1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #include <linux/device.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mtd/spinand.h> 17 #include <linux/of.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/spi/spi.h> 21 #include <linux/spi/spi-mem.h> 22 23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 24 { 25 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 26 spinand->scratchbuf); 27 int ret; 28 29 ret = spi_mem_exec_op(spinand->spimem, &op); 30 if (ret) 31 return ret; 32 33 *val = *spinand->scratchbuf; 34 return 0; 35 } 36 37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 38 { 39 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 40 spinand->scratchbuf); 41 42 *spinand->scratchbuf = val; 43 return spi_mem_exec_op(spinand->spimem, &op); 44 } 45 46 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 47 { 48 return spinand_read_reg_op(spinand, REG_STATUS, status); 49 } 50 51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 52 { 53 struct nand_device *nand = spinand_to_nand(spinand); 54 55 if (WARN_ON(spinand->cur_target < 0 || 56 spinand->cur_target >= nand->memorg.ntargets)) 57 return -EINVAL; 58 59 *cfg = spinand->cfg_cache[spinand->cur_target]; 60 return 0; 61 } 62 63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 64 { 65 struct nand_device *nand = spinand_to_nand(spinand); 66 int ret; 67 68 if (WARN_ON(spinand->cur_target < 0 || 69 spinand->cur_target >= nand->memorg.ntargets)) 70 return -EINVAL; 71 72 if (spinand->cfg_cache[spinand->cur_target] == cfg) 73 return 0; 74 75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 76 if (ret) 77 return ret; 78 79 spinand->cfg_cache[spinand->cur_target] = cfg; 80 return 0; 81 } 82 83 /** 84 * spinand_upd_cfg() - Update the configuration register 85 * @spinand: the spinand device 86 * @mask: the mask encoding the bits to update in the config reg 87 * @val: the new value to apply 88 * 89 * Update the configuration register. 90 * 91 * Return: 0 on success, a negative error code otherwise. 92 */ 93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 94 { 95 int ret; 96 u8 cfg; 97 98 ret = spinand_get_cfg(spinand, &cfg); 99 if (ret) 100 return ret; 101 102 cfg &= ~mask; 103 cfg |= val; 104 105 return spinand_set_cfg(spinand, cfg); 106 } 107 108 /** 109 * spinand_select_target() - Select a specific NAND target/die 110 * @spinand: the spinand device 111 * @target: the target/die to select 112 * 113 * Select a new target/die. If chip only has one die, this function is a NOOP. 114 * 115 * Return: 0 on success, a negative error code otherwise. 116 */ 117 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 118 { 119 struct nand_device *nand = spinand_to_nand(spinand); 120 int ret; 121 122 if (WARN_ON(target >= nand->memorg.ntargets)) 123 return -EINVAL; 124 125 if (spinand->cur_target == target) 126 return 0; 127 128 if (nand->memorg.ntargets == 1) { 129 spinand->cur_target = target; 130 return 0; 131 } 132 133 ret = spinand->select_target(spinand, target); 134 if (ret) 135 return ret; 136 137 spinand->cur_target = target; 138 return 0; 139 } 140 141 static int spinand_init_cfg_cache(struct spinand_device *spinand) 142 { 143 struct nand_device *nand = spinand_to_nand(spinand); 144 struct device *dev = &spinand->spimem->spi->dev; 145 unsigned int target; 146 int ret; 147 148 spinand->cfg_cache = devm_kcalloc(dev, 149 nand->memorg.ntargets, 150 sizeof(*spinand->cfg_cache), 151 GFP_KERNEL); 152 if (!spinand->cfg_cache) 153 return -ENOMEM; 154 155 for (target = 0; target < nand->memorg.ntargets; target++) { 156 ret = spinand_select_target(spinand, target); 157 if (ret) 158 return ret; 159 160 /* 161 * We use spinand_read_reg_op() instead of spinand_get_cfg() 162 * here to bypass the config cache. 163 */ 164 ret = spinand_read_reg_op(spinand, REG_CFG, 165 &spinand->cfg_cache[target]); 166 if (ret) 167 return ret; 168 } 169 170 return 0; 171 } 172 173 static int spinand_init_quad_enable(struct spinand_device *spinand) 174 { 175 bool enable = false; 176 177 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 178 return 0; 179 180 if (spinand->op_templates.read_cache->data.buswidth == 4 || 181 spinand->op_templates.write_cache->data.buswidth == 4 || 182 spinand->op_templates.update_cache->data.buswidth == 4) 183 enable = true; 184 185 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 186 enable ? CFG_QUAD_ENABLE : 0); 187 } 188 189 static int spinand_ecc_enable(struct spinand_device *spinand, 190 bool enable) 191 { 192 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 193 enable ? CFG_ECC_ENABLE : 0); 194 } 195 196 static int spinand_write_enable_op(struct spinand_device *spinand) 197 { 198 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 199 200 return spi_mem_exec_op(spinand->spimem, &op); 201 } 202 203 static int spinand_load_page_op(struct spinand_device *spinand, 204 const struct nand_page_io_req *req) 205 { 206 struct nand_device *nand = spinand_to_nand(spinand); 207 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 208 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 209 210 return spi_mem_exec_op(spinand->spimem, &op); 211 } 212 213 static int spinand_read_from_cache_op(struct spinand_device *spinand, 214 const struct nand_page_io_req *req) 215 { 216 struct nand_device *nand = spinand_to_nand(spinand); 217 struct mtd_info *mtd = nanddev_to_mtd(nand); 218 struct spi_mem_dirmap_desc *rdesc; 219 unsigned int nbytes = 0; 220 void *buf = NULL; 221 u16 column = 0; 222 ssize_t ret; 223 224 if (req->datalen) { 225 buf = spinand->databuf; 226 nbytes = nanddev_page_size(nand); 227 column = 0; 228 } 229 230 if (req->ooblen) { 231 nbytes += nanddev_per_page_oobsize(nand); 232 if (!buf) { 233 buf = spinand->oobbuf; 234 column = nanddev_page_size(nand); 235 } 236 } 237 238 rdesc = spinand->dirmaps[req->pos.plane].rdesc; 239 240 while (nbytes) { 241 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf); 242 if (ret < 0) 243 return ret; 244 245 if (!ret || ret > nbytes) 246 return -EIO; 247 248 nbytes -= ret; 249 column += ret; 250 buf += ret; 251 } 252 253 if (req->datalen) 254 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 255 req->datalen); 256 257 if (req->ooblen) { 258 if (req->mode == MTD_OPS_AUTO_OOB) 259 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 260 spinand->oobbuf, 261 req->ooboffs, 262 req->ooblen); 263 else 264 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 265 req->ooblen); 266 } 267 268 return 0; 269 } 270 271 static int spinand_write_to_cache_op(struct spinand_device *spinand, 272 const struct nand_page_io_req *req) 273 { 274 struct nand_device *nand = spinand_to_nand(spinand); 275 struct mtd_info *mtd = nanddev_to_mtd(nand); 276 struct spi_mem_dirmap_desc *wdesc; 277 unsigned int nbytes, column = 0; 278 void *buf = spinand->databuf; 279 ssize_t ret; 280 281 /* 282 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset 283 * the cache content to 0xFF (depends on vendor implementation), so we 284 * must fill the page cache entirely even if we only want to program 285 * the data portion of the page, otherwise we might corrupt the BBM or 286 * user data previously programmed in OOB area. 287 */ 288 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand); 289 memset(spinand->databuf, 0xff, nbytes); 290 291 if (req->datalen) 292 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 293 req->datalen); 294 295 if (req->ooblen) { 296 if (req->mode == MTD_OPS_AUTO_OOB) 297 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 298 spinand->oobbuf, 299 req->ooboffs, 300 req->ooblen); 301 else 302 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 303 req->ooblen); 304 } 305 306 wdesc = spinand->dirmaps[req->pos.plane].wdesc; 307 308 while (nbytes) { 309 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf); 310 if (ret < 0) 311 return ret; 312 313 if (!ret || ret > nbytes) 314 return -EIO; 315 316 nbytes -= ret; 317 column += ret; 318 buf += ret; 319 } 320 321 return 0; 322 } 323 324 static int spinand_program_op(struct spinand_device *spinand, 325 const struct nand_page_io_req *req) 326 { 327 struct nand_device *nand = spinand_to_nand(spinand); 328 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 329 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 330 331 return spi_mem_exec_op(spinand->spimem, &op); 332 } 333 334 static int spinand_erase_op(struct spinand_device *spinand, 335 const struct nand_pos *pos) 336 { 337 struct nand_device *nand = spinand_to_nand(spinand); 338 unsigned int row = nanddev_pos_to_row(nand, pos); 339 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 340 341 return spi_mem_exec_op(spinand->spimem, &op); 342 } 343 344 static int spinand_wait(struct spinand_device *spinand, u8 *s) 345 { 346 unsigned long timeo = jiffies + msecs_to_jiffies(400); 347 u8 status; 348 int ret; 349 350 do { 351 ret = spinand_read_status(spinand, &status); 352 if (ret) 353 return ret; 354 355 if (!(status & STATUS_BUSY)) 356 goto out; 357 } while (time_before(jiffies, timeo)); 358 359 /* 360 * Extra read, just in case the STATUS_READY bit has changed 361 * since our last check 362 */ 363 ret = spinand_read_status(spinand, &status); 364 if (ret) 365 return ret; 366 367 out: 368 if (s) 369 *s = status; 370 371 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 372 } 373 374 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr, 375 u8 ndummy, u8 *buf) 376 { 377 struct spi_mem_op op = SPINAND_READID_OP( 378 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 379 int ret; 380 381 ret = spi_mem_exec_op(spinand->spimem, &op); 382 if (!ret) 383 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 384 385 return ret; 386 } 387 388 static int spinand_reset_op(struct spinand_device *spinand) 389 { 390 struct spi_mem_op op = SPINAND_RESET_OP; 391 int ret; 392 393 ret = spi_mem_exec_op(spinand->spimem, &op); 394 if (ret) 395 return ret; 396 397 return spinand_wait(spinand, NULL); 398 } 399 400 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 401 { 402 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 403 } 404 405 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 406 { 407 struct nand_device *nand = spinand_to_nand(spinand); 408 409 if (spinand->eccinfo.get_status) 410 return spinand->eccinfo.get_status(spinand, status); 411 412 switch (status & STATUS_ECC_MASK) { 413 case STATUS_ECC_NO_BITFLIPS: 414 return 0; 415 416 case STATUS_ECC_HAS_BITFLIPS: 417 /* 418 * We have no way to know exactly how many bitflips have been 419 * fixed, so let's return the maximum possible value so that 420 * wear-leveling layers move the data immediately. 421 */ 422 return nanddev_get_ecc_conf(nand)->strength; 423 424 case STATUS_ECC_UNCOR_ERROR: 425 return -EBADMSG; 426 427 default: 428 break; 429 } 430 431 return -EINVAL; 432 } 433 434 static int spinand_read_page(struct spinand_device *spinand, 435 const struct nand_page_io_req *req, 436 bool ecc_enabled) 437 { 438 u8 status; 439 int ret; 440 441 ret = spinand_load_page_op(spinand, req); 442 if (ret) 443 return ret; 444 445 ret = spinand_wait(spinand, &status); 446 if (ret < 0) 447 return ret; 448 449 ret = spinand_read_from_cache_op(spinand, req); 450 if (ret) 451 return ret; 452 453 if (!ecc_enabled) 454 return 0; 455 456 return spinand_check_ecc_status(spinand, status); 457 } 458 459 static int spinand_write_page(struct spinand_device *spinand, 460 const struct nand_page_io_req *req) 461 { 462 u8 status; 463 int ret; 464 465 ret = spinand_write_enable_op(spinand); 466 if (ret) 467 return ret; 468 469 ret = spinand_write_to_cache_op(spinand, req); 470 if (ret) 471 return ret; 472 473 ret = spinand_program_op(spinand, req); 474 if (ret) 475 return ret; 476 477 ret = spinand_wait(spinand, &status); 478 if (!ret && (status & STATUS_PROG_FAILED)) 479 ret = -EIO; 480 481 return ret; 482 } 483 484 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 485 struct mtd_oob_ops *ops) 486 { 487 struct spinand_device *spinand = mtd_to_spinand(mtd); 488 struct nand_device *nand = mtd_to_nanddev(mtd); 489 unsigned int max_bitflips = 0; 490 struct nand_io_iter iter; 491 bool enable_ecc = false; 492 bool ecc_failed = false; 493 int ret = 0; 494 495 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 496 enable_ecc = true; 497 498 mutex_lock(&spinand->lock); 499 500 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) { 501 ret = spinand_select_target(spinand, iter.req.pos.target); 502 if (ret) 503 break; 504 505 ret = spinand_ecc_enable(spinand, enable_ecc); 506 if (ret) 507 break; 508 509 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 510 if (ret < 0 && ret != -EBADMSG) 511 break; 512 513 if (ret == -EBADMSG) { 514 ecc_failed = true; 515 mtd->ecc_stats.failed++; 516 } else { 517 mtd->ecc_stats.corrected += ret; 518 max_bitflips = max_t(unsigned int, max_bitflips, ret); 519 } 520 521 ret = 0; 522 ops->retlen += iter.req.datalen; 523 ops->oobretlen += iter.req.ooblen; 524 } 525 526 mutex_unlock(&spinand->lock); 527 528 if (ecc_failed && !ret) 529 ret = -EBADMSG; 530 531 return ret ? ret : max_bitflips; 532 } 533 534 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 535 struct mtd_oob_ops *ops) 536 { 537 struct spinand_device *spinand = mtd_to_spinand(mtd); 538 struct nand_device *nand = mtd_to_nanddev(mtd); 539 struct nand_io_iter iter; 540 bool enable_ecc = false; 541 int ret = 0; 542 543 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 544 enable_ecc = true; 545 546 mutex_lock(&spinand->lock); 547 548 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) { 549 ret = spinand_select_target(spinand, iter.req.pos.target); 550 if (ret) 551 break; 552 553 ret = spinand_ecc_enable(spinand, enable_ecc); 554 if (ret) 555 break; 556 557 ret = spinand_write_page(spinand, &iter.req); 558 if (ret) 559 break; 560 561 ops->retlen += iter.req.datalen; 562 ops->oobretlen += iter.req.ooblen; 563 } 564 565 mutex_unlock(&spinand->lock); 566 567 return ret; 568 } 569 570 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 571 { 572 struct spinand_device *spinand = nand_to_spinand(nand); 573 u8 marker[2] = { }; 574 struct nand_page_io_req req = { 575 .pos = *pos, 576 .ooblen = sizeof(marker), 577 .ooboffs = 0, 578 .oobbuf.in = marker, 579 .mode = MTD_OPS_RAW, 580 }; 581 582 spinand_select_target(spinand, pos->target); 583 spinand_read_page(spinand, &req, false); 584 if (marker[0] != 0xff || marker[1] != 0xff) 585 return true; 586 587 return false; 588 } 589 590 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 591 { 592 struct nand_device *nand = mtd_to_nanddev(mtd); 593 struct spinand_device *spinand = nand_to_spinand(nand); 594 struct nand_pos pos; 595 int ret; 596 597 nanddev_offs_to_pos(nand, offs, &pos); 598 mutex_lock(&spinand->lock); 599 ret = nanddev_isbad(nand, &pos); 600 mutex_unlock(&spinand->lock); 601 602 return ret; 603 } 604 605 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 606 { 607 struct spinand_device *spinand = nand_to_spinand(nand); 608 u8 marker[2] = { }; 609 struct nand_page_io_req req = { 610 .pos = *pos, 611 .ooboffs = 0, 612 .ooblen = sizeof(marker), 613 .oobbuf.out = marker, 614 .mode = MTD_OPS_RAW, 615 }; 616 int ret; 617 618 ret = spinand_select_target(spinand, pos->target); 619 if (ret) 620 return ret; 621 622 ret = spinand_write_enable_op(spinand); 623 if (ret) 624 return ret; 625 626 return spinand_write_page(spinand, &req); 627 } 628 629 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 630 { 631 struct nand_device *nand = mtd_to_nanddev(mtd); 632 struct spinand_device *spinand = nand_to_spinand(nand); 633 struct nand_pos pos; 634 int ret; 635 636 nanddev_offs_to_pos(nand, offs, &pos); 637 mutex_lock(&spinand->lock); 638 ret = nanddev_markbad(nand, &pos); 639 mutex_unlock(&spinand->lock); 640 641 return ret; 642 } 643 644 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 645 { 646 struct spinand_device *spinand = nand_to_spinand(nand); 647 u8 status; 648 int ret; 649 650 ret = spinand_select_target(spinand, pos->target); 651 if (ret) 652 return ret; 653 654 ret = spinand_write_enable_op(spinand); 655 if (ret) 656 return ret; 657 658 ret = spinand_erase_op(spinand, pos); 659 if (ret) 660 return ret; 661 662 ret = spinand_wait(spinand, &status); 663 if (!ret && (status & STATUS_ERASE_FAILED)) 664 ret = -EIO; 665 666 return ret; 667 } 668 669 static int spinand_mtd_erase(struct mtd_info *mtd, 670 struct erase_info *einfo) 671 { 672 struct spinand_device *spinand = mtd_to_spinand(mtd); 673 int ret; 674 675 mutex_lock(&spinand->lock); 676 ret = nanddev_mtd_erase(mtd, einfo); 677 mutex_unlock(&spinand->lock); 678 679 return ret; 680 } 681 682 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 683 { 684 struct spinand_device *spinand = mtd_to_spinand(mtd); 685 struct nand_device *nand = mtd_to_nanddev(mtd); 686 struct nand_pos pos; 687 int ret; 688 689 nanddev_offs_to_pos(nand, offs, &pos); 690 mutex_lock(&spinand->lock); 691 ret = nanddev_isreserved(nand, &pos); 692 mutex_unlock(&spinand->lock); 693 694 return ret; 695 } 696 697 static int spinand_create_dirmap(struct spinand_device *spinand, 698 unsigned int plane) 699 { 700 struct nand_device *nand = spinand_to_nand(spinand); 701 struct spi_mem_dirmap_info info = { 702 .length = nanddev_page_size(nand) + 703 nanddev_per_page_oobsize(nand), 704 }; 705 struct spi_mem_dirmap_desc *desc; 706 707 /* The plane number is passed in MSB just above the column address */ 708 info.offset = plane << fls(nand->memorg.pagesize); 709 710 info.op_tmpl = *spinand->op_templates.update_cache; 711 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 712 spinand->spimem, &info); 713 if (IS_ERR(desc)) 714 return PTR_ERR(desc); 715 716 spinand->dirmaps[plane].wdesc = desc; 717 718 info.op_tmpl = *spinand->op_templates.read_cache; 719 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev, 720 spinand->spimem, &info); 721 if (IS_ERR(desc)) 722 return PTR_ERR(desc); 723 724 spinand->dirmaps[plane].rdesc = desc; 725 726 return 0; 727 } 728 729 static int spinand_create_dirmaps(struct spinand_device *spinand) 730 { 731 struct nand_device *nand = spinand_to_nand(spinand); 732 int i, ret; 733 734 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev, 735 sizeof(*spinand->dirmaps) * 736 nand->memorg.planes_per_lun, 737 GFP_KERNEL); 738 if (!spinand->dirmaps) 739 return -ENOMEM; 740 741 for (i = 0; i < nand->memorg.planes_per_lun; i++) { 742 ret = spinand_create_dirmap(spinand, i); 743 if (ret) 744 return ret; 745 } 746 747 return 0; 748 } 749 750 static const struct nand_ops spinand_ops = { 751 .erase = spinand_erase, 752 .markbad = spinand_markbad, 753 .isbad = spinand_isbad, 754 }; 755 756 static const struct spinand_manufacturer *spinand_manufacturers[] = { 757 &gigadevice_spinand_manufacturer, 758 ¯onix_spinand_manufacturer, 759 µn_spinand_manufacturer, 760 ¶gon_spinand_manufacturer, 761 &toshiba_spinand_manufacturer, 762 &winbond_spinand_manufacturer, 763 }; 764 765 static int spinand_manufacturer_match(struct spinand_device *spinand, 766 enum spinand_readid_method rdid_method) 767 { 768 u8 *id = spinand->id.data; 769 unsigned int i; 770 int ret; 771 772 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 773 const struct spinand_manufacturer *manufacturer = 774 spinand_manufacturers[i]; 775 776 if (id[0] != manufacturer->id) 777 continue; 778 779 ret = spinand_match_and_init(spinand, 780 manufacturer->chips, 781 manufacturer->nchips, 782 rdid_method); 783 if (ret < 0) 784 continue; 785 786 spinand->manufacturer = manufacturer; 787 return 0; 788 } 789 return -ENOTSUPP; 790 } 791 792 static int spinand_id_detect(struct spinand_device *spinand) 793 { 794 u8 *id = spinand->id.data; 795 int ret; 796 797 ret = spinand_read_id_op(spinand, 0, 0, id); 798 if (ret) 799 return ret; 800 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE); 801 if (!ret) 802 return 0; 803 804 ret = spinand_read_id_op(spinand, 1, 0, id); 805 if (ret) 806 return ret; 807 ret = spinand_manufacturer_match(spinand, 808 SPINAND_READID_METHOD_OPCODE_ADDR); 809 if (!ret) 810 return 0; 811 812 ret = spinand_read_id_op(spinand, 0, 1, id); 813 if (ret) 814 return ret; 815 ret = spinand_manufacturer_match(spinand, 816 SPINAND_READID_METHOD_OPCODE_DUMMY); 817 818 return ret; 819 } 820 821 static int spinand_manufacturer_init(struct spinand_device *spinand) 822 { 823 if (spinand->manufacturer->ops->init) 824 return spinand->manufacturer->ops->init(spinand); 825 826 return 0; 827 } 828 829 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 830 { 831 /* Release manufacturer private data */ 832 if (spinand->manufacturer->ops->cleanup) 833 return spinand->manufacturer->ops->cleanup(spinand); 834 } 835 836 static const struct spi_mem_op * 837 spinand_select_op_variant(struct spinand_device *spinand, 838 const struct spinand_op_variants *variants) 839 { 840 struct nand_device *nand = spinand_to_nand(spinand); 841 unsigned int i; 842 843 for (i = 0; i < variants->nops; i++) { 844 struct spi_mem_op op = variants->ops[i]; 845 unsigned int nbytes; 846 int ret; 847 848 nbytes = nanddev_per_page_oobsize(nand) + 849 nanddev_page_size(nand); 850 851 while (nbytes) { 852 op.data.nbytes = nbytes; 853 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 854 if (ret) 855 break; 856 857 if (!spi_mem_supports_op(spinand->spimem, &op)) 858 break; 859 860 nbytes -= op.data.nbytes; 861 } 862 863 if (!nbytes) 864 return &variants->ops[i]; 865 } 866 867 return NULL; 868 } 869 870 /** 871 * spinand_match_and_init() - Try to find a match between a device ID and an 872 * entry in a spinand_info table 873 * @spinand: SPI NAND object 874 * @table: SPI NAND device description table 875 * @table_size: size of the device description table 876 * @rdid_method: read id method to match 877 * 878 * Match between a device ID retrieved through the READ_ID command and an 879 * entry in the SPI NAND description table. If a match is found, the spinand 880 * object will be initialized with information provided by the matching 881 * spinand_info entry. 882 * 883 * Return: 0 on success, a negative error code otherwise. 884 */ 885 int spinand_match_and_init(struct spinand_device *spinand, 886 const struct spinand_info *table, 887 unsigned int table_size, 888 enum spinand_readid_method rdid_method) 889 { 890 u8 *id = spinand->id.data; 891 struct nand_device *nand = spinand_to_nand(spinand); 892 unsigned int i; 893 894 for (i = 0; i < table_size; i++) { 895 const struct spinand_info *info = &table[i]; 896 const struct spi_mem_op *op; 897 898 if (rdid_method != info->devid.method) 899 continue; 900 901 if (memcmp(id + 1, info->devid.id, info->devid.len)) 902 continue; 903 904 nand->memorg = table[i].memorg; 905 nanddev_set_ecc_requirements(nand, &table[i].eccreq); 906 spinand->eccinfo = table[i].eccinfo; 907 spinand->flags = table[i].flags; 908 spinand->id.len = 1 + table[i].devid.len; 909 spinand->select_target = table[i].select_target; 910 911 op = spinand_select_op_variant(spinand, 912 info->op_variants.read_cache); 913 if (!op) 914 return -ENOTSUPP; 915 916 spinand->op_templates.read_cache = op; 917 918 op = spinand_select_op_variant(spinand, 919 info->op_variants.write_cache); 920 if (!op) 921 return -ENOTSUPP; 922 923 spinand->op_templates.write_cache = op; 924 925 op = spinand_select_op_variant(spinand, 926 info->op_variants.update_cache); 927 spinand->op_templates.update_cache = op; 928 929 return 0; 930 } 931 932 return -ENOTSUPP; 933 } 934 935 static int spinand_detect(struct spinand_device *spinand) 936 { 937 struct device *dev = &spinand->spimem->spi->dev; 938 struct nand_device *nand = spinand_to_nand(spinand); 939 int ret; 940 941 ret = spinand_reset_op(spinand); 942 if (ret) 943 return ret; 944 945 ret = spinand_id_detect(spinand); 946 if (ret) { 947 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, 948 spinand->id.data); 949 return ret; 950 } 951 952 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 953 dev_err(dev, 954 "SPI NANDs with more than one die must implement ->select_target()\n"); 955 return -EINVAL; 956 } 957 958 dev_info(&spinand->spimem->spi->dev, 959 "%s SPI NAND was found.\n", spinand->manufacturer->name); 960 dev_info(&spinand->spimem->spi->dev, 961 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 962 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 963 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 964 965 return 0; 966 } 967 968 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 969 struct mtd_oob_region *region) 970 { 971 return -ERANGE; 972 } 973 974 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 975 struct mtd_oob_region *region) 976 { 977 if (section) 978 return -ERANGE; 979 980 /* Reserve 2 bytes for the BBM. */ 981 region->offset = 2; 982 region->length = 62; 983 984 return 0; 985 } 986 987 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 988 .ecc = spinand_noecc_ooblayout_ecc, 989 .free = spinand_noecc_ooblayout_free, 990 }; 991 992 static int spinand_init(struct spinand_device *spinand) 993 { 994 struct device *dev = &spinand->spimem->spi->dev; 995 struct mtd_info *mtd = spinand_to_mtd(spinand); 996 struct nand_device *nand = mtd_to_nanddev(mtd); 997 int ret, i; 998 999 /* 1000 * We need a scratch buffer because the spi_mem interface requires that 1001 * buf passed in spi_mem_op->data.buf be DMA-able. 1002 */ 1003 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 1004 if (!spinand->scratchbuf) 1005 return -ENOMEM; 1006 1007 ret = spinand_detect(spinand); 1008 if (ret) 1009 goto err_free_bufs; 1010 1011 /* 1012 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 1013 * may use this buffer for DMA access. 1014 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 1015 */ 1016 spinand->databuf = kzalloc(nanddev_page_size(nand) + 1017 nanddev_per_page_oobsize(nand), 1018 GFP_KERNEL); 1019 if (!spinand->databuf) { 1020 ret = -ENOMEM; 1021 goto err_free_bufs; 1022 } 1023 1024 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 1025 1026 ret = spinand_init_cfg_cache(spinand); 1027 if (ret) 1028 goto err_free_bufs; 1029 1030 ret = spinand_init_quad_enable(spinand); 1031 if (ret) 1032 goto err_free_bufs; 1033 1034 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1035 if (ret) 1036 goto err_free_bufs; 1037 1038 ret = spinand_manufacturer_init(spinand); 1039 if (ret) { 1040 dev_err(dev, 1041 "Failed to initialize the SPI NAND chip (err = %d)\n", 1042 ret); 1043 goto err_free_bufs; 1044 } 1045 1046 ret = spinand_create_dirmaps(spinand); 1047 if (ret) { 1048 dev_err(dev, 1049 "Failed to create direct mappings for read/write operations (err = %d)\n", 1050 ret); 1051 goto err_manuf_cleanup; 1052 } 1053 1054 /* After power up, all blocks are locked, so unlock them here. */ 1055 for (i = 0; i < nand->memorg.ntargets; i++) { 1056 ret = spinand_select_target(spinand, i); 1057 if (ret) 1058 goto err_manuf_cleanup; 1059 1060 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1061 if (ret) 1062 goto err_manuf_cleanup; 1063 } 1064 1065 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1066 if (ret) 1067 goto err_manuf_cleanup; 1068 1069 /* 1070 * Right now, we don't support ECC, so let the whole oob 1071 * area is available for user. 1072 */ 1073 mtd->_read_oob = spinand_mtd_read; 1074 mtd->_write_oob = spinand_mtd_write; 1075 mtd->_block_isbad = spinand_mtd_block_isbad; 1076 mtd->_block_markbad = spinand_mtd_block_markbad; 1077 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1078 mtd->_erase = spinand_mtd_erase; 1079 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; 1080 1081 if (spinand->eccinfo.ooblayout) 1082 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1083 else 1084 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1085 1086 ret = mtd_ooblayout_count_freebytes(mtd); 1087 if (ret < 0) 1088 goto err_cleanup_nanddev; 1089 1090 mtd->oobavail = ret; 1091 1092 /* Propagate ECC information to mtd_info */ 1093 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength; 1094 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size; 1095 1096 return 0; 1097 1098 err_cleanup_nanddev: 1099 nanddev_cleanup(nand); 1100 1101 err_manuf_cleanup: 1102 spinand_manufacturer_cleanup(spinand); 1103 1104 err_free_bufs: 1105 kfree(spinand->databuf); 1106 kfree(spinand->scratchbuf); 1107 return ret; 1108 } 1109 1110 static void spinand_cleanup(struct spinand_device *spinand) 1111 { 1112 struct nand_device *nand = spinand_to_nand(spinand); 1113 1114 nanddev_cleanup(nand); 1115 spinand_manufacturer_cleanup(spinand); 1116 kfree(spinand->databuf); 1117 kfree(spinand->scratchbuf); 1118 } 1119 1120 static int spinand_probe(struct spi_mem *mem) 1121 { 1122 struct spinand_device *spinand; 1123 struct mtd_info *mtd; 1124 int ret; 1125 1126 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1127 GFP_KERNEL); 1128 if (!spinand) 1129 return -ENOMEM; 1130 1131 spinand->spimem = mem; 1132 spi_mem_set_drvdata(mem, spinand); 1133 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1134 mutex_init(&spinand->lock); 1135 mtd = spinand_to_mtd(spinand); 1136 mtd->dev.parent = &mem->spi->dev; 1137 1138 ret = spinand_init(spinand); 1139 if (ret) 1140 return ret; 1141 1142 ret = mtd_device_register(mtd, NULL, 0); 1143 if (ret) 1144 goto err_spinand_cleanup; 1145 1146 return 0; 1147 1148 err_spinand_cleanup: 1149 spinand_cleanup(spinand); 1150 1151 return ret; 1152 } 1153 1154 static int spinand_remove(struct spi_mem *mem) 1155 { 1156 struct spinand_device *spinand; 1157 struct mtd_info *mtd; 1158 int ret; 1159 1160 spinand = spi_mem_get_drvdata(mem); 1161 mtd = spinand_to_mtd(spinand); 1162 1163 ret = mtd_device_unregister(mtd); 1164 if (ret) 1165 return ret; 1166 1167 spinand_cleanup(spinand); 1168 1169 return 0; 1170 } 1171 1172 static const struct spi_device_id spinand_ids[] = { 1173 { .name = "spi-nand" }, 1174 { /* sentinel */ }, 1175 }; 1176 1177 #ifdef CONFIG_OF 1178 static const struct of_device_id spinand_of_ids[] = { 1179 { .compatible = "spi-nand" }, 1180 { /* sentinel */ }, 1181 }; 1182 #endif 1183 1184 static struct spi_mem_driver spinand_drv = { 1185 .spidrv = { 1186 .id_table = spinand_ids, 1187 .driver = { 1188 .name = "spi-nand", 1189 .of_match_table = of_match_ptr(spinand_of_ids), 1190 }, 1191 }, 1192 .probe = spinand_probe, 1193 .remove = spinand_remove, 1194 }; 1195 module_spi_mem_driver(spinand_drv); 1196 1197 MODULE_DESCRIPTION("SPI NAND framework"); 1198 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1199 MODULE_LICENSE("GPL v2"); 1200