xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	unsigned int target;
145 	int ret;
146 
147 	for (target = 0; target < nand->memorg.ntargets; target++) {
148 		ret = spinand_select_target(spinand, target);
149 		if (ret)
150 			return ret;
151 
152 		/*
153 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 		 * here to bypass the config cache.
155 		 */
156 		ret = spinand_read_reg_op(spinand, REG_CFG,
157 					  &spinand->cfg_cache[target]);
158 		if (ret)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 	struct nand_device *nand = spinand_to_nand(spinand);
168 	struct device *dev = &spinand->spimem->spi->dev;
169 
170 	spinand->cfg_cache = devm_kcalloc(dev,
171 					  nand->memorg.ntargets,
172 					  sizeof(*spinand->cfg_cache),
173 					  GFP_KERNEL);
174 	if (!spinand->cfg_cache)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 	bool enable = false;
183 
184 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 		return 0;
186 
187 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
189 	    spinand->op_templates.update_cache->data.buswidth == 4)
190 		enable = true;
191 
192 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 			       enable ? CFG_QUAD_ENABLE : 0);
194 }
195 
196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 			      bool enable)
198 {
199 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 			       enable ? CFG_ECC_ENABLE : 0);
201 }
202 
203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 	struct nand_device *nand = spinand_to_nand(spinand);
206 
207 	if (spinand->eccinfo.get_status)
208 		return spinand->eccinfo.get_status(spinand, status);
209 
210 	switch (status & STATUS_ECC_MASK) {
211 	case STATUS_ECC_NO_BITFLIPS:
212 		return 0;
213 
214 	case STATUS_ECC_HAS_BITFLIPS:
215 		/*
216 		 * We have no way to know exactly how many bitflips have been
217 		 * fixed, so let's return the maximum possible value so that
218 		 * wear-leveling layers move the data immediately.
219 		 */
220 		return nanddev_get_ecc_conf(nand)->strength;
221 
222 	case STATUS_ECC_UNCOR_ERROR:
223 		return -EBADMSG;
224 
225 	default:
226 		break;
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 				       struct mtd_oob_region *region)
234 {
235 	return -ERANGE;
236 }
237 
238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 					struct mtd_oob_region *region)
240 {
241 	if (section)
242 		return -ERANGE;
243 
244 	/* Reserve 2 bytes for the BBM. */
245 	region->offset = 2;
246 	region->length = 62;
247 
248 	return 0;
249 }
250 
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 	.ecc = spinand_noecc_ooblayout_ecc,
253 	.free = spinand_noecc_ooblayout_free,
254 };
255 
256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 	struct spinand_device *spinand = nand_to_spinand(nand);
259 	struct mtd_info *mtd = nanddev_to_mtd(nand);
260 	struct spinand_ondie_ecc_conf *engine_conf;
261 
262 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265 
266 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 	if (!engine_conf)
268 		return -ENOMEM;
269 
270 	nand->ecc.ctx.priv = engine_conf;
271 
272 	if (spinand->eccinfo.ooblayout)
273 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 	else
275 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276 
277 	return 0;
278 }
279 
280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 	kfree(nand->ecc.ctx.priv);
283 }
284 
285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 					    struct nand_page_io_req *req)
287 {
288 	struct spinand_device *spinand = nand_to_spinand(nand);
289 	bool enable = (req->mode != MTD_OPS_RAW);
290 
291 	memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
292 
293 	/* Only enable or disable the engine */
294 	return spinand_ecc_enable(spinand, enable);
295 }
296 
297 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
298 					   struct nand_page_io_req *req)
299 {
300 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
301 	struct spinand_device *spinand = nand_to_spinand(nand);
302 	struct mtd_info *mtd = spinand_to_mtd(spinand);
303 	int ret;
304 
305 	if (req->mode == MTD_OPS_RAW)
306 		return 0;
307 
308 	/* Nothing to do when finishing a page write */
309 	if (req->type == NAND_PAGE_WRITE)
310 		return 0;
311 
312 	/* Finish a page read: check the status, report errors/bitflips */
313 	ret = spinand_check_ecc_status(spinand, engine_conf->status);
314 	if (ret == -EBADMSG)
315 		mtd->ecc_stats.failed++;
316 	else if (ret > 0)
317 		mtd->ecc_stats.corrected += ret;
318 
319 	return ret;
320 }
321 
322 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
323 	.init_ctx = spinand_ondie_ecc_init_ctx,
324 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
325 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
326 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
327 };
328 
329 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
330 	.ops = &spinand_ondie_ecc_engine_ops,
331 };
332 
333 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
334 {
335 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
336 
337 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
338 	    engine_conf)
339 		engine_conf->status = status;
340 }
341 
342 static int spinand_write_enable_op(struct spinand_device *spinand)
343 {
344 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
345 
346 	return spi_mem_exec_op(spinand->spimem, &op);
347 }
348 
349 static int spinand_load_page_op(struct spinand_device *spinand,
350 				const struct nand_page_io_req *req)
351 {
352 	struct nand_device *nand = spinand_to_nand(spinand);
353 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
354 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
355 
356 	return spi_mem_exec_op(spinand->spimem, &op);
357 }
358 
359 static int spinand_read_from_cache_op(struct spinand_device *spinand,
360 				      const struct nand_page_io_req *req)
361 {
362 	struct nand_device *nand = spinand_to_nand(spinand);
363 	struct mtd_info *mtd = spinand_to_mtd(spinand);
364 	struct spi_mem_dirmap_desc *rdesc;
365 	unsigned int nbytes = 0;
366 	void *buf = NULL;
367 	u16 column = 0;
368 	ssize_t ret;
369 
370 	if (req->datalen) {
371 		buf = spinand->databuf;
372 		nbytes = nanddev_page_size(nand);
373 		column = 0;
374 	}
375 
376 	if (req->ooblen) {
377 		nbytes += nanddev_per_page_oobsize(nand);
378 		if (!buf) {
379 			buf = spinand->oobbuf;
380 			column = nanddev_page_size(nand);
381 		}
382 	}
383 
384 	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
385 
386 	while (nbytes) {
387 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
388 		if (ret < 0)
389 			return ret;
390 
391 		if (!ret || ret > nbytes)
392 			return -EIO;
393 
394 		nbytes -= ret;
395 		column += ret;
396 		buf += ret;
397 	}
398 
399 	if (req->datalen)
400 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
401 		       req->datalen);
402 
403 	if (req->ooblen) {
404 		if (req->mode == MTD_OPS_AUTO_OOB)
405 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
406 						    spinand->oobbuf,
407 						    req->ooboffs,
408 						    req->ooblen);
409 		else
410 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
411 			       req->ooblen);
412 	}
413 
414 	return 0;
415 }
416 
417 static int spinand_write_to_cache_op(struct spinand_device *spinand,
418 				     const struct nand_page_io_req *req)
419 {
420 	struct nand_device *nand = spinand_to_nand(spinand);
421 	struct mtd_info *mtd = spinand_to_mtd(spinand);
422 	struct spi_mem_dirmap_desc *wdesc;
423 	unsigned int nbytes, column = 0;
424 	void *buf = spinand->databuf;
425 	ssize_t ret;
426 
427 	/*
428 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
429 	 * the cache content to 0xFF (depends on vendor implementation), so we
430 	 * must fill the page cache entirely even if we only want to program
431 	 * the data portion of the page, otherwise we might corrupt the BBM or
432 	 * user data previously programmed in OOB area.
433 	 *
434 	 * Only reset the data buffer manually, the OOB buffer is prepared by
435 	 * ECC engines ->prepare_io_req() callback.
436 	 */
437 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
438 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
439 
440 	if (req->datalen)
441 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
442 		       req->datalen);
443 
444 	if (req->ooblen) {
445 		if (req->mode == MTD_OPS_AUTO_OOB)
446 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
447 						    spinand->oobbuf,
448 						    req->ooboffs,
449 						    req->ooblen);
450 		else
451 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
452 			       req->ooblen);
453 	}
454 
455 	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
456 
457 	while (nbytes) {
458 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
459 		if (ret < 0)
460 			return ret;
461 
462 		if (!ret || ret > nbytes)
463 			return -EIO;
464 
465 		nbytes -= ret;
466 		column += ret;
467 		buf += ret;
468 	}
469 
470 	return 0;
471 }
472 
473 static int spinand_program_op(struct spinand_device *spinand,
474 			      const struct nand_page_io_req *req)
475 {
476 	struct nand_device *nand = spinand_to_nand(spinand);
477 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
478 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
479 
480 	return spi_mem_exec_op(spinand->spimem, &op);
481 }
482 
483 static int spinand_erase_op(struct spinand_device *spinand,
484 			    const struct nand_pos *pos)
485 {
486 	struct nand_device *nand = spinand_to_nand(spinand);
487 	unsigned int row = nanddev_pos_to_row(nand, pos);
488 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
489 
490 	return spi_mem_exec_op(spinand->spimem, &op);
491 }
492 
493 static int spinand_wait(struct spinand_device *spinand,
494 			unsigned long initial_delay_us,
495 			unsigned long poll_delay_us,
496 			u8 *s)
497 {
498 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
499 						      spinand->scratchbuf);
500 	u8 status;
501 	int ret;
502 
503 	ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
504 				  initial_delay_us,
505 				  poll_delay_us,
506 				  SPINAND_WAITRDY_TIMEOUT_MS);
507 	if (ret)
508 		return ret;
509 
510 	status = *spinand->scratchbuf;
511 	if (!(status & STATUS_BUSY))
512 		goto out;
513 
514 	/*
515 	 * Extra read, just in case the STATUS_READY bit has changed
516 	 * since our last check
517 	 */
518 	ret = spinand_read_status(spinand, &status);
519 	if (ret)
520 		return ret;
521 
522 out:
523 	if (s)
524 		*s = status;
525 
526 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
527 }
528 
529 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
530 			      u8 ndummy, u8 *buf)
531 {
532 	struct spi_mem_op op = SPINAND_READID_OP(
533 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
534 	int ret;
535 
536 	ret = spi_mem_exec_op(spinand->spimem, &op);
537 	if (!ret)
538 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
539 
540 	return ret;
541 }
542 
543 static int spinand_reset_op(struct spinand_device *spinand)
544 {
545 	struct spi_mem_op op = SPINAND_RESET_OP;
546 	int ret;
547 
548 	ret = spi_mem_exec_op(spinand->spimem, &op);
549 	if (ret)
550 		return ret;
551 
552 	return spinand_wait(spinand,
553 			    SPINAND_RESET_INITIAL_DELAY_US,
554 			    SPINAND_RESET_POLL_DELAY_US,
555 			    NULL);
556 }
557 
558 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
559 {
560 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
561 }
562 
563 static int spinand_read_page(struct spinand_device *spinand,
564 			     const struct nand_page_io_req *req)
565 {
566 	struct nand_device *nand = spinand_to_nand(spinand);
567 	u8 status;
568 	int ret;
569 
570 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
571 	if (ret)
572 		return ret;
573 
574 	ret = spinand_load_page_op(spinand, req);
575 	if (ret)
576 		return ret;
577 
578 	ret = spinand_wait(spinand,
579 			   SPINAND_READ_INITIAL_DELAY_US,
580 			   SPINAND_READ_POLL_DELAY_US,
581 			   &status);
582 	if (ret < 0)
583 		return ret;
584 
585 	spinand_ondie_ecc_save_status(nand, status);
586 
587 	ret = spinand_read_from_cache_op(spinand, req);
588 	if (ret)
589 		return ret;
590 
591 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
592 }
593 
594 static int spinand_write_page(struct spinand_device *spinand,
595 			      const struct nand_page_io_req *req)
596 {
597 	struct nand_device *nand = spinand_to_nand(spinand);
598 	u8 status;
599 	int ret;
600 
601 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
602 	if (ret)
603 		return ret;
604 
605 	ret = spinand_write_enable_op(spinand);
606 	if (ret)
607 		return ret;
608 
609 	ret = spinand_write_to_cache_op(spinand, req);
610 	if (ret)
611 		return ret;
612 
613 	ret = spinand_program_op(spinand, req);
614 	if (ret)
615 		return ret;
616 
617 	ret = spinand_wait(spinand,
618 			   SPINAND_WRITE_INITIAL_DELAY_US,
619 			   SPINAND_WRITE_POLL_DELAY_US,
620 			   &status);
621 	if (!ret && (status & STATUS_PROG_FAILED))
622 		return -EIO;
623 
624 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
625 }
626 
627 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
628 			    struct mtd_oob_ops *ops)
629 {
630 	struct spinand_device *spinand = mtd_to_spinand(mtd);
631 	struct nand_device *nand = mtd_to_nanddev(mtd);
632 	unsigned int max_bitflips = 0;
633 	struct nand_io_iter iter;
634 	bool disable_ecc = false;
635 	bool ecc_failed = false;
636 	int ret = 0;
637 
638 	if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
639 		disable_ecc = true;
640 
641 	mutex_lock(&spinand->lock);
642 
643 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
644 		if (disable_ecc)
645 			iter.req.mode = MTD_OPS_RAW;
646 
647 		ret = spinand_select_target(spinand, iter.req.pos.target);
648 		if (ret)
649 			break;
650 
651 		ret = spinand_read_page(spinand, &iter.req);
652 		if (ret < 0 && ret != -EBADMSG)
653 			break;
654 
655 		if (ret == -EBADMSG)
656 			ecc_failed = true;
657 		else
658 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
659 
660 		ret = 0;
661 		ops->retlen += iter.req.datalen;
662 		ops->oobretlen += iter.req.ooblen;
663 	}
664 
665 	mutex_unlock(&spinand->lock);
666 
667 	if (ecc_failed && !ret)
668 		ret = -EBADMSG;
669 
670 	return ret ? ret : max_bitflips;
671 }
672 
673 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
674 			     struct mtd_oob_ops *ops)
675 {
676 	struct spinand_device *spinand = mtd_to_spinand(mtd);
677 	struct nand_device *nand = mtd_to_nanddev(mtd);
678 	struct nand_io_iter iter;
679 	bool disable_ecc = false;
680 	int ret = 0;
681 
682 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
683 		disable_ecc = true;
684 
685 	mutex_lock(&spinand->lock);
686 
687 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
688 		if (disable_ecc)
689 			iter.req.mode = MTD_OPS_RAW;
690 
691 		ret = spinand_select_target(spinand, iter.req.pos.target);
692 		if (ret)
693 			break;
694 
695 		ret = spinand_write_page(spinand, &iter.req);
696 		if (ret)
697 			break;
698 
699 		ops->retlen += iter.req.datalen;
700 		ops->oobretlen += iter.req.ooblen;
701 	}
702 
703 	mutex_unlock(&spinand->lock);
704 
705 	return ret;
706 }
707 
708 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
709 {
710 	struct spinand_device *spinand = nand_to_spinand(nand);
711 	u8 marker[2] = { };
712 	struct nand_page_io_req req = {
713 		.pos = *pos,
714 		.ooblen = sizeof(marker),
715 		.ooboffs = 0,
716 		.oobbuf.in = marker,
717 		.mode = MTD_OPS_RAW,
718 	};
719 
720 	spinand_select_target(spinand, pos->target);
721 	spinand_read_page(spinand, &req);
722 	if (marker[0] != 0xff || marker[1] != 0xff)
723 		return true;
724 
725 	return false;
726 }
727 
728 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
729 {
730 	struct nand_device *nand = mtd_to_nanddev(mtd);
731 	struct spinand_device *spinand = nand_to_spinand(nand);
732 	struct nand_pos pos;
733 	int ret;
734 
735 	nanddev_offs_to_pos(nand, offs, &pos);
736 	mutex_lock(&spinand->lock);
737 	ret = nanddev_isbad(nand, &pos);
738 	mutex_unlock(&spinand->lock);
739 
740 	return ret;
741 }
742 
743 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
744 {
745 	struct spinand_device *spinand = nand_to_spinand(nand);
746 	u8 marker[2] = { };
747 	struct nand_page_io_req req = {
748 		.pos = *pos,
749 		.ooboffs = 0,
750 		.ooblen = sizeof(marker),
751 		.oobbuf.out = marker,
752 		.mode = MTD_OPS_RAW,
753 	};
754 	int ret;
755 
756 	ret = spinand_select_target(spinand, pos->target);
757 	if (ret)
758 		return ret;
759 
760 	ret = spinand_write_enable_op(spinand);
761 	if (ret)
762 		return ret;
763 
764 	return spinand_write_page(spinand, &req);
765 }
766 
767 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
768 {
769 	struct nand_device *nand = mtd_to_nanddev(mtd);
770 	struct spinand_device *spinand = nand_to_spinand(nand);
771 	struct nand_pos pos;
772 	int ret;
773 
774 	nanddev_offs_to_pos(nand, offs, &pos);
775 	mutex_lock(&spinand->lock);
776 	ret = nanddev_markbad(nand, &pos);
777 	mutex_unlock(&spinand->lock);
778 
779 	return ret;
780 }
781 
782 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
783 {
784 	struct spinand_device *spinand = nand_to_spinand(nand);
785 	u8 status;
786 	int ret;
787 
788 	ret = spinand_select_target(spinand, pos->target);
789 	if (ret)
790 		return ret;
791 
792 	ret = spinand_write_enable_op(spinand);
793 	if (ret)
794 		return ret;
795 
796 	ret = spinand_erase_op(spinand, pos);
797 	if (ret)
798 		return ret;
799 
800 	ret = spinand_wait(spinand,
801 			   SPINAND_ERASE_INITIAL_DELAY_US,
802 			   SPINAND_ERASE_POLL_DELAY_US,
803 			   &status);
804 
805 	if (!ret && (status & STATUS_ERASE_FAILED))
806 		ret = -EIO;
807 
808 	return ret;
809 }
810 
811 static int spinand_mtd_erase(struct mtd_info *mtd,
812 			     struct erase_info *einfo)
813 {
814 	struct spinand_device *spinand = mtd_to_spinand(mtd);
815 	int ret;
816 
817 	mutex_lock(&spinand->lock);
818 	ret = nanddev_mtd_erase(mtd, einfo);
819 	mutex_unlock(&spinand->lock);
820 
821 	return ret;
822 }
823 
824 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
825 {
826 	struct spinand_device *spinand = mtd_to_spinand(mtd);
827 	struct nand_device *nand = mtd_to_nanddev(mtd);
828 	struct nand_pos pos;
829 	int ret;
830 
831 	nanddev_offs_to_pos(nand, offs, &pos);
832 	mutex_lock(&spinand->lock);
833 	ret = nanddev_isreserved(nand, &pos);
834 	mutex_unlock(&spinand->lock);
835 
836 	return ret;
837 }
838 
839 static int spinand_create_dirmap(struct spinand_device *spinand,
840 				 unsigned int plane)
841 {
842 	struct nand_device *nand = spinand_to_nand(spinand);
843 	struct spi_mem_dirmap_info info = {
844 		.length = nanddev_page_size(nand) +
845 			  nanddev_per_page_oobsize(nand),
846 	};
847 	struct spi_mem_dirmap_desc *desc;
848 
849 	/* The plane number is passed in MSB just above the column address */
850 	info.offset = plane << fls(nand->memorg.pagesize);
851 
852 	info.op_tmpl = *spinand->op_templates.update_cache;
853 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
854 					  spinand->spimem, &info);
855 	if (IS_ERR(desc))
856 		return PTR_ERR(desc);
857 
858 	spinand->dirmaps[plane].wdesc = desc;
859 
860 	info.op_tmpl = *spinand->op_templates.read_cache;
861 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
862 					  spinand->spimem, &info);
863 	if (IS_ERR(desc))
864 		return PTR_ERR(desc);
865 
866 	spinand->dirmaps[plane].rdesc = desc;
867 
868 	return 0;
869 }
870 
871 static int spinand_create_dirmaps(struct spinand_device *spinand)
872 {
873 	struct nand_device *nand = spinand_to_nand(spinand);
874 	int i, ret;
875 
876 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
877 					sizeof(*spinand->dirmaps) *
878 					nand->memorg.planes_per_lun,
879 					GFP_KERNEL);
880 	if (!spinand->dirmaps)
881 		return -ENOMEM;
882 
883 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
884 		ret = spinand_create_dirmap(spinand, i);
885 		if (ret)
886 			return ret;
887 	}
888 
889 	return 0;
890 }
891 
892 static const struct nand_ops spinand_ops = {
893 	.erase = spinand_erase,
894 	.markbad = spinand_markbad,
895 	.isbad = spinand_isbad,
896 };
897 
898 static const struct spinand_manufacturer *spinand_manufacturers[] = {
899 	&gigadevice_spinand_manufacturer,
900 	&macronix_spinand_manufacturer,
901 	&micron_spinand_manufacturer,
902 	&paragon_spinand_manufacturer,
903 	&toshiba_spinand_manufacturer,
904 	&winbond_spinand_manufacturer,
905 };
906 
907 static int spinand_manufacturer_match(struct spinand_device *spinand,
908 				      enum spinand_readid_method rdid_method)
909 {
910 	u8 *id = spinand->id.data;
911 	unsigned int i;
912 	int ret;
913 
914 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
915 		const struct spinand_manufacturer *manufacturer =
916 			spinand_manufacturers[i];
917 
918 		if (id[0] != manufacturer->id)
919 			continue;
920 
921 		ret = spinand_match_and_init(spinand,
922 					     manufacturer->chips,
923 					     manufacturer->nchips,
924 					     rdid_method);
925 		if (ret < 0)
926 			continue;
927 
928 		spinand->manufacturer = manufacturer;
929 		return 0;
930 	}
931 	return -ENOTSUPP;
932 }
933 
934 static int spinand_id_detect(struct spinand_device *spinand)
935 {
936 	u8 *id = spinand->id.data;
937 	int ret;
938 
939 	ret = spinand_read_id_op(spinand, 0, 0, id);
940 	if (ret)
941 		return ret;
942 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
943 	if (!ret)
944 		return 0;
945 
946 	ret = spinand_read_id_op(spinand, 1, 0, id);
947 	if (ret)
948 		return ret;
949 	ret = spinand_manufacturer_match(spinand,
950 					 SPINAND_READID_METHOD_OPCODE_ADDR);
951 	if (!ret)
952 		return 0;
953 
954 	ret = spinand_read_id_op(spinand, 0, 1, id);
955 	if (ret)
956 		return ret;
957 	ret = spinand_manufacturer_match(spinand,
958 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
959 
960 	return ret;
961 }
962 
963 static int spinand_manufacturer_init(struct spinand_device *spinand)
964 {
965 	if (spinand->manufacturer->ops->init)
966 		return spinand->manufacturer->ops->init(spinand);
967 
968 	return 0;
969 }
970 
971 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
972 {
973 	/* Release manufacturer private data */
974 	if (spinand->manufacturer->ops->cleanup)
975 		return spinand->manufacturer->ops->cleanup(spinand);
976 }
977 
978 static const struct spi_mem_op *
979 spinand_select_op_variant(struct spinand_device *spinand,
980 			  const struct spinand_op_variants *variants)
981 {
982 	struct nand_device *nand = spinand_to_nand(spinand);
983 	unsigned int i;
984 
985 	for (i = 0; i < variants->nops; i++) {
986 		struct spi_mem_op op = variants->ops[i];
987 		unsigned int nbytes;
988 		int ret;
989 
990 		nbytes = nanddev_per_page_oobsize(nand) +
991 			 nanddev_page_size(nand);
992 
993 		while (nbytes) {
994 			op.data.nbytes = nbytes;
995 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
996 			if (ret)
997 				break;
998 
999 			if (!spi_mem_supports_op(spinand->spimem, &op))
1000 				break;
1001 
1002 			nbytes -= op.data.nbytes;
1003 		}
1004 
1005 		if (!nbytes)
1006 			return &variants->ops[i];
1007 	}
1008 
1009 	return NULL;
1010 }
1011 
1012 /**
1013  * spinand_match_and_init() - Try to find a match between a device ID and an
1014  *			      entry in a spinand_info table
1015  * @spinand: SPI NAND object
1016  * @table: SPI NAND device description table
1017  * @table_size: size of the device description table
1018  * @rdid_method: read id method to match
1019  *
1020  * Match between a device ID retrieved through the READ_ID command and an
1021  * entry in the SPI NAND description table. If a match is found, the spinand
1022  * object will be initialized with information provided by the matching
1023  * spinand_info entry.
1024  *
1025  * Return: 0 on success, a negative error code otherwise.
1026  */
1027 int spinand_match_and_init(struct spinand_device *spinand,
1028 			   const struct spinand_info *table,
1029 			   unsigned int table_size,
1030 			   enum spinand_readid_method rdid_method)
1031 {
1032 	u8 *id = spinand->id.data;
1033 	struct nand_device *nand = spinand_to_nand(spinand);
1034 	unsigned int i;
1035 
1036 	for (i = 0; i < table_size; i++) {
1037 		const struct spinand_info *info = &table[i];
1038 		const struct spi_mem_op *op;
1039 
1040 		if (rdid_method != info->devid.method)
1041 			continue;
1042 
1043 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1044 			continue;
1045 
1046 		nand->memorg = table[i].memorg;
1047 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1048 		spinand->eccinfo = table[i].eccinfo;
1049 		spinand->flags = table[i].flags;
1050 		spinand->id.len = 1 + table[i].devid.len;
1051 		spinand->select_target = table[i].select_target;
1052 
1053 		op = spinand_select_op_variant(spinand,
1054 					       info->op_variants.read_cache);
1055 		if (!op)
1056 			return -ENOTSUPP;
1057 
1058 		spinand->op_templates.read_cache = op;
1059 
1060 		op = spinand_select_op_variant(spinand,
1061 					       info->op_variants.write_cache);
1062 		if (!op)
1063 			return -ENOTSUPP;
1064 
1065 		spinand->op_templates.write_cache = op;
1066 
1067 		op = spinand_select_op_variant(spinand,
1068 					       info->op_variants.update_cache);
1069 		spinand->op_templates.update_cache = op;
1070 
1071 		return 0;
1072 	}
1073 
1074 	return -ENOTSUPP;
1075 }
1076 
1077 static int spinand_detect(struct spinand_device *spinand)
1078 {
1079 	struct device *dev = &spinand->spimem->spi->dev;
1080 	struct nand_device *nand = spinand_to_nand(spinand);
1081 	int ret;
1082 
1083 	ret = spinand_reset_op(spinand);
1084 	if (ret)
1085 		return ret;
1086 
1087 	ret = spinand_id_detect(spinand);
1088 	if (ret) {
1089 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1090 			spinand->id.data);
1091 		return ret;
1092 	}
1093 
1094 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1095 		dev_err(dev,
1096 			"SPI NANDs with more than one die must implement ->select_target()\n");
1097 		return -EINVAL;
1098 	}
1099 
1100 	dev_info(&spinand->spimem->spi->dev,
1101 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1102 	dev_info(&spinand->spimem->spi->dev,
1103 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1104 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1105 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1106 
1107 	return 0;
1108 }
1109 
1110 static int spinand_init_flash(struct spinand_device *spinand)
1111 {
1112 	struct device *dev = &spinand->spimem->spi->dev;
1113 	struct nand_device *nand = spinand_to_nand(spinand);
1114 	int ret, i;
1115 
1116 	ret = spinand_read_cfg(spinand);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = spinand_init_quad_enable(spinand);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1125 	if (ret)
1126 		return ret;
1127 
1128 	ret = spinand_manufacturer_init(spinand);
1129 	if (ret) {
1130 		dev_err(dev,
1131 		"Failed to initialize the SPI NAND chip (err = %d)\n",
1132 		ret);
1133 		return ret;
1134 	}
1135 
1136 	/* After power up, all blocks are locked, so unlock them here. */
1137 	for (i = 0; i < nand->memorg.ntargets; i++) {
1138 		ret = spinand_select_target(spinand, i);
1139 		if (ret)
1140 			break;
1141 
1142 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1143 		if (ret)
1144 			break;
1145 	}
1146 
1147 	if (ret)
1148 		spinand_manufacturer_cleanup(spinand);
1149 
1150 	return ret;
1151 }
1152 
1153 static void spinand_mtd_resume(struct mtd_info *mtd)
1154 {
1155 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1156 	int ret;
1157 
1158 	ret = spinand_reset_op(spinand);
1159 	if (ret)
1160 		return;
1161 
1162 	ret = spinand_init_flash(spinand);
1163 	if (ret)
1164 		return;
1165 
1166 	spinand_ecc_enable(spinand, false);
1167 }
1168 
1169 static int spinand_init(struct spinand_device *spinand)
1170 {
1171 	struct device *dev = &spinand->spimem->spi->dev;
1172 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1173 	struct nand_device *nand = mtd_to_nanddev(mtd);
1174 	int ret;
1175 
1176 	/*
1177 	 * We need a scratch buffer because the spi_mem interface requires that
1178 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1179 	 */
1180 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1181 	if (!spinand->scratchbuf)
1182 		return -ENOMEM;
1183 
1184 	ret = spinand_detect(spinand);
1185 	if (ret)
1186 		goto err_free_bufs;
1187 
1188 	/*
1189 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1190 	 * may use this buffer for DMA access.
1191 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1192 	 */
1193 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1194 			       nanddev_per_page_oobsize(nand),
1195 			       GFP_KERNEL);
1196 	if (!spinand->databuf) {
1197 		ret = -ENOMEM;
1198 		goto err_free_bufs;
1199 	}
1200 
1201 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1202 
1203 	ret = spinand_init_cfg_cache(spinand);
1204 	if (ret)
1205 		goto err_free_bufs;
1206 
1207 	ret = spinand_init_flash(spinand);
1208 	if (ret)
1209 		goto err_free_bufs;
1210 
1211 	ret = spinand_create_dirmaps(spinand);
1212 	if (ret) {
1213 		dev_err(dev,
1214 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1215 			ret);
1216 		goto err_manuf_cleanup;
1217 	}
1218 
1219 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1220 	if (ret)
1221 		goto err_manuf_cleanup;
1222 
1223 	/* SPI-NAND default ECC engine is on-die */
1224 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1225 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1226 
1227 	spinand_ecc_enable(spinand, false);
1228 	ret = nanddev_ecc_engine_init(nand);
1229 	if (ret)
1230 		goto err_cleanup_nanddev;
1231 
1232 	mtd->_read_oob = spinand_mtd_read;
1233 	mtd->_write_oob = spinand_mtd_write;
1234 	mtd->_block_isbad = spinand_mtd_block_isbad;
1235 	mtd->_block_markbad = spinand_mtd_block_markbad;
1236 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1237 	mtd->_erase = spinand_mtd_erase;
1238 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1239 	mtd->_resume = spinand_mtd_resume;
1240 
1241 	if (nand->ecc.engine) {
1242 		ret = mtd_ooblayout_count_freebytes(mtd);
1243 		if (ret < 0)
1244 			goto err_cleanup_ecc_engine;
1245 	}
1246 
1247 	mtd->oobavail = ret;
1248 
1249 	/* Propagate ECC information to mtd_info */
1250 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1251 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1252 
1253 	return 0;
1254 
1255 err_cleanup_ecc_engine:
1256 	nanddev_ecc_engine_cleanup(nand);
1257 
1258 err_cleanup_nanddev:
1259 	nanddev_cleanup(nand);
1260 
1261 err_manuf_cleanup:
1262 	spinand_manufacturer_cleanup(spinand);
1263 
1264 err_free_bufs:
1265 	kfree(spinand->databuf);
1266 	kfree(spinand->scratchbuf);
1267 	return ret;
1268 }
1269 
1270 static void spinand_cleanup(struct spinand_device *spinand)
1271 {
1272 	struct nand_device *nand = spinand_to_nand(spinand);
1273 
1274 	nanddev_cleanup(nand);
1275 	spinand_manufacturer_cleanup(spinand);
1276 	kfree(spinand->databuf);
1277 	kfree(spinand->scratchbuf);
1278 }
1279 
1280 static int spinand_probe(struct spi_mem *mem)
1281 {
1282 	struct spinand_device *spinand;
1283 	struct mtd_info *mtd;
1284 	int ret;
1285 
1286 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1287 			       GFP_KERNEL);
1288 	if (!spinand)
1289 		return -ENOMEM;
1290 
1291 	spinand->spimem = mem;
1292 	spi_mem_set_drvdata(mem, spinand);
1293 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1294 	mutex_init(&spinand->lock);
1295 	mtd = spinand_to_mtd(spinand);
1296 	mtd->dev.parent = &mem->spi->dev;
1297 
1298 	ret = spinand_init(spinand);
1299 	if (ret)
1300 		return ret;
1301 
1302 	ret = mtd_device_register(mtd, NULL, 0);
1303 	if (ret)
1304 		goto err_spinand_cleanup;
1305 
1306 	return 0;
1307 
1308 err_spinand_cleanup:
1309 	spinand_cleanup(spinand);
1310 
1311 	return ret;
1312 }
1313 
1314 static int spinand_remove(struct spi_mem *mem)
1315 {
1316 	struct spinand_device *spinand;
1317 	struct mtd_info *mtd;
1318 	int ret;
1319 
1320 	spinand = spi_mem_get_drvdata(mem);
1321 	mtd = spinand_to_mtd(spinand);
1322 
1323 	ret = mtd_device_unregister(mtd);
1324 	if (ret)
1325 		return ret;
1326 
1327 	spinand_cleanup(spinand);
1328 
1329 	return 0;
1330 }
1331 
1332 static const struct spi_device_id spinand_ids[] = {
1333 	{ .name = "spi-nand" },
1334 	{ /* sentinel */ },
1335 };
1336 MODULE_DEVICE_TABLE(spi, spinand_ids);
1337 
1338 #ifdef CONFIG_OF
1339 static const struct of_device_id spinand_of_ids[] = {
1340 	{ .compatible = "spi-nand" },
1341 	{ /* sentinel */ },
1342 };
1343 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1344 #endif
1345 
1346 static struct spi_mem_driver spinand_drv = {
1347 	.spidrv = {
1348 		.id_table = spinand_ids,
1349 		.driver = {
1350 			.name = "spi-nand",
1351 			.of_match_table = of_match_ptr(spinand_of_ids),
1352 		},
1353 	},
1354 	.probe = spinand_probe,
1355 	.remove = spinand_remove,
1356 };
1357 module_spi_mem_driver(spinand_drv);
1358 
1359 MODULE_DESCRIPTION("SPI NAND framework");
1360 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1361 MODULE_LICENSE("GPL v2");
1362