xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	unsigned int target;
145 	int ret;
146 
147 	for (target = 0; target < nand->memorg.ntargets; target++) {
148 		ret = spinand_select_target(spinand, target);
149 		if (ret)
150 			return ret;
151 
152 		/*
153 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 		 * here to bypass the config cache.
155 		 */
156 		ret = spinand_read_reg_op(spinand, REG_CFG,
157 					  &spinand->cfg_cache[target]);
158 		if (ret)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 	struct nand_device *nand = spinand_to_nand(spinand);
168 	struct device *dev = &spinand->spimem->spi->dev;
169 
170 	spinand->cfg_cache = devm_kcalloc(dev,
171 					  nand->memorg.ntargets,
172 					  sizeof(*spinand->cfg_cache),
173 					  GFP_KERNEL);
174 	if (!spinand->cfg_cache)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 	bool enable = false;
183 
184 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 		return 0;
186 
187 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
189 	    spinand->op_templates.update_cache->data.buswidth == 4)
190 		enable = true;
191 
192 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 			       enable ? CFG_QUAD_ENABLE : 0);
194 }
195 
196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 			      bool enable)
198 {
199 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 			       enable ? CFG_ECC_ENABLE : 0);
201 }
202 
203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 	struct nand_device *nand = spinand_to_nand(spinand);
206 
207 	if (spinand->eccinfo.get_status)
208 		return spinand->eccinfo.get_status(spinand, status);
209 
210 	switch (status & STATUS_ECC_MASK) {
211 	case STATUS_ECC_NO_BITFLIPS:
212 		return 0;
213 
214 	case STATUS_ECC_HAS_BITFLIPS:
215 		/*
216 		 * We have no way to know exactly how many bitflips have been
217 		 * fixed, so let's return the maximum possible value so that
218 		 * wear-leveling layers move the data immediately.
219 		 */
220 		return nanddev_get_ecc_conf(nand)->strength;
221 
222 	case STATUS_ECC_UNCOR_ERROR:
223 		return -EBADMSG;
224 
225 	default:
226 		break;
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 				       struct mtd_oob_region *region)
234 {
235 	return -ERANGE;
236 }
237 
238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 					struct mtd_oob_region *region)
240 {
241 	if (section)
242 		return -ERANGE;
243 
244 	/* Reserve 2 bytes for the BBM. */
245 	region->offset = 2;
246 	region->length = 62;
247 
248 	return 0;
249 }
250 
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 	.ecc = spinand_noecc_ooblayout_ecc,
253 	.free = spinand_noecc_ooblayout_free,
254 };
255 
256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 	struct spinand_device *spinand = nand_to_spinand(nand);
259 	struct mtd_info *mtd = nanddev_to_mtd(nand);
260 	struct spinand_ondie_ecc_conf *engine_conf;
261 
262 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265 
266 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 	if (!engine_conf)
268 		return -ENOMEM;
269 
270 	nand->ecc.ctx.priv = engine_conf;
271 
272 	if (spinand->eccinfo.ooblayout)
273 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 	else
275 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276 
277 	return 0;
278 }
279 
280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 	kfree(nand->ecc.ctx.priv);
283 }
284 
285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 					    struct nand_page_io_req *req)
287 {
288 	struct spinand_device *spinand = nand_to_spinand(nand);
289 	bool enable = (req->mode != MTD_OPS_RAW);
290 
291 	memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
292 
293 	/* Only enable or disable the engine */
294 	return spinand_ecc_enable(spinand, enable);
295 }
296 
297 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
298 					   struct nand_page_io_req *req)
299 {
300 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
301 	struct spinand_device *spinand = nand_to_spinand(nand);
302 	struct mtd_info *mtd = spinand_to_mtd(spinand);
303 	int ret;
304 
305 	if (req->mode == MTD_OPS_RAW)
306 		return 0;
307 
308 	/* Nothing to do when finishing a page write */
309 	if (req->type == NAND_PAGE_WRITE)
310 		return 0;
311 
312 	/* Finish a page read: check the status, report errors/bitflips */
313 	ret = spinand_check_ecc_status(spinand, engine_conf->status);
314 	if (ret == -EBADMSG)
315 		mtd->ecc_stats.failed++;
316 	else if (ret > 0)
317 		mtd->ecc_stats.corrected += ret;
318 
319 	return ret;
320 }
321 
322 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
323 	.init_ctx = spinand_ondie_ecc_init_ctx,
324 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
325 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
326 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
327 };
328 
329 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
330 	.ops = &spinand_ondie_ecc_engine_ops,
331 };
332 
333 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
334 {
335 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
336 
337 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
338 	    engine_conf)
339 		engine_conf->status = status;
340 }
341 
342 static int spinand_write_enable_op(struct spinand_device *spinand)
343 {
344 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
345 
346 	return spi_mem_exec_op(spinand->spimem, &op);
347 }
348 
349 static int spinand_load_page_op(struct spinand_device *spinand,
350 				const struct nand_page_io_req *req)
351 {
352 	struct nand_device *nand = spinand_to_nand(spinand);
353 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
354 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
355 
356 	return spi_mem_exec_op(spinand->spimem, &op);
357 }
358 
359 static int spinand_read_from_cache_op(struct spinand_device *spinand,
360 				      const struct nand_page_io_req *req)
361 {
362 	struct nand_device *nand = spinand_to_nand(spinand);
363 	struct mtd_info *mtd = spinand_to_mtd(spinand);
364 	struct spi_mem_dirmap_desc *rdesc;
365 	unsigned int nbytes = 0;
366 	void *buf = NULL;
367 	u16 column = 0;
368 	ssize_t ret;
369 
370 	if (req->datalen) {
371 		buf = spinand->databuf;
372 		nbytes = nanddev_page_size(nand);
373 		column = 0;
374 	}
375 
376 	if (req->ooblen) {
377 		nbytes += nanddev_per_page_oobsize(nand);
378 		if (!buf) {
379 			buf = spinand->oobbuf;
380 			column = nanddev_page_size(nand);
381 		}
382 	}
383 
384 	if (req->mode == MTD_OPS_RAW)
385 		rdesc = spinand->dirmaps[req->pos.plane].rdesc;
386 	else
387 		rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
388 
389 	while (nbytes) {
390 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
391 		if (ret < 0)
392 			return ret;
393 
394 		if (!ret || ret > nbytes)
395 			return -EIO;
396 
397 		nbytes -= ret;
398 		column += ret;
399 		buf += ret;
400 	}
401 
402 	if (req->datalen)
403 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
404 		       req->datalen);
405 
406 	if (req->ooblen) {
407 		if (req->mode == MTD_OPS_AUTO_OOB)
408 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
409 						    spinand->oobbuf,
410 						    req->ooboffs,
411 						    req->ooblen);
412 		else
413 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
414 			       req->ooblen);
415 	}
416 
417 	return 0;
418 }
419 
420 static int spinand_write_to_cache_op(struct spinand_device *spinand,
421 				     const struct nand_page_io_req *req)
422 {
423 	struct nand_device *nand = spinand_to_nand(spinand);
424 	struct mtd_info *mtd = spinand_to_mtd(spinand);
425 	struct spi_mem_dirmap_desc *wdesc;
426 	unsigned int nbytes, column = 0;
427 	void *buf = spinand->databuf;
428 	ssize_t ret;
429 
430 	/*
431 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
432 	 * the cache content to 0xFF (depends on vendor implementation), so we
433 	 * must fill the page cache entirely even if we only want to program
434 	 * the data portion of the page, otherwise we might corrupt the BBM or
435 	 * user data previously programmed in OOB area.
436 	 *
437 	 * Only reset the data buffer manually, the OOB buffer is prepared by
438 	 * ECC engines ->prepare_io_req() callback.
439 	 */
440 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
441 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
442 
443 	if (req->datalen)
444 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
445 		       req->datalen);
446 
447 	if (req->ooblen) {
448 		if (req->mode == MTD_OPS_AUTO_OOB)
449 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
450 						    spinand->oobbuf,
451 						    req->ooboffs,
452 						    req->ooblen);
453 		else
454 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
455 			       req->ooblen);
456 	}
457 
458 	if (req->mode == MTD_OPS_RAW)
459 		wdesc = spinand->dirmaps[req->pos.plane].wdesc;
460 	else
461 		wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
462 
463 	while (nbytes) {
464 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
465 		if (ret < 0)
466 			return ret;
467 
468 		if (!ret || ret > nbytes)
469 			return -EIO;
470 
471 		nbytes -= ret;
472 		column += ret;
473 		buf += ret;
474 	}
475 
476 	return 0;
477 }
478 
479 static int spinand_program_op(struct spinand_device *spinand,
480 			      const struct nand_page_io_req *req)
481 {
482 	struct nand_device *nand = spinand_to_nand(spinand);
483 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
484 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
485 
486 	return spi_mem_exec_op(spinand->spimem, &op);
487 }
488 
489 static int spinand_erase_op(struct spinand_device *spinand,
490 			    const struct nand_pos *pos)
491 {
492 	struct nand_device *nand = spinand_to_nand(spinand);
493 	unsigned int row = nanddev_pos_to_row(nand, pos);
494 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
495 
496 	return spi_mem_exec_op(spinand->spimem, &op);
497 }
498 
499 static int spinand_wait(struct spinand_device *spinand,
500 			unsigned long initial_delay_us,
501 			unsigned long poll_delay_us,
502 			u8 *s)
503 {
504 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
505 						      spinand->scratchbuf);
506 	u8 status;
507 	int ret;
508 
509 	ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
510 				  initial_delay_us,
511 				  poll_delay_us,
512 				  SPINAND_WAITRDY_TIMEOUT_MS);
513 	if (ret)
514 		return ret;
515 
516 	status = *spinand->scratchbuf;
517 	if (!(status & STATUS_BUSY))
518 		goto out;
519 
520 	/*
521 	 * Extra read, just in case the STATUS_READY bit has changed
522 	 * since our last check
523 	 */
524 	ret = spinand_read_status(spinand, &status);
525 	if (ret)
526 		return ret;
527 
528 out:
529 	if (s)
530 		*s = status;
531 
532 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
533 }
534 
535 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
536 			      u8 ndummy, u8 *buf)
537 {
538 	struct spi_mem_op op = SPINAND_READID_OP(
539 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
540 	int ret;
541 
542 	ret = spi_mem_exec_op(spinand->spimem, &op);
543 	if (!ret)
544 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
545 
546 	return ret;
547 }
548 
549 static int spinand_reset_op(struct spinand_device *spinand)
550 {
551 	struct spi_mem_op op = SPINAND_RESET_OP;
552 	int ret;
553 
554 	ret = spi_mem_exec_op(spinand->spimem, &op);
555 	if (ret)
556 		return ret;
557 
558 	return spinand_wait(spinand,
559 			    SPINAND_RESET_INITIAL_DELAY_US,
560 			    SPINAND_RESET_POLL_DELAY_US,
561 			    NULL);
562 }
563 
564 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
565 {
566 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
567 }
568 
569 static int spinand_read_page(struct spinand_device *spinand,
570 			     const struct nand_page_io_req *req)
571 {
572 	struct nand_device *nand = spinand_to_nand(spinand);
573 	u8 status;
574 	int ret;
575 
576 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
577 	if (ret)
578 		return ret;
579 
580 	ret = spinand_load_page_op(spinand, req);
581 	if (ret)
582 		return ret;
583 
584 	ret = spinand_wait(spinand,
585 			   SPINAND_READ_INITIAL_DELAY_US,
586 			   SPINAND_READ_POLL_DELAY_US,
587 			   &status);
588 	if (ret < 0)
589 		return ret;
590 
591 	spinand_ondie_ecc_save_status(nand, status);
592 
593 	ret = spinand_read_from_cache_op(spinand, req);
594 	if (ret)
595 		return ret;
596 
597 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
598 }
599 
600 static int spinand_write_page(struct spinand_device *spinand,
601 			      const struct nand_page_io_req *req)
602 {
603 	struct nand_device *nand = spinand_to_nand(spinand);
604 	u8 status;
605 	int ret;
606 
607 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
608 	if (ret)
609 		return ret;
610 
611 	ret = spinand_write_enable_op(spinand);
612 	if (ret)
613 		return ret;
614 
615 	ret = spinand_write_to_cache_op(spinand, req);
616 	if (ret)
617 		return ret;
618 
619 	ret = spinand_program_op(spinand, req);
620 	if (ret)
621 		return ret;
622 
623 	ret = spinand_wait(spinand,
624 			   SPINAND_WRITE_INITIAL_DELAY_US,
625 			   SPINAND_WRITE_POLL_DELAY_US,
626 			   &status);
627 	if (!ret && (status & STATUS_PROG_FAILED))
628 		return -EIO;
629 
630 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
631 }
632 
633 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
634 			    struct mtd_oob_ops *ops)
635 {
636 	struct spinand_device *spinand = mtd_to_spinand(mtd);
637 	struct nand_device *nand = mtd_to_nanddev(mtd);
638 	unsigned int max_bitflips = 0;
639 	struct nand_io_iter iter;
640 	bool disable_ecc = false;
641 	bool ecc_failed = false;
642 	int ret = 0;
643 
644 	if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
645 		disable_ecc = true;
646 
647 	mutex_lock(&spinand->lock);
648 
649 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
650 		if (disable_ecc)
651 			iter.req.mode = MTD_OPS_RAW;
652 
653 		ret = spinand_select_target(spinand, iter.req.pos.target);
654 		if (ret)
655 			break;
656 
657 		ret = spinand_read_page(spinand, &iter.req);
658 		if (ret < 0 && ret != -EBADMSG)
659 			break;
660 
661 		if (ret == -EBADMSG)
662 			ecc_failed = true;
663 		else
664 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
665 
666 		ret = 0;
667 		ops->retlen += iter.req.datalen;
668 		ops->oobretlen += iter.req.ooblen;
669 	}
670 
671 	mutex_unlock(&spinand->lock);
672 
673 	if (ecc_failed && !ret)
674 		ret = -EBADMSG;
675 
676 	return ret ? ret : max_bitflips;
677 }
678 
679 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
680 			     struct mtd_oob_ops *ops)
681 {
682 	struct spinand_device *spinand = mtd_to_spinand(mtd);
683 	struct nand_device *nand = mtd_to_nanddev(mtd);
684 	struct nand_io_iter iter;
685 	bool disable_ecc = false;
686 	int ret = 0;
687 
688 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
689 		disable_ecc = true;
690 
691 	mutex_lock(&spinand->lock);
692 
693 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
694 		if (disable_ecc)
695 			iter.req.mode = MTD_OPS_RAW;
696 
697 		ret = spinand_select_target(spinand, iter.req.pos.target);
698 		if (ret)
699 			break;
700 
701 		ret = spinand_write_page(spinand, &iter.req);
702 		if (ret)
703 			break;
704 
705 		ops->retlen += iter.req.datalen;
706 		ops->oobretlen += iter.req.ooblen;
707 	}
708 
709 	mutex_unlock(&spinand->lock);
710 
711 	return ret;
712 }
713 
714 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
715 {
716 	struct spinand_device *spinand = nand_to_spinand(nand);
717 	u8 marker[2] = { };
718 	struct nand_page_io_req req = {
719 		.pos = *pos,
720 		.ooblen = sizeof(marker),
721 		.ooboffs = 0,
722 		.oobbuf.in = marker,
723 		.mode = MTD_OPS_RAW,
724 	};
725 
726 	spinand_select_target(spinand, pos->target);
727 	spinand_read_page(spinand, &req);
728 	if (marker[0] != 0xff || marker[1] != 0xff)
729 		return true;
730 
731 	return false;
732 }
733 
734 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
735 {
736 	struct nand_device *nand = mtd_to_nanddev(mtd);
737 	struct spinand_device *spinand = nand_to_spinand(nand);
738 	struct nand_pos pos;
739 	int ret;
740 
741 	nanddev_offs_to_pos(nand, offs, &pos);
742 	mutex_lock(&spinand->lock);
743 	ret = nanddev_isbad(nand, &pos);
744 	mutex_unlock(&spinand->lock);
745 
746 	return ret;
747 }
748 
749 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
750 {
751 	struct spinand_device *spinand = nand_to_spinand(nand);
752 	u8 marker[2] = { };
753 	struct nand_page_io_req req = {
754 		.pos = *pos,
755 		.ooboffs = 0,
756 		.ooblen = sizeof(marker),
757 		.oobbuf.out = marker,
758 		.mode = MTD_OPS_RAW,
759 	};
760 	int ret;
761 
762 	ret = spinand_select_target(spinand, pos->target);
763 	if (ret)
764 		return ret;
765 
766 	ret = spinand_write_enable_op(spinand);
767 	if (ret)
768 		return ret;
769 
770 	return spinand_write_page(spinand, &req);
771 }
772 
773 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
774 {
775 	struct nand_device *nand = mtd_to_nanddev(mtd);
776 	struct spinand_device *spinand = nand_to_spinand(nand);
777 	struct nand_pos pos;
778 	int ret;
779 
780 	nanddev_offs_to_pos(nand, offs, &pos);
781 	mutex_lock(&spinand->lock);
782 	ret = nanddev_markbad(nand, &pos);
783 	mutex_unlock(&spinand->lock);
784 
785 	return ret;
786 }
787 
788 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
789 {
790 	struct spinand_device *spinand = nand_to_spinand(nand);
791 	u8 status;
792 	int ret;
793 
794 	ret = spinand_select_target(spinand, pos->target);
795 	if (ret)
796 		return ret;
797 
798 	ret = spinand_write_enable_op(spinand);
799 	if (ret)
800 		return ret;
801 
802 	ret = spinand_erase_op(spinand, pos);
803 	if (ret)
804 		return ret;
805 
806 	ret = spinand_wait(spinand,
807 			   SPINAND_ERASE_INITIAL_DELAY_US,
808 			   SPINAND_ERASE_POLL_DELAY_US,
809 			   &status);
810 
811 	if (!ret && (status & STATUS_ERASE_FAILED))
812 		ret = -EIO;
813 
814 	return ret;
815 }
816 
817 static int spinand_mtd_erase(struct mtd_info *mtd,
818 			     struct erase_info *einfo)
819 {
820 	struct spinand_device *spinand = mtd_to_spinand(mtd);
821 	int ret;
822 
823 	mutex_lock(&spinand->lock);
824 	ret = nanddev_mtd_erase(mtd, einfo);
825 	mutex_unlock(&spinand->lock);
826 
827 	return ret;
828 }
829 
830 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
831 {
832 	struct spinand_device *spinand = mtd_to_spinand(mtd);
833 	struct nand_device *nand = mtd_to_nanddev(mtd);
834 	struct nand_pos pos;
835 	int ret;
836 
837 	nanddev_offs_to_pos(nand, offs, &pos);
838 	mutex_lock(&spinand->lock);
839 	ret = nanddev_isreserved(nand, &pos);
840 	mutex_unlock(&spinand->lock);
841 
842 	return ret;
843 }
844 
845 static int spinand_create_dirmap(struct spinand_device *spinand,
846 				 unsigned int plane)
847 {
848 	struct nand_device *nand = spinand_to_nand(spinand);
849 	struct spi_mem_dirmap_info info = {
850 		.length = nanddev_page_size(nand) +
851 			  nanddev_per_page_oobsize(nand),
852 	};
853 	struct spi_mem_dirmap_desc *desc;
854 
855 	/* The plane number is passed in MSB just above the column address */
856 	info.offset = plane << fls(nand->memorg.pagesize);
857 
858 	info.op_tmpl = *spinand->op_templates.update_cache;
859 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
860 					  spinand->spimem, &info);
861 	if (IS_ERR(desc))
862 		return PTR_ERR(desc);
863 
864 	spinand->dirmaps[plane].wdesc = desc;
865 
866 	info.op_tmpl = *spinand->op_templates.read_cache;
867 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
868 					  spinand->spimem, &info);
869 	if (IS_ERR(desc))
870 		return PTR_ERR(desc);
871 
872 	spinand->dirmaps[plane].rdesc = desc;
873 
874 	if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
875 		spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
876 		spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
877 
878 		return 0;
879 	}
880 
881 	info.op_tmpl = *spinand->op_templates.update_cache;
882 	info.op_tmpl.data.ecc = true;
883 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
884 					  spinand->spimem, &info);
885 	if (IS_ERR(desc))
886 		return PTR_ERR(desc);
887 
888 	spinand->dirmaps[plane].wdesc_ecc = desc;
889 
890 	info.op_tmpl = *spinand->op_templates.read_cache;
891 	info.op_tmpl.data.ecc = true;
892 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
893 					  spinand->spimem, &info);
894 	if (IS_ERR(desc))
895 		return PTR_ERR(desc);
896 
897 	spinand->dirmaps[plane].rdesc_ecc = desc;
898 
899 	return 0;
900 }
901 
902 static int spinand_create_dirmaps(struct spinand_device *spinand)
903 {
904 	struct nand_device *nand = spinand_to_nand(spinand);
905 	int i, ret;
906 
907 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
908 					sizeof(*spinand->dirmaps) *
909 					nand->memorg.planes_per_lun,
910 					GFP_KERNEL);
911 	if (!spinand->dirmaps)
912 		return -ENOMEM;
913 
914 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
915 		ret = spinand_create_dirmap(spinand, i);
916 		if (ret)
917 			return ret;
918 	}
919 
920 	return 0;
921 }
922 
923 static const struct nand_ops spinand_ops = {
924 	.erase = spinand_erase,
925 	.markbad = spinand_markbad,
926 	.isbad = spinand_isbad,
927 };
928 
929 static const struct spinand_manufacturer *spinand_manufacturers[] = {
930 	&gigadevice_spinand_manufacturer,
931 	&macronix_spinand_manufacturer,
932 	&micron_spinand_manufacturer,
933 	&paragon_spinand_manufacturer,
934 	&toshiba_spinand_manufacturer,
935 	&winbond_spinand_manufacturer,
936 };
937 
938 static int spinand_manufacturer_match(struct spinand_device *spinand,
939 				      enum spinand_readid_method rdid_method)
940 {
941 	u8 *id = spinand->id.data;
942 	unsigned int i;
943 	int ret;
944 
945 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
946 		const struct spinand_manufacturer *manufacturer =
947 			spinand_manufacturers[i];
948 
949 		if (id[0] != manufacturer->id)
950 			continue;
951 
952 		ret = spinand_match_and_init(spinand,
953 					     manufacturer->chips,
954 					     manufacturer->nchips,
955 					     rdid_method);
956 		if (ret < 0)
957 			continue;
958 
959 		spinand->manufacturer = manufacturer;
960 		return 0;
961 	}
962 	return -ENOTSUPP;
963 }
964 
965 static int spinand_id_detect(struct spinand_device *spinand)
966 {
967 	u8 *id = spinand->id.data;
968 	int ret;
969 
970 	ret = spinand_read_id_op(spinand, 0, 0, id);
971 	if (ret)
972 		return ret;
973 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
974 	if (!ret)
975 		return 0;
976 
977 	ret = spinand_read_id_op(spinand, 1, 0, id);
978 	if (ret)
979 		return ret;
980 	ret = spinand_manufacturer_match(spinand,
981 					 SPINAND_READID_METHOD_OPCODE_ADDR);
982 	if (!ret)
983 		return 0;
984 
985 	ret = spinand_read_id_op(spinand, 0, 1, id);
986 	if (ret)
987 		return ret;
988 	ret = spinand_manufacturer_match(spinand,
989 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
990 
991 	return ret;
992 }
993 
994 static int spinand_manufacturer_init(struct spinand_device *spinand)
995 {
996 	if (spinand->manufacturer->ops->init)
997 		return spinand->manufacturer->ops->init(spinand);
998 
999 	return 0;
1000 }
1001 
1002 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1003 {
1004 	/* Release manufacturer private data */
1005 	if (spinand->manufacturer->ops->cleanup)
1006 		return spinand->manufacturer->ops->cleanup(spinand);
1007 }
1008 
1009 static const struct spi_mem_op *
1010 spinand_select_op_variant(struct spinand_device *spinand,
1011 			  const struct spinand_op_variants *variants)
1012 {
1013 	struct nand_device *nand = spinand_to_nand(spinand);
1014 	unsigned int i;
1015 
1016 	for (i = 0; i < variants->nops; i++) {
1017 		struct spi_mem_op op = variants->ops[i];
1018 		unsigned int nbytes;
1019 		int ret;
1020 
1021 		nbytes = nanddev_per_page_oobsize(nand) +
1022 			 nanddev_page_size(nand);
1023 
1024 		while (nbytes) {
1025 			op.data.nbytes = nbytes;
1026 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1027 			if (ret)
1028 				break;
1029 
1030 			if (!spi_mem_supports_op(spinand->spimem, &op))
1031 				break;
1032 
1033 			nbytes -= op.data.nbytes;
1034 		}
1035 
1036 		if (!nbytes)
1037 			return &variants->ops[i];
1038 	}
1039 
1040 	return NULL;
1041 }
1042 
1043 /**
1044  * spinand_match_and_init() - Try to find a match between a device ID and an
1045  *			      entry in a spinand_info table
1046  * @spinand: SPI NAND object
1047  * @table: SPI NAND device description table
1048  * @table_size: size of the device description table
1049  * @rdid_method: read id method to match
1050  *
1051  * Match between a device ID retrieved through the READ_ID command and an
1052  * entry in the SPI NAND description table. If a match is found, the spinand
1053  * object will be initialized with information provided by the matching
1054  * spinand_info entry.
1055  *
1056  * Return: 0 on success, a negative error code otherwise.
1057  */
1058 int spinand_match_and_init(struct spinand_device *spinand,
1059 			   const struct spinand_info *table,
1060 			   unsigned int table_size,
1061 			   enum spinand_readid_method rdid_method)
1062 {
1063 	u8 *id = spinand->id.data;
1064 	struct nand_device *nand = spinand_to_nand(spinand);
1065 	unsigned int i;
1066 
1067 	for (i = 0; i < table_size; i++) {
1068 		const struct spinand_info *info = &table[i];
1069 		const struct spi_mem_op *op;
1070 
1071 		if (rdid_method != info->devid.method)
1072 			continue;
1073 
1074 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1075 			continue;
1076 
1077 		nand->memorg = table[i].memorg;
1078 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1079 		spinand->eccinfo = table[i].eccinfo;
1080 		spinand->flags = table[i].flags;
1081 		spinand->id.len = 1 + table[i].devid.len;
1082 		spinand->select_target = table[i].select_target;
1083 
1084 		op = spinand_select_op_variant(spinand,
1085 					       info->op_variants.read_cache);
1086 		if (!op)
1087 			return -ENOTSUPP;
1088 
1089 		spinand->op_templates.read_cache = op;
1090 
1091 		op = spinand_select_op_variant(spinand,
1092 					       info->op_variants.write_cache);
1093 		if (!op)
1094 			return -ENOTSUPP;
1095 
1096 		spinand->op_templates.write_cache = op;
1097 
1098 		op = spinand_select_op_variant(spinand,
1099 					       info->op_variants.update_cache);
1100 		spinand->op_templates.update_cache = op;
1101 
1102 		return 0;
1103 	}
1104 
1105 	return -ENOTSUPP;
1106 }
1107 
1108 static int spinand_detect(struct spinand_device *spinand)
1109 {
1110 	struct device *dev = &spinand->spimem->spi->dev;
1111 	struct nand_device *nand = spinand_to_nand(spinand);
1112 	int ret;
1113 
1114 	ret = spinand_reset_op(spinand);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = spinand_id_detect(spinand);
1119 	if (ret) {
1120 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1121 			spinand->id.data);
1122 		return ret;
1123 	}
1124 
1125 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1126 		dev_err(dev,
1127 			"SPI NANDs with more than one die must implement ->select_target()\n");
1128 		return -EINVAL;
1129 	}
1130 
1131 	dev_info(&spinand->spimem->spi->dev,
1132 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1133 	dev_info(&spinand->spimem->spi->dev,
1134 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1135 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1136 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1137 
1138 	return 0;
1139 }
1140 
1141 static int spinand_init_flash(struct spinand_device *spinand)
1142 {
1143 	struct device *dev = &spinand->spimem->spi->dev;
1144 	struct nand_device *nand = spinand_to_nand(spinand);
1145 	int ret, i;
1146 
1147 	ret = spinand_read_cfg(spinand);
1148 	if (ret)
1149 		return ret;
1150 
1151 	ret = spinand_init_quad_enable(spinand);
1152 	if (ret)
1153 		return ret;
1154 
1155 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1156 	if (ret)
1157 		return ret;
1158 
1159 	ret = spinand_manufacturer_init(spinand);
1160 	if (ret) {
1161 		dev_err(dev,
1162 		"Failed to initialize the SPI NAND chip (err = %d)\n",
1163 		ret);
1164 		return ret;
1165 	}
1166 
1167 	/* After power up, all blocks are locked, so unlock them here. */
1168 	for (i = 0; i < nand->memorg.ntargets; i++) {
1169 		ret = spinand_select_target(spinand, i);
1170 		if (ret)
1171 			break;
1172 
1173 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1174 		if (ret)
1175 			break;
1176 	}
1177 
1178 	if (ret)
1179 		spinand_manufacturer_cleanup(spinand);
1180 
1181 	return ret;
1182 }
1183 
1184 static void spinand_mtd_resume(struct mtd_info *mtd)
1185 {
1186 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1187 	int ret;
1188 
1189 	ret = spinand_reset_op(spinand);
1190 	if (ret)
1191 		return;
1192 
1193 	ret = spinand_init_flash(spinand);
1194 	if (ret)
1195 		return;
1196 
1197 	spinand_ecc_enable(spinand, false);
1198 }
1199 
1200 static int spinand_init(struct spinand_device *spinand)
1201 {
1202 	struct device *dev = &spinand->spimem->spi->dev;
1203 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1204 	struct nand_device *nand = mtd_to_nanddev(mtd);
1205 	int ret;
1206 
1207 	/*
1208 	 * We need a scratch buffer because the spi_mem interface requires that
1209 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1210 	 */
1211 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1212 	if (!spinand->scratchbuf)
1213 		return -ENOMEM;
1214 
1215 	ret = spinand_detect(spinand);
1216 	if (ret)
1217 		goto err_free_bufs;
1218 
1219 	/*
1220 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1221 	 * may use this buffer for DMA access.
1222 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1223 	 */
1224 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1225 			       nanddev_per_page_oobsize(nand),
1226 			       GFP_KERNEL);
1227 	if (!spinand->databuf) {
1228 		ret = -ENOMEM;
1229 		goto err_free_bufs;
1230 	}
1231 
1232 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1233 
1234 	ret = spinand_init_cfg_cache(spinand);
1235 	if (ret)
1236 		goto err_free_bufs;
1237 
1238 	ret = spinand_init_flash(spinand);
1239 	if (ret)
1240 		goto err_free_bufs;
1241 
1242 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1243 	if (ret)
1244 		goto err_manuf_cleanup;
1245 
1246 	/* SPI-NAND default ECC engine is on-die */
1247 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1248 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1249 
1250 	spinand_ecc_enable(spinand, false);
1251 	ret = nanddev_ecc_engine_init(nand);
1252 	if (ret)
1253 		goto err_cleanup_nanddev;
1254 
1255 	mtd->_read_oob = spinand_mtd_read;
1256 	mtd->_write_oob = spinand_mtd_write;
1257 	mtd->_block_isbad = spinand_mtd_block_isbad;
1258 	mtd->_block_markbad = spinand_mtd_block_markbad;
1259 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1260 	mtd->_erase = spinand_mtd_erase;
1261 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1262 	mtd->_resume = spinand_mtd_resume;
1263 
1264 	if (nand->ecc.engine) {
1265 		ret = mtd_ooblayout_count_freebytes(mtd);
1266 		if (ret < 0)
1267 			goto err_cleanup_ecc_engine;
1268 	}
1269 
1270 	mtd->oobavail = ret;
1271 
1272 	/* Propagate ECC information to mtd_info */
1273 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1274 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1275 
1276 	ret = spinand_create_dirmaps(spinand);
1277 	if (ret) {
1278 		dev_err(dev,
1279 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1280 			ret);
1281 		goto err_cleanup_ecc_engine;
1282 	}
1283 
1284 	return 0;
1285 
1286 err_cleanup_ecc_engine:
1287 	nanddev_ecc_engine_cleanup(nand);
1288 
1289 err_cleanup_nanddev:
1290 	nanddev_cleanup(nand);
1291 
1292 err_manuf_cleanup:
1293 	spinand_manufacturer_cleanup(spinand);
1294 
1295 err_free_bufs:
1296 	kfree(spinand->databuf);
1297 	kfree(spinand->scratchbuf);
1298 	return ret;
1299 }
1300 
1301 static void spinand_cleanup(struct spinand_device *spinand)
1302 {
1303 	struct nand_device *nand = spinand_to_nand(spinand);
1304 
1305 	nanddev_cleanup(nand);
1306 	spinand_manufacturer_cleanup(spinand);
1307 	kfree(spinand->databuf);
1308 	kfree(spinand->scratchbuf);
1309 }
1310 
1311 static int spinand_probe(struct spi_mem *mem)
1312 {
1313 	struct spinand_device *spinand;
1314 	struct mtd_info *mtd;
1315 	int ret;
1316 
1317 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1318 			       GFP_KERNEL);
1319 	if (!spinand)
1320 		return -ENOMEM;
1321 
1322 	spinand->spimem = mem;
1323 	spi_mem_set_drvdata(mem, spinand);
1324 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1325 	mutex_init(&spinand->lock);
1326 	mtd = spinand_to_mtd(spinand);
1327 	mtd->dev.parent = &mem->spi->dev;
1328 
1329 	ret = spinand_init(spinand);
1330 	if (ret)
1331 		return ret;
1332 
1333 	ret = mtd_device_register(mtd, NULL, 0);
1334 	if (ret)
1335 		goto err_spinand_cleanup;
1336 
1337 	return 0;
1338 
1339 err_spinand_cleanup:
1340 	spinand_cleanup(spinand);
1341 
1342 	return ret;
1343 }
1344 
1345 static int spinand_remove(struct spi_mem *mem)
1346 {
1347 	struct spinand_device *spinand;
1348 	struct mtd_info *mtd;
1349 	int ret;
1350 
1351 	spinand = spi_mem_get_drvdata(mem);
1352 	mtd = spinand_to_mtd(spinand);
1353 
1354 	ret = mtd_device_unregister(mtd);
1355 	if (ret)
1356 		return ret;
1357 
1358 	spinand_cleanup(spinand);
1359 
1360 	return 0;
1361 }
1362 
1363 static const struct spi_device_id spinand_ids[] = {
1364 	{ .name = "spi-nand" },
1365 	{ /* sentinel */ },
1366 };
1367 MODULE_DEVICE_TABLE(spi, spinand_ids);
1368 
1369 #ifdef CONFIG_OF
1370 static const struct of_device_id spinand_of_ids[] = {
1371 	{ .compatible = "spi-nand" },
1372 	{ /* sentinel */ },
1373 };
1374 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1375 #endif
1376 
1377 static struct spi_mem_driver spinand_drv = {
1378 	.spidrv = {
1379 		.id_table = spinand_ids,
1380 		.driver = {
1381 			.name = "spi-nand",
1382 			.of_match_table = of_match_ptr(spinand_of_ids),
1383 		},
1384 	},
1385 	.probe = spinand_probe,
1386 	.remove = spinand_remove,
1387 };
1388 module_spi_mem_driver(spinand_drv);
1389 
1390 MODULE_DESCRIPTION("SPI NAND framework");
1391 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1392 MODULE_LICENSE("GPL v2");
1393