xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision bf8981a2aa082d9d64771b47c8a1c9c388d8cd40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 
22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
23 					  const struct nand_page_io_req *req,
24 					  u16 *column)
25 {
26 	struct nand_device *nand = spinand_to_nand(spinand);
27 	unsigned int shift;
28 
29 	if (nand->memorg.planes_per_lun < 2)
30 		return;
31 
32 	/* The plane number is passed in MSB just above the column address */
33 	shift = fls(nand->memorg.pagesize);
34 	*column |= req->pos.plane << shift;
35 }
36 
37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
38 {
39 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 	int ret;
42 
43 	ret = spi_mem_exec_op(spinand->spimem, &op);
44 	if (ret)
45 		return ret;
46 
47 	*val = *spinand->scratchbuf;
48 	return 0;
49 }
50 
51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
52 {
53 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
54 						      spinand->scratchbuf);
55 
56 	*spinand->scratchbuf = val;
57 	return spi_mem_exec_op(spinand->spimem, &op);
58 }
59 
60 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
61 {
62 	return spinand_read_reg_op(spinand, REG_STATUS, status);
63 }
64 
65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
66 {
67 	struct nand_device *nand = spinand_to_nand(spinand);
68 
69 	if (WARN_ON(spinand->cur_target < 0 ||
70 		    spinand->cur_target >= nand->memorg.ntargets))
71 		return -EINVAL;
72 
73 	*cfg = spinand->cfg_cache[spinand->cur_target];
74 	return 0;
75 }
76 
77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
78 {
79 	struct nand_device *nand = spinand_to_nand(spinand);
80 	int ret;
81 
82 	if (WARN_ON(spinand->cur_target < 0 ||
83 		    spinand->cur_target >= nand->memorg.ntargets))
84 		return -EINVAL;
85 
86 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
87 		return 0;
88 
89 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
90 	if (ret)
91 		return ret;
92 
93 	spinand->cfg_cache[spinand->cur_target] = cfg;
94 	return 0;
95 }
96 
97 /**
98  * spinand_upd_cfg() - Update the configuration register
99  * @spinand: the spinand device
100  * @mask: the mask encoding the bits to update in the config reg
101  * @val: the new value to apply
102  *
103  * Update the configuration register.
104  *
105  * Return: 0 on success, a negative error code otherwise.
106  */
107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
108 {
109 	int ret;
110 	u8 cfg;
111 
112 	ret = spinand_get_cfg(spinand, &cfg);
113 	if (ret)
114 		return ret;
115 
116 	cfg &= ~mask;
117 	cfg |= val;
118 
119 	return spinand_set_cfg(spinand, cfg);
120 }
121 
122 /**
123  * spinand_select_target() - Select a specific NAND target/die
124  * @spinand: the spinand device
125  * @target: the target/die to select
126  *
127  * Select a new target/die. If chip only has one die, this function is a NOOP.
128  *
129  * Return: 0 on success, a negative error code otherwise.
130  */
131 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
132 {
133 	struct nand_device *nand = spinand_to_nand(spinand);
134 	int ret;
135 
136 	if (WARN_ON(target >= nand->memorg.ntargets))
137 		return -EINVAL;
138 
139 	if (spinand->cur_target == target)
140 		return 0;
141 
142 	if (nand->memorg.ntargets == 1) {
143 		spinand->cur_target = target;
144 		return 0;
145 	}
146 
147 	ret = spinand->select_target(spinand, target);
148 	if (ret)
149 		return ret;
150 
151 	spinand->cur_target = target;
152 	return 0;
153 }
154 
155 static int spinand_init_cfg_cache(struct spinand_device *spinand)
156 {
157 	struct nand_device *nand = spinand_to_nand(spinand);
158 	struct device *dev = &spinand->spimem->spi->dev;
159 	unsigned int target;
160 	int ret;
161 
162 	spinand->cfg_cache = devm_kcalloc(dev,
163 					  nand->memorg.ntargets,
164 					  sizeof(*spinand->cfg_cache),
165 					  GFP_KERNEL);
166 	if (!spinand->cfg_cache)
167 		return -ENOMEM;
168 
169 	for (target = 0; target < nand->memorg.ntargets; target++) {
170 		ret = spinand_select_target(spinand, target);
171 		if (ret)
172 			return ret;
173 
174 		/*
175 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
176 		 * here to bypass the config cache.
177 		 */
178 		ret = spinand_read_reg_op(spinand, REG_CFG,
179 					  &spinand->cfg_cache[target]);
180 		if (ret)
181 			return ret;
182 	}
183 
184 	return 0;
185 }
186 
187 static int spinand_init_quad_enable(struct spinand_device *spinand)
188 {
189 	bool enable = false;
190 
191 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
192 		return 0;
193 
194 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
195 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
196 	    spinand->op_templates.update_cache->data.buswidth == 4)
197 		enable = true;
198 
199 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
200 			       enable ? CFG_QUAD_ENABLE : 0);
201 }
202 
203 static int spinand_ecc_enable(struct spinand_device *spinand,
204 			      bool enable)
205 {
206 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
207 			       enable ? CFG_ECC_ENABLE : 0);
208 }
209 
210 static int spinand_write_enable_op(struct spinand_device *spinand)
211 {
212 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
213 
214 	return spi_mem_exec_op(spinand->spimem, &op);
215 }
216 
217 static int spinand_load_page_op(struct spinand_device *spinand,
218 				const struct nand_page_io_req *req)
219 {
220 	struct nand_device *nand = spinand_to_nand(spinand);
221 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
222 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
223 
224 	return spi_mem_exec_op(spinand->spimem, &op);
225 }
226 
227 static int spinand_read_from_cache_op(struct spinand_device *spinand,
228 				      const struct nand_page_io_req *req)
229 {
230 	struct spi_mem_op op = *spinand->op_templates.read_cache;
231 	struct nand_device *nand = spinand_to_nand(spinand);
232 	struct mtd_info *mtd = nanddev_to_mtd(nand);
233 	struct nand_page_io_req adjreq = *req;
234 	unsigned int nbytes = 0;
235 	void *buf = NULL;
236 	u16 column = 0;
237 	int ret;
238 
239 	if (req->datalen) {
240 		adjreq.datalen = nanddev_page_size(nand);
241 		adjreq.dataoffs = 0;
242 		adjreq.databuf.in = spinand->databuf;
243 		buf = spinand->databuf;
244 		nbytes = adjreq.datalen;
245 	}
246 
247 	if (req->ooblen) {
248 		adjreq.ooblen = nanddev_per_page_oobsize(nand);
249 		adjreq.ooboffs = 0;
250 		adjreq.oobbuf.in = spinand->oobbuf;
251 		nbytes += nanddev_per_page_oobsize(nand);
252 		if (!buf) {
253 			buf = spinand->oobbuf;
254 			column = nanddev_page_size(nand);
255 		}
256 	}
257 
258 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
259 	op.addr.val = column;
260 
261 	/*
262 	 * Some controllers are limited in term of max RX data size. In this
263 	 * case, just repeat the READ_CACHE operation after updating the
264 	 * column.
265 	 */
266 	while (nbytes) {
267 		op.data.buf.in = buf;
268 		op.data.nbytes = nbytes;
269 		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
270 		if (ret)
271 			return ret;
272 
273 		ret = spi_mem_exec_op(spinand->spimem, &op);
274 		if (ret)
275 			return ret;
276 
277 		buf += op.data.nbytes;
278 		nbytes -= op.data.nbytes;
279 		op.addr.val += op.data.nbytes;
280 	}
281 
282 	if (req->datalen)
283 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
284 		       req->datalen);
285 
286 	if (req->ooblen) {
287 		if (req->mode == MTD_OPS_AUTO_OOB)
288 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
289 						    spinand->oobbuf,
290 						    req->ooboffs,
291 						    req->ooblen);
292 		else
293 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
294 			       req->ooblen);
295 	}
296 
297 	return 0;
298 }
299 
300 static int spinand_write_to_cache_op(struct spinand_device *spinand,
301 				     const struct nand_page_io_req *req)
302 {
303 	struct spi_mem_op op = *spinand->op_templates.write_cache;
304 	struct nand_device *nand = spinand_to_nand(spinand);
305 	struct mtd_info *mtd = nanddev_to_mtd(nand);
306 	struct nand_page_io_req adjreq = *req;
307 	void *buf = spinand->databuf;
308 	unsigned int nbytes;
309 	u16 column = 0;
310 	int ret;
311 
312 	/*
313 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
314 	 * the cache content to 0xFF (depends on vendor implementation), so we
315 	 * must fill the page cache entirely even if we only want to program
316 	 * the data portion of the page, otherwise we might corrupt the BBM or
317 	 * user data previously programmed in OOB area.
318 	 */
319 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
320 	memset(spinand->databuf, 0xff, nbytes);
321 	adjreq.dataoffs = 0;
322 	adjreq.datalen = nanddev_page_size(nand);
323 	adjreq.databuf.out = spinand->databuf;
324 	adjreq.ooblen = nanddev_per_page_oobsize(nand);
325 	adjreq.ooboffs = 0;
326 	adjreq.oobbuf.out = spinand->oobbuf;
327 
328 	if (req->datalen)
329 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
330 		       req->datalen);
331 
332 	if (req->ooblen) {
333 		if (req->mode == MTD_OPS_AUTO_OOB)
334 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
335 						    spinand->oobbuf,
336 						    req->ooboffs,
337 						    req->ooblen);
338 		else
339 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
340 			       req->ooblen);
341 	}
342 
343 	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
344 
345 	op = *spinand->op_templates.write_cache;
346 	op.addr.val = column;
347 
348 	/*
349 	 * Some controllers are limited in term of max TX data size. In this
350 	 * case, split the operation into one LOAD CACHE and one or more
351 	 * LOAD RANDOM CACHE.
352 	 */
353 	while (nbytes) {
354 		op.data.buf.out = buf;
355 		op.data.nbytes = nbytes;
356 
357 		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
358 		if (ret)
359 			return ret;
360 
361 		ret = spi_mem_exec_op(spinand->spimem, &op);
362 		if (ret)
363 			return ret;
364 
365 		buf += op.data.nbytes;
366 		nbytes -= op.data.nbytes;
367 		op.addr.val += op.data.nbytes;
368 
369 		/*
370 		 * We need to use the RANDOM LOAD CACHE operation if there's
371 		 * more than one iteration, because the LOAD operation might
372 		 * reset the cache to 0xff.
373 		 */
374 		if (nbytes) {
375 			column = op.addr.val;
376 			op = *spinand->op_templates.update_cache;
377 			op.addr.val = column;
378 		}
379 	}
380 
381 	return 0;
382 }
383 
384 static int spinand_program_op(struct spinand_device *spinand,
385 			      const struct nand_page_io_req *req)
386 {
387 	struct nand_device *nand = spinand_to_nand(spinand);
388 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
389 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
390 
391 	return spi_mem_exec_op(spinand->spimem, &op);
392 }
393 
394 static int spinand_erase_op(struct spinand_device *spinand,
395 			    const struct nand_pos *pos)
396 {
397 	struct nand_device *nand = spinand_to_nand(spinand);
398 	unsigned int row = nanddev_pos_to_row(nand, pos);
399 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
400 
401 	return spi_mem_exec_op(spinand->spimem, &op);
402 }
403 
404 static int spinand_wait(struct spinand_device *spinand, u8 *s)
405 {
406 	unsigned long timeo =  jiffies + msecs_to_jiffies(400);
407 	u8 status;
408 	int ret;
409 
410 	do {
411 		ret = spinand_read_status(spinand, &status);
412 		if (ret)
413 			return ret;
414 
415 		if (!(status & STATUS_BUSY))
416 			goto out;
417 	} while (time_before(jiffies, timeo));
418 
419 	/*
420 	 * Extra read, just in case the STATUS_READY bit has changed
421 	 * since our last check
422 	 */
423 	ret = spinand_read_status(spinand, &status);
424 	if (ret)
425 		return ret;
426 
427 out:
428 	if (s)
429 		*s = status;
430 
431 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
432 }
433 
434 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
435 {
436 	struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
437 						 SPINAND_MAX_ID_LEN);
438 	int ret;
439 
440 	ret = spi_mem_exec_op(spinand->spimem, &op);
441 	if (!ret)
442 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
443 
444 	return ret;
445 }
446 
447 static int spinand_reset_op(struct spinand_device *spinand)
448 {
449 	struct spi_mem_op op = SPINAND_RESET_OP;
450 	int ret;
451 
452 	ret = spi_mem_exec_op(spinand->spimem, &op);
453 	if (ret)
454 		return ret;
455 
456 	return spinand_wait(spinand, NULL);
457 }
458 
459 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
460 {
461 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
462 }
463 
464 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
465 {
466 	struct nand_device *nand = spinand_to_nand(spinand);
467 
468 	if (spinand->eccinfo.get_status)
469 		return spinand->eccinfo.get_status(spinand, status);
470 
471 	switch (status & STATUS_ECC_MASK) {
472 	case STATUS_ECC_NO_BITFLIPS:
473 		return 0;
474 
475 	case STATUS_ECC_HAS_BITFLIPS:
476 		/*
477 		 * We have no way to know exactly how many bitflips have been
478 		 * fixed, so let's return the maximum possible value so that
479 		 * wear-leveling layers move the data immediately.
480 		 */
481 		return nand->eccreq.strength;
482 
483 	case STATUS_ECC_UNCOR_ERROR:
484 		return -EBADMSG;
485 
486 	default:
487 		break;
488 	}
489 
490 	return -EINVAL;
491 }
492 
493 static int spinand_read_page(struct spinand_device *spinand,
494 			     const struct nand_page_io_req *req,
495 			     bool ecc_enabled)
496 {
497 	u8 status;
498 	int ret;
499 
500 	ret = spinand_load_page_op(spinand, req);
501 	if (ret)
502 		return ret;
503 
504 	ret = spinand_wait(spinand, &status);
505 	if (ret < 0)
506 		return ret;
507 
508 	ret = spinand_read_from_cache_op(spinand, req);
509 	if (ret)
510 		return ret;
511 
512 	if (!ecc_enabled)
513 		return 0;
514 
515 	return spinand_check_ecc_status(spinand, status);
516 }
517 
518 static int spinand_write_page(struct spinand_device *spinand,
519 			      const struct nand_page_io_req *req)
520 {
521 	u8 status;
522 	int ret;
523 
524 	ret = spinand_write_enable_op(spinand);
525 	if (ret)
526 		return ret;
527 
528 	ret = spinand_write_to_cache_op(spinand, req);
529 	if (ret)
530 		return ret;
531 
532 	ret = spinand_program_op(spinand, req);
533 	if (ret)
534 		return ret;
535 
536 	ret = spinand_wait(spinand, &status);
537 	if (!ret && (status & STATUS_PROG_FAILED))
538 		ret = -EIO;
539 
540 	return ret;
541 }
542 
543 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
544 			    struct mtd_oob_ops *ops)
545 {
546 	struct spinand_device *spinand = mtd_to_spinand(mtd);
547 	struct nand_device *nand = mtd_to_nanddev(mtd);
548 	unsigned int max_bitflips = 0;
549 	struct nand_io_iter iter;
550 	bool enable_ecc = false;
551 	bool ecc_failed = false;
552 	int ret = 0;
553 
554 	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
555 		enable_ecc = true;
556 
557 	mutex_lock(&spinand->lock);
558 
559 	nanddev_io_for_each_page(nand, from, ops, &iter) {
560 		ret = spinand_select_target(spinand, iter.req.pos.target);
561 		if (ret)
562 			break;
563 
564 		ret = spinand_ecc_enable(spinand, enable_ecc);
565 		if (ret)
566 			break;
567 
568 		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
569 		if (ret < 0 && ret != -EBADMSG)
570 			break;
571 
572 		if (ret == -EBADMSG) {
573 			ecc_failed = true;
574 			mtd->ecc_stats.failed++;
575 			ret = 0;
576 		} else {
577 			mtd->ecc_stats.corrected += ret;
578 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
579 		}
580 
581 		ops->retlen += iter.req.datalen;
582 		ops->oobretlen += iter.req.ooblen;
583 	}
584 
585 	mutex_unlock(&spinand->lock);
586 
587 	if (ecc_failed && !ret)
588 		ret = -EBADMSG;
589 
590 	return ret ? ret : max_bitflips;
591 }
592 
593 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
594 			     struct mtd_oob_ops *ops)
595 {
596 	struct spinand_device *spinand = mtd_to_spinand(mtd);
597 	struct nand_device *nand = mtd_to_nanddev(mtd);
598 	struct nand_io_iter iter;
599 	bool enable_ecc = false;
600 	int ret = 0;
601 
602 	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
603 		enable_ecc = true;
604 
605 	mutex_lock(&spinand->lock);
606 
607 	nanddev_io_for_each_page(nand, to, ops, &iter) {
608 		ret = spinand_select_target(spinand, iter.req.pos.target);
609 		if (ret)
610 			break;
611 
612 		ret = spinand_ecc_enable(spinand, enable_ecc);
613 		if (ret)
614 			break;
615 
616 		ret = spinand_write_page(spinand, &iter.req);
617 		if (ret)
618 			break;
619 
620 		ops->retlen += iter.req.datalen;
621 		ops->oobretlen += iter.req.ooblen;
622 	}
623 
624 	mutex_unlock(&spinand->lock);
625 
626 	return ret;
627 }
628 
629 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
630 {
631 	struct spinand_device *spinand = nand_to_spinand(nand);
632 	struct nand_page_io_req req = {
633 		.pos = *pos,
634 		.ooblen = 2,
635 		.ooboffs = 0,
636 		.oobbuf.in = spinand->oobbuf,
637 		.mode = MTD_OPS_RAW,
638 	};
639 
640 	memset(spinand->oobbuf, 0, 2);
641 	spinand_select_target(spinand, pos->target);
642 	spinand_read_page(spinand, &req, false);
643 	if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
644 		return true;
645 
646 	return false;
647 }
648 
649 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
650 {
651 	struct nand_device *nand = mtd_to_nanddev(mtd);
652 	struct spinand_device *spinand = nand_to_spinand(nand);
653 	struct nand_pos pos;
654 	int ret;
655 
656 	nanddev_offs_to_pos(nand, offs, &pos);
657 	mutex_lock(&spinand->lock);
658 	ret = nanddev_isbad(nand, &pos);
659 	mutex_unlock(&spinand->lock);
660 
661 	return ret;
662 }
663 
664 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
665 {
666 	struct spinand_device *spinand = nand_to_spinand(nand);
667 	struct nand_page_io_req req = {
668 		.pos = *pos,
669 		.ooboffs = 0,
670 		.ooblen = 2,
671 		.oobbuf.out = spinand->oobbuf,
672 	};
673 	int ret;
674 
675 	/* Erase block before marking it bad. */
676 	ret = spinand_select_target(spinand, pos->target);
677 	if (ret)
678 		return ret;
679 
680 	ret = spinand_write_enable_op(spinand);
681 	if (ret)
682 		return ret;
683 
684 	spinand_erase_op(spinand, pos);
685 
686 	memset(spinand->oobbuf, 0, 2);
687 	return spinand_write_page(spinand, &req);
688 }
689 
690 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
691 {
692 	struct nand_device *nand = mtd_to_nanddev(mtd);
693 	struct spinand_device *spinand = nand_to_spinand(nand);
694 	struct nand_pos pos;
695 	int ret;
696 
697 	nanddev_offs_to_pos(nand, offs, &pos);
698 	mutex_lock(&spinand->lock);
699 	ret = nanddev_markbad(nand, &pos);
700 	mutex_unlock(&spinand->lock);
701 
702 	return ret;
703 }
704 
705 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
706 {
707 	struct spinand_device *spinand = nand_to_spinand(nand);
708 	u8 status;
709 	int ret;
710 
711 	ret = spinand_select_target(spinand, pos->target);
712 	if (ret)
713 		return ret;
714 
715 	ret = spinand_write_enable_op(spinand);
716 	if (ret)
717 		return ret;
718 
719 	ret = spinand_erase_op(spinand, pos);
720 	if (ret)
721 		return ret;
722 
723 	ret = spinand_wait(spinand, &status);
724 	if (!ret && (status & STATUS_ERASE_FAILED))
725 		ret = -EIO;
726 
727 	return ret;
728 }
729 
730 static int spinand_mtd_erase(struct mtd_info *mtd,
731 			     struct erase_info *einfo)
732 {
733 	struct spinand_device *spinand = mtd_to_spinand(mtd);
734 	int ret;
735 
736 	mutex_lock(&spinand->lock);
737 	ret = nanddev_mtd_erase(mtd, einfo);
738 	mutex_unlock(&spinand->lock);
739 
740 	return ret;
741 }
742 
743 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
744 {
745 	struct spinand_device *spinand = mtd_to_spinand(mtd);
746 	struct nand_device *nand = mtd_to_nanddev(mtd);
747 	struct nand_pos pos;
748 	int ret;
749 
750 	nanddev_offs_to_pos(nand, offs, &pos);
751 	mutex_lock(&spinand->lock);
752 	ret = nanddev_isreserved(nand, &pos);
753 	mutex_unlock(&spinand->lock);
754 
755 	return ret;
756 }
757 
758 static const struct nand_ops spinand_ops = {
759 	.erase = spinand_erase,
760 	.markbad = spinand_markbad,
761 	.isbad = spinand_isbad,
762 };
763 
764 static const struct spinand_manufacturer *spinand_manufacturers[] = {
765 	&gigadevice_spinand_manufacturer,
766 	&macronix_spinand_manufacturer,
767 	&micron_spinand_manufacturer,
768 	&toshiba_spinand_manufacturer,
769 	&winbond_spinand_manufacturer,
770 };
771 
772 static int spinand_manufacturer_detect(struct spinand_device *spinand)
773 {
774 	unsigned int i;
775 	int ret;
776 
777 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
778 		ret = spinand_manufacturers[i]->ops->detect(spinand);
779 		if (ret > 0) {
780 			spinand->manufacturer = spinand_manufacturers[i];
781 			return 0;
782 		} else if (ret < 0) {
783 			return ret;
784 		}
785 	}
786 
787 	return -ENOTSUPP;
788 }
789 
790 static int spinand_manufacturer_init(struct spinand_device *spinand)
791 {
792 	if (spinand->manufacturer->ops->init)
793 		return spinand->manufacturer->ops->init(spinand);
794 
795 	return 0;
796 }
797 
798 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
799 {
800 	/* Release manufacturer private data */
801 	if (spinand->manufacturer->ops->cleanup)
802 		return spinand->manufacturer->ops->cleanup(spinand);
803 }
804 
805 static const struct spi_mem_op *
806 spinand_select_op_variant(struct spinand_device *spinand,
807 			  const struct spinand_op_variants *variants)
808 {
809 	struct nand_device *nand = spinand_to_nand(spinand);
810 	unsigned int i;
811 
812 	for (i = 0; i < variants->nops; i++) {
813 		struct spi_mem_op op = variants->ops[i];
814 		unsigned int nbytes;
815 		int ret;
816 
817 		nbytes = nanddev_per_page_oobsize(nand) +
818 			 nanddev_page_size(nand);
819 
820 		while (nbytes) {
821 			op.data.nbytes = nbytes;
822 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
823 			if (ret)
824 				break;
825 
826 			if (!spi_mem_supports_op(spinand->spimem, &op))
827 				break;
828 
829 			nbytes -= op.data.nbytes;
830 		}
831 
832 		if (!nbytes)
833 			return &variants->ops[i];
834 	}
835 
836 	return NULL;
837 }
838 
839 /**
840  * spinand_match_and_init() - Try to find a match between a device ID and an
841  *			      entry in a spinand_info table
842  * @spinand: SPI NAND object
843  * @table: SPI NAND device description table
844  * @table_size: size of the device description table
845  *
846  * Should be used by SPI NAND manufacturer drivers when they want to find a
847  * match between a device ID retrieved through the READ_ID command and an
848  * entry in the SPI NAND description table. If a match is found, the spinand
849  * object will be initialized with information provided by the matching
850  * spinand_info entry.
851  *
852  * Return: 0 on success, a negative error code otherwise.
853  */
854 int spinand_match_and_init(struct spinand_device *spinand,
855 			   const struct spinand_info *table,
856 			   unsigned int table_size, u8 devid)
857 {
858 	struct nand_device *nand = spinand_to_nand(spinand);
859 	unsigned int i;
860 
861 	for (i = 0; i < table_size; i++) {
862 		const struct spinand_info *info = &table[i];
863 		const struct spi_mem_op *op;
864 
865 		if (devid != info->devid)
866 			continue;
867 
868 		nand->memorg = table[i].memorg;
869 		nand->eccreq = table[i].eccreq;
870 		spinand->eccinfo = table[i].eccinfo;
871 		spinand->flags = table[i].flags;
872 		spinand->select_target = table[i].select_target;
873 
874 		op = spinand_select_op_variant(spinand,
875 					       info->op_variants.read_cache);
876 		if (!op)
877 			return -ENOTSUPP;
878 
879 		spinand->op_templates.read_cache = op;
880 
881 		op = spinand_select_op_variant(spinand,
882 					       info->op_variants.write_cache);
883 		if (!op)
884 			return -ENOTSUPP;
885 
886 		spinand->op_templates.write_cache = op;
887 
888 		op = spinand_select_op_variant(spinand,
889 					       info->op_variants.update_cache);
890 		spinand->op_templates.update_cache = op;
891 
892 		return 0;
893 	}
894 
895 	return -ENOTSUPP;
896 }
897 
898 static int spinand_detect(struct spinand_device *spinand)
899 {
900 	struct device *dev = &spinand->spimem->spi->dev;
901 	struct nand_device *nand = spinand_to_nand(spinand);
902 	int ret;
903 
904 	ret = spinand_reset_op(spinand);
905 	if (ret)
906 		return ret;
907 
908 	ret = spinand_read_id_op(spinand, spinand->id.data);
909 	if (ret)
910 		return ret;
911 
912 	spinand->id.len = SPINAND_MAX_ID_LEN;
913 
914 	ret = spinand_manufacturer_detect(spinand);
915 	if (ret) {
916 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
917 			spinand->id.data);
918 		return ret;
919 	}
920 
921 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
922 		dev_err(dev,
923 			"SPI NANDs with more than one die must implement ->select_target()\n");
924 		return -EINVAL;
925 	}
926 
927 	dev_info(&spinand->spimem->spi->dev,
928 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
929 	dev_info(&spinand->spimem->spi->dev,
930 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
931 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
932 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
933 
934 	return 0;
935 }
936 
937 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
938 				       struct mtd_oob_region *region)
939 {
940 	return -ERANGE;
941 }
942 
943 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
944 					struct mtd_oob_region *region)
945 {
946 	if (section)
947 		return -ERANGE;
948 
949 	/* Reserve 2 bytes for the BBM. */
950 	region->offset = 2;
951 	region->length = 62;
952 
953 	return 0;
954 }
955 
956 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
957 	.ecc = spinand_noecc_ooblayout_ecc,
958 	.free = spinand_noecc_ooblayout_free,
959 };
960 
961 static int spinand_init(struct spinand_device *spinand)
962 {
963 	struct device *dev = &spinand->spimem->spi->dev;
964 	struct mtd_info *mtd = spinand_to_mtd(spinand);
965 	struct nand_device *nand = mtd_to_nanddev(mtd);
966 	int ret, i;
967 
968 	/*
969 	 * We need a scratch buffer because the spi_mem interface requires that
970 	 * buf passed in spi_mem_op->data.buf be DMA-able.
971 	 */
972 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
973 	if (!spinand->scratchbuf)
974 		return -ENOMEM;
975 
976 	ret = spinand_detect(spinand);
977 	if (ret)
978 		goto err_free_bufs;
979 
980 	/*
981 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
982 	 * may use this buffer for DMA access.
983 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
984 	 */
985 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
986 			       nanddev_per_page_oobsize(nand),
987 			       GFP_KERNEL);
988 	if (!spinand->databuf) {
989 		ret = -ENOMEM;
990 		goto err_free_bufs;
991 	}
992 
993 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
994 
995 	ret = spinand_init_cfg_cache(spinand);
996 	if (ret)
997 		goto err_free_bufs;
998 
999 	ret = spinand_init_quad_enable(spinand);
1000 	if (ret)
1001 		goto err_free_bufs;
1002 
1003 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1004 	if (ret)
1005 		goto err_free_bufs;
1006 
1007 	ret = spinand_manufacturer_init(spinand);
1008 	if (ret) {
1009 		dev_err(dev,
1010 			"Failed to initialize the SPI NAND chip (err = %d)\n",
1011 			ret);
1012 		goto err_free_bufs;
1013 	}
1014 
1015 	/* After power up, all blocks are locked, so unlock them here. */
1016 	for (i = 0; i < nand->memorg.ntargets; i++) {
1017 		ret = spinand_select_target(spinand, i);
1018 		if (ret)
1019 			goto err_manuf_cleanup;
1020 
1021 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1022 		if (ret)
1023 			goto err_manuf_cleanup;
1024 	}
1025 
1026 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1027 	if (ret)
1028 		goto err_manuf_cleanup;
1029 
1030 	/*
1031 	 * Right now, we don't support ECC, so let the whole oob
1032 	 * area is available for user.
1033 	 */
1034 	mtd->_read_oob = spinand_mtd_read;
1035 	mtd->_write_oob = spinand_mtd_write;
1036 	mtd->_block_isbad = spinand_mtd_block_isbad;
1037 	mtd->_block_markbad = spinand_mtd_block_markbad;
1038 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1039 	mtd->_erase = spinand_mtd_erase;
1040 
1041 	if (spinand->eccinfo.ooblayout)
1042 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1043 	else
1044 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1045 
1046 	ret = mtd_ooblayout_count_freebytes(mtd);
1047 	if (ret < 0)
1048 		goto err_cleanup_nanddev;
1049 
1050 	mtd->oobavail = ret;
1051 
1052 	return 0;
1053 
1054 err_cleanup_nanddev:
1055 	nanddev_cleanup(nand);
1056 
1057 err_manuf_cleanup:
1058 	spinand_manufacturer_cleanup(spinand);
1059 
1060 err_free_bufs:
1061 	kfree(spinand->databuf);
1062 	kfree(spinand->scratchbuf);
1063 	return ret;
1064 }
1065 
1066 static void spinand_cleanup(struct spinand_device *spinand)
1067 {
1068 	struct nand_device *nand = spinand_to_nand(spinand);
1069 
1070 	nanddev_cleanup(nand);
1071 	spinand_manufacturer_cleanup(spinand);
1072 	kfree(spinand->databuf);
1073 	kfree(spinand->scratchbuf);
1074 }
1075 
1076 static int spinand_probe(struct spi_mem *mem)
1077 {
1078 	struct spinand_device *spinand;
1079 	struct mtd_info *mtd;
1080 	int ret;
1081 
1082 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1083 			       GFP_KERNEL);
1084 	if (!spinand)
1085 		return -ENOMEM;
1086 
1087 	spinand->spimem = mem;
1088 	spi_mem_set_drvdata(mem, spinand);
1089 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1090 	mutex_init(&spinand->lock);
1091 	mtd = spinand_to_mtd(spinand);
1092 	mtd->dev.parent = &mem->spi->dev;
1093 
1094 	ret = spinand_init(spinand);
1095 	if (ret)
1096 		return ret;
1097 
1098 	ret = mtd_device_register(mtd, NULL, 0);
1099 	if (ret)
1100 		goto err_spinand_cleanup;
1101 
1102 	return 0;
1103 
1104 err_spinand_cleanup:
1105 	spinand_cleanup(spinand);
1106 
1107 	return ret;
1108 }
1109 
1110 static int spinand_remove(struct spi_mem *mem)
1111 {
1112 	struct spinand_device *spinand;
1113 	struct mtd_info *mtd;
1114 	int ret;
1115 
1116 	spinand = spi_mem_get_drvdata(mem);
1117 	mtd = spinand_to_mtd(spinand);
1118 
1119 	ret = mtd_device_unregister(mtd);
1120 	if (ret)
1121 		return ret;
1122 
1123 	spinand_cleanup(spinand);
1124 
1125 	return 0;
1126 }
1127 
1128 static const struct spi_device_id spinand_ids[] = {
1129 	{ .name = "spi-nand" },
1130 	{ /* sentinel */ },
1131 };
1132 
1133 #ifdef CONFIG_OF
1134 static const struct of_device_id spinand_of_ids[] = {
1135 	{ .compatible = "spi-nand" },
1136 	{ /* sentinel */ },
1137 };
1138 #endif
1139 
1140 static struct spi_mem_driver spinand_drv = {
1141 	.spidrv = {
1142 		.id_table = spinand_ids,
1143 		.driver = {
1144 			.name = "spi-nand",
1145 			.of_match_table = of_match_ptr(spinand_of_ids),
1146 		},
1147 	},
1148 	.probe = spinand_probe,
1149 	.remove = spinand_remove,
1150 };
1151 module_spi_mem_driver(spinand_drv);
1152 
1153 MODULE_DESCRIPTION("SPI NAND framework");
1154 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1155 MODULE_LICENSE("GPL v2");
1156