron_spinand_manufacturer,
869 	&paragon_spinand_manufacturer,
870 	&toshiba_spinand_manufacturer,
871 	&winbond_spinand_manufacturer,
872 };
873 
874 static int spinand_manufacturer_match(struct spinand_device *spinand,
875 				      enum spinand_readid_method rdid_method)
876 {
877 	u8 *id = spinand->id.data;
878 	unsigned int i;
879 	int ret;
880 
881 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
882 		const struct spinand_manufacturer *manufacturer =
883 			spinand_manufacturers[i];
884 
885 		if (id[0] != manufacturer->id)
886 			continue;
887 
888 		ret = spinand_match_and_init(spinand,
889 					     manufacturer->chips,
890 					     manufacturer->nchips,
891 					     rdid_method);
892 		if (ret < 0)
893 			continue;
894 
895 		spinand->manufacturer = manufacturer;
896 		return 0;
897 	}
898 	return -ENOTSUPP;
899 }
900 
901 static int spinand_id_detect(struct spinand_device *spinand)
902 {
903 	u8 *id = spinand->id.data;
904 	int ret;
905 
906 	ret = spinand_read_id_op(spinand, 0, 0, id);
907 	if (ret)
908 		return ret;
909 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
910 	if (!ret)
911 		return 0;
912 
913 	ret = spinand_read_id_op(spinand, 1, 0, id);
914 	if (ret)
915 		return ret;
916 	ret = spinand_manufacturer_match(spinand,
917 					 SPINAND_READID_METHOD_OPCODE_ADDR);
918 	if (!ret)
919 		return 0;
920 
921 	ret = spinand_read_id_op(spinand, 0, 1, id);
922 	if (ret)
923 		return ret;
924 	ret = spinand_manufacturer_match(spinand,
925 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
926 
927 	return ret;
928 }
929 
930 static int spinand_manufacturer_init(struct spinand_device *spinand)
931 {
932 	if (spinand->manufacturer->ops->init)
933 		return spinand->manufacturer->ops->init(spinand);
934 
935 	return 0;
936 }
937 
938 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
939 {
940 	/* Release manufacturer private data */
941 	if (spinand->manufacturer->ops->cleanup)
942 		return spinand->manufacturer->ops->cleanup(spinand);
943 }
944 
945 static const struct spi_mem_op *
946 spinand_select_op_variant(struct spinand_device *spinand,
947 			  const struct spinand_op_variants *variants)
948 {
949 	struct nand_device *nand = spinand_to_nand(spinand);
950 	unsigned int i;
951 
952 	for (i = 0; i < variants->nops; i++) {
953 		struct spi_mem_op op = variants->ops[i];
954 		unsigned int nbytes;
955 		int ret;
956 
957 		nbytes = nanddev_per_page_oobsize(nand) +
958 			 nanddev_page_size(nand);
959 
960 		while (nbytes) {
961 			op.data.nbytes = nbytes;
962 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
963 			if (ret)
964 				break;
965 
966 			if (!spi_mem_supports_op(spinand->spimem, &op))
967 				break;
968 
969 			nbytes -= op.data.nbytes;
970 		}
971 
972 		if (!nbytes)
973 			return &variants->ops[i];
974 	}
975 
976 	return NULL;
977 }
978 
979 /**
980  * spinand_match_and_init() - Try to find a match between a device ID and an
981  *			      entry in a spinand_info table
982  * @spinand: SPI NAND object
983  * @table: SPI NAND device description table
984  * @table_size: size of the device description table
985  * @rdid_method: read id method to match
986  *
987  * Match between a device ID retrieved through the READ_ID command and an
988  * entry in the SPI NAND description table. If a match is found, the spinand
989  * object will be initialized with information provided by the matching
990  * spinand_info entry.
991  *
992  * Return: 0 on success, a negative error code otherwise.
993  */
994 int spinand_match_and_init(struct spinand_device *spinand,
995 			   const struct spinand_info *table,
996 			   unsigned int table_size,
997 			   enum spinand_readid_method rdid_method)
998 {
999 	u8 *id = spinand->id.data;
1000 	struct nand_device *nand = spinand_to_nand(spinand);
1001 	unsigned int i;
1002 
1003 	for (i = 0; i < table_size; i++) {
1004 		const struct spinand_info *info = &table[i];
1005 		const struct spi_mem_op *op;
1006 
1007 		if (rdid_method != info->devid.method)
1008 			continue;
1009 
1010 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1011 			continue;
1012 
1013 		nand->memorg = table[i].memorg;
1014 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1015 		spinand->eccinfo = table[i].eccinfo;
1016 		spinand->flags = table[i].flags;
1017 		spinand->id.len = 1 + table[i].devid.len;
1018 		spinand->select_target = table[i].select_target;
1019 
1020 		op = spinand_select_op_variant(spinand,
1021 					       info->op_variants.read_cache);
1022 		if (!op)
1023 			return -ENOTSUPP;
1024 
1025 		spinand->op_templates.read_cache = op;
1026 
1027 		op = spinand_select_op_variant(spinand,
1028 					       info->op_variants.write_cache);
1029 		if (!op)
1030 			return -ENOTSUPP;
1031 
1032 		spinand->op_templates.write_cache = op;
1033 
1034 		op = spinand_select_op_variant(spinand,
1035 					       info->op_variants.update_cache);
1036 		spinand->op_templates.update_cache = op;
1037 
1038 		return 0;
1039 	}
1040 
1041 	return -ENOTSUPP;
1042 }
1043 
1044 static int spinand_detect(struct spinand_device *spinand)
1045 {
1046 	struct device *dev = &spinand->spimem->spi->dev;
1047 	struct nand_device *nand = spinand_to_nand(spinand);
1048 	int ret;
1049 
1050 	ret = spinand_reset_op(spinand);
1051 	if (ret)
1052 		return ret;
1053 
1054 	ret = spinand_id_detect(spinand);
1055 	if (ret) {
1056 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1057 			spinand->id.data);
1058 		return ret;
1059 	}
1060 
1061 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1062 		dev_err(dev,
1063 			"SPI NANDs with more than one die must implement ->select_target()\n");
1064 		return -EINVAL;
1065 	}
1066 
1067 	dev_info(&spinand->spimem->spi->dev,
1068 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1069 	dev_info(&spinand->spimem->spi->dev,
1070 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1071 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1072 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1073 
1074 	return 0;
1075 }
1076 
1077 static int spinand_init(struct spinand_device *spinand)
1078 {
1079 	struct device *dev = &spinand->spimem->spi->dev;
1080 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1081 	struct nand_device *nand = mtd_to_nanddev(mtd);
1082 	int ret, i;
1083 
1084 	/*
1085 	 * We need a scratch buffer because the spi_mem interface requires that
1086 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1087 	 */
1088 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1089 	if (!spinand->scratchbuf)
1090 		return -ENOMEM;
1091 
1092 	ret = spinand_detect(spinand);
1093 	if (ret)
1094 		goto err_free_bufs;
1095 
1096 	/*
1097 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1098 	 * may use this buffer for DMA access.
1099 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1100 	 */
1101 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1102 			       nanddev_per_page_oobsize(nand),
1103 			       GFP_KERNEL);
1104 	if (!spinand->databuf) {
1105 		ret = -ENOMEM;
1106 		goto err_free_bufs;
1107 	}
1108 
1109 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1110 
1111 	ret = spinand_init_cfg_cache(spinand);
1112 	if (ret)
1113 		goto err_free_bufs;
1114 
1115 	ret = spinand_init_quad_enable(spinand);
1116 	if (ret)
1117 		goto err_free_bufs;
1118 
1119 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1120 	if (ret)
1121 		goto err_free_bufs;
1122 
1123 	ret = spinand_manufacturer_init(spinand);
1124 	if (ret) {
1125 		dev_err(dev,
1126 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1127 			ret);
1128 		goto err_free_bufs;
1129 	}
1130 
1131 	ret = spinand_create_dirmaps(spinand);
1132 	if (ret) {
1133 		dev_err(dev,
1134 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1135 			ret);
1136 		goto err_manuf_cleanup;
1137 	}
1138 
1139 	/* After power up, all blocks are locked, so unlock them here. */
1140 	for (i = 0; i < nand->memorg.ntargets; i++) {
1141 		ret = spinand_select_target(spinand, i);
1142 		if (ret)
1143 			goto err_manuf_cleanup;
1144 
1145 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1146 		if (ret)
1147 			goto err_manuf_cleanup;
1148 	}
1149 
1150 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1151 	if (ret)
1152 		goto err_manuf_cleanup;
1153 
1154 	/* SPI-NAND default ECC engine is on-die */
1155 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1156 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1157 
1158 	spinand_ecc_enable(spinand, false);
1159 	ret = nanddev_ecc_engine_init(nand);
1160 	if (ret)
1161 		goto err_cleanup_nanddev;
1162 
1163 	mtd->_read_oob = spinand_mtd_read;
1164 	mtd->_write_oob = spinand_mtd_write;
1165 	mtd->_block_isbad = spinand_mtd_block_isbad;
1166 	mtd->_block_markbad = spinand_mtd_block_markbad;
1167 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1168 	mtd->_erase = spinand_mtd_erase;
1169 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1170 
1171 	if (nand->ecc.engine) {
1172 		ret = mtd_ooblayout_count_freebytes(mtd);
1173 		if (ret < 0)
1174 			goto err_cleanup_ecc_engine;
1175 	}
1176 
1177 	mtd->oobavail = ret;
1178 
1179 	/* Propagate ECC information to mtd_info */
1180 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1181 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1182 
1183 	return 0;
1184 
1185 err_cleanup_ecc_engine:
1186 	nanddev_ecc_engine_cleanup(nand);
1187 
1188 err_cleanup_nanddev:
1189 	nanddev_cleanup(nand);
1190 
1191 err_manuf_cleanup:
1192 	spinand_manufacturer_cleanup(spinand);
1193 
1194 err_free_bufs:
1195 	kfree(spinand->databuf);
1196 	kfree(spinand->scratchbuf);
1197 	return ret;
1198 }
1199 
1200 static void spinand_cleanup(struct spinand_device *spinand)
1201 {
1202 	struct nand_device *nand = spinand_to_nand(spinand);
1203 
1204 	nanddev_cleanup(nand);
1205 	spinand_manufacturer_cleanup(spinand);
1206 	kfree(spinand->databuf);
1207 	kfree(spinand->scratchbuf);
1208 }
1209 
1210 static int spinand_probe(struct spi_mem *mem)
1211 {
1212 	struct spinand_device *spinand;
1213 	struct mtd_info *mtd;
1214 	int ret;
1215 
1216 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1217 			       GFP_KERNEL);
1218 	if (!spinand)
1219 		return -ENOMEM;
1220 
1221 	spinand->spimem = mem;
1222 	spi_mem_set_drvdata(mem, spinand);
1223 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1224 	mutex_init(&spinand->lock);
1225 	mtd = spinand_to_mtd(spinand);
1226 	mtd->dev.parent = &mem->spi->dev;
1227 
1228 	ret = spinand_init(spinand);
1229 	if (ret)
1230 		return ret;
1231 
1232 	ret = mtd_device_register(mtd, NULL, 0);
1233 	if (ret)
1234 		goto err_spinand_cleanup;
1235 
1236 	return 0;
1237 
1238 err_spinand_cleanup:
1239 	spinand_cleanup(spinand);
1240 
1241 	return ret;
1242 }
1243 
1244 static int spinand_remove(struct spi_mem *mem)
1245 {
1246 	struct spinand_device *spinand;
1247 	struct mtd_info *mtd;
1248 	int ret;
1249 
1250 	spinand = spi_mem_get_drvdata(mem);
1251 	mtd = spinand_to_mtd(spinand);
1252 
1253 	ret = mtd_device_unregister(mtd);
1254 	if (ret)
1255 		return ret;
1256 
1257 	spinand_cleanup(spinand);
1258 
1259 	return 0;
1260 }
1261 
1262 static const struct spi_device_id spinand_ids[] = {
1263 	{ .name = "spi-nand" },
1264 	{ /* sentinel */ },
1265 };
1266 
1267 #ifdef CONFIG_OF
1268 static const struct of_device_id spinand_of_ids[] = {
1269 	{ .compatible = "spi-nand" },
1270 	{ /* sentinel */ },
1271 };
1272 #endif
1273 
1274 static struct spi_mem_driver spinand_drv = {
1275 	.spidrv = {
1276 		.id_table = spinand_ids,
1277 		.driver = {
1278 			.name = "spi-nand",
1279 			.of_match_table = of_match_ptr(spinand_of_ids),
1280 		},
1281 	},
1282 	.probe = spinand_probe,
1283 	.remove = spinand_remove,
1284 };
1285 module_spi_mem_driver(spinand_drv);
1286 
1287 MODULE_DESCRIPTION("SPI NAND framework");
1288 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1289 MODULE_LICENSE("GPL v2");
1290