1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 * Boris Brezillon <boris.brezillon@bootlin.com> 8 */ 9 10 #define pr_fmt(fmt) "spi-nand: " fmt 11 12 #include <linux/device.h> 13 #include <linux/jiffies.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/mtd/spinand.h> 17 #include <linux/of.h> 18 #include <linux/slab.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand, 23 const struct nand_page_io_req *req, 24 u16 *column) 25 { 26 struct nand_device *nand = spinand_to_nand(spinand); 27 unsigned int shift; 28 29 if (nand->memorg.planes_per_lun < 2) 30 return; 31 32 /* The plane number is passed in MSB just above the column address */ 33 shift = fls(nand->memorg.pagesize); 34 *column |= req->pos.plane << shift; 35 } 36 37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val) 38 { 39 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg, 40 spinand->scratchbuf); 41 int ret; 42 43 ret = spi_mem_exec_op(spinand->spimem, &op); 44 if (ret) 45 return ret; 46 47 *val = *spinand->scratchbuf; 48 return 0; 49 } 50 51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val) 52 { 53 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg, 54 spinand->scratchbuf); 55 56 *spinand->scratchbuf = val; 57 return spi_mem_exec_op(spinand->spimem, &op); 58 } 59 60 static int spinand_read_status(struct spinand_device *spinand, u8 *status) 61 { 62 return spinand_read_reg_op(spinand, REG_STATUS, status); 63 } 64 65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg) 66 { 67 struct nand_device *nand = spinand_to_nand(spinand); 68 69 if (WARN_ON(spinand->cur_target < 0 || 70 spinand->cur_target >= nand->memorg.ntargets)) 71 return -EINVAL; 72 73 *cfg = spinand->cfg_cache[spinand->cur_target]; 74 return 0; 75 } 76 77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg) 78 { 79 struct nand_device *nand = spinand_to_nand(spinand); 80 int ret; 81 82 if (WARN_ON(spinand->cur_target < 0 || 83 spinand->cur_target >= nand->memorg.ntargets)) 84 return -EINVAL; 85 86 if (spinand->cfg_cache[spinand->cur_target] == cfg) 87 return 0; 88 89 ret = spinand_write_reg_op(spinand, REG_CFG, cfg); 90 if (ret) 91 return ret; 92 93 spinand->cfg_cache[spinand->cur_target] = cfg; 94 return 0; 95 } 96 97 /** 98 * spinand_upd_cfg() - Update the configuration register 99 * @spinand: the spinand device 100 * @mask: the mask encoding the bits to update in the config reg 101 * @val: the new value to apply 102 * 103 * Update the configuration register. 104 * 105 * Return: 0 on success, a negative error code otherwise. 106 */ 107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val) 108 { 109 int ret; 110 u8 cfg; 111 112 ret = spinand_get_cfg(spinand, &cfg); 113 if (ret) 114 return ret; 115 116 cfg &= ~mask; 117 cfg |= val; 118 119 return spinand_set_cfg(spinand, cfg); 120 } 121 122 /** 123 * spinand_select_target() - Select a specific NAND target/die 124 * @spinand: the spinand device 125 * @target: the target/die to select 126 * 127 * Select a new target/die. If chip only has one die, this function is a NOOP. 128 * 129 * Return: 0 on success, a negative error code otherwise. 130 */ 131 int spinand_select_target(struct spinand_device *spinand, unsigned int target) 132 { 133 struct nand_device *nand = spinand_to_nand(spinand); 134 int ret; 135 136 if (WARN_ON(target >= nand->memorg.ntargets)) 137 return -EINVAL; 138 139 if (spinand->cur_target == target) 140 return 0; 141 142 if (nand->memorg.ntargets == 1) { 143 spinand->cur_target = target; 144 return 0; 145 } 146 147 ret = spinand->select_target(spinand, target); 148 if (ret) 149 return ret; 150 151 spinand->cur_target = target; 152 return 0; 153 } 154 155 static int spinand_init_cfg_cache(struct spinand_device *spinand) 156 { 157 struct nand_device *nand = spinand_to_nand(spinand); 158 struct device *dev = &spinand->spimem->spi->dev; 159 unsigned int target; 160 int ret; 161 162 spinand->cfg_cache = devm_kcalloc(dev, 163 nand->memorg.ntargets, 164 sizeof(*spinand->cfg_cache), 165 GFP_KERNEL); 166 if (!spinand->cfg_cache) 167 return -ENOMEM; 168 169 for (target = 0; target < nand->memorg.ntargets; target++) { 170 ret = spinand_select_target(spinand, target); 171 if (ret) 172 return ret; 173 174 /* 175 * We use spinand_read_reg_op() instead of spinand_get_cfg() 176 * here to bypass the config cache. 177 */ 178 ret = spinand_read_reg_op(spinand, REG_CFG, 179 &spinand->cfg_cache[target]); 180 if (ret) 181 return ret; 182 } 183 184 return 0; 185 } 186 187 static int spinand_init_quad_enable(struct spinand_device *spinand) 188 { 189 bool enable = false; 190 191 if (!(spinand->flags & SPINAND_HAS_QE_BIT)) 192 return 0; 193 194 if (spinand->op_templates.read_cache->data.buswidth == 4 || 195 spinand->op_templates.write_cache->data.buswidth == 4 || 196 spinand->op_templates.update_cache->data.buswidth == 4) 197 enable = true; 198 199 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE, 200 enable ? CFG_QUAD_ENABLE : 0); 201 } 202 203 static int spinand_ecc_enable(struct spinand_device *spinand, 204 bool enable) 205 { 206 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE, 207 enable ? CFG_ECC_ENABLE : 0); 208 } 209 210 static int spinand_write_enable_op(struct spinand_device *spinand) 211 { 212 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true); 213 214 return spi_mem_exec_op(spinand->spimem, &op); 215 } 216 217 static int spinand_load_page_op(struct spinand_device *spinand, 218 const struct nand_page_io_req *req) 219 { 220 struct nand_device *nand = spinand_to_nand(spinand); 221 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 222 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row); 223 224 return spi_mem_exec_op(spinand->spimem, &op); 225 } 226 227 static int spinand_read_from_cache_op(struct spinand_device *spinand, 228 const struct nand_page_io_req *req) 229 { 230 struct spi_mem_op op = *spinand->op_templates.read_cache; 231 struct nand_device *nand = spinand_to_nand(spinand); 232 struct mtd_info *mtd = nanddev_to_mtd(nand); 233 struct nand_page_io_req adjreq = *req; 234 unsigned int nbytes = 0; 235 void *buf = NULL; 236 u16 column = 0; 237 int ret; 238 239 if (req->datalen) { 240 adjreq.datalen = nanddev_page_size(nand); 241 adjreq.dataoffs = 0; 242 adjreq.databuf.in = spinand->databuf; 243 buf = spinand->databuf; 244 nbytes = adjreq.datalen; 245 } 246 247 if (req->ooblen) { 248 adjreq.ooblen = nanddev_per_page_oobsize(nand); 249 adjreq.ooboffs = 0; 250 adjreq.oobbuf.in = spinand->oobbuf; 251 nbytes += nanddev_per_page_oobsize(nand); 252 if (!buf) { 253 buf = spinand->oobbuf; 254 column = nanddev_page_size(nand); 255 } 256 } 257 258 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 259 op.addr.val = column; 260 261 /* 262 * Some controllers are limited in term of max RX data size. In this 263 * case, just repeat the READ_CACHE operation after updating the 264 * column. 265 */ 266 while (nbytes) { 267 op.data.buf.in = buf; 268 op.data.nbytes = nbytes; 269 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 270 if (ret) 271 return ret; 272 273 ret = spi_mem_exec_op(spinand->spimem, &op); 274 if (ret) 275 return ret; 276 277 buf += op.data.nbytes; 278 nbytes -= op.data.nbytes; 279 op.addr.val += op.data.nbytes; 280 } 281 282 if (req->datalen) 283 memcpy(req->databuf.in, spinand->databuf + req->dataoffs, 284 req->datalen); 285 286 if (req->ooblen) { 287 if (req->mode == MTD_OPS_AUTO_OOB) 288 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in, 289 spinand->oobbuf, 290 req->ooboffs, 291 req->ooblen); 292 else 293 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs, 294 req->ooblen); 295 } 296 297 return 0; 298 } 299 300 static int spinand_write_to_cache_op(struct spinand_device *spinand, 301 const struct nand_page_io_req *req) 302 { 303 struct spi_mem_op op = *spinand->op_templates.write_cache; 304 struct nand_device *nand = spinand_to_nand(spinand); 305 struct mtd_info *mtd = nanddev_to_mtd(nand); 306 struct nand_page_io_req adjreq = *req; 307 unsigned int nbytes = 0; 308 void *buf = NULL; 309 u16 column = 0; 310 int ret; 311 312 memset(spinand->databuf, 0xff, 313 nanddev_page_size(nand) + 314 nanddev_per_page_oobsize(nand)); 315 316 if (req->datalen) { 317 memcpy(spinand->databuf + req->dataoffs, req->databuf.out, 318 req->datalen); 319 adjreq.dataoffs = 0; 320 adjreq.datalen = nanddev_page_size(nand); 321 adjreq.databuf.out = spinand->databuf; 322 nbytes = adjreq.datalen; 323 buf = spinand->databuf; 324 } 325 326 if (req->ooblen) { 327 if (req->mode == MTD_OPS_AUTO_OOB) 328 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out, 329 spinand->oobbuf, 330 req->ooboffs, 331 req->ooblen); 332 else 333 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out, 334 req->ooblen); 335 336 adjreq.ooblen = nanddev_per_page_oobsize(nand); 337 adjreq.ooboffs = 0; 338 nbytes += nanddev_per_page_oobsize(nand); 339 if (!buf) { 340 buf = spinand->oobbuf; 341 column = nanddev_page_size(nand); 342 } 343 } 344 345 spinand_cache_op_adjust_colum(spinand, &adjreq, &column); 346 347 op = *spinand->op_templates.write_cache; 348 op.addr.val = column; 349 350 /* 351 * Some controllers are limited in term of max TX data size. In this 352 * case, split the operation into one LOAD CACHE and one or more 353 * LOAD RANDOM CACHE. 354 */ 355 while (nbytes) { 356 op.data.buf.out = buf; 357 op.data.nbytes = nbytes; 358 359 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 360 if (ret) 361 return ret; 362 363 ret = spi_mem_exec_op(spinand->spimem, &op); 364 if (ret) 365 return ret; 366 367 buf += op.data.nbytes; 368 nbytes -= op.data.nbytes; 369 op.addr.val += op.data.nbytes; 370 371 /* 372 * We need to use the RANDOM LOAD CACHE operation if there's 373 * more than one iteration, because the LOAD operation resets 374 * the cache to 0xff. 375 */ 376 if (nbytes) { 377 column = op.addr.val; 378 op = *spinand->op_templates.update_cache; 379 op.addr.val = column; 380 } 381 } 382 383 return 0; 384 } 385 386 static int spinand_program_op(struct spinand_device *spinand, 387 const struct nand_page_io_req *req) 388 { 389 struct nand_device *nand = spinand_to_nand(spinand); 390 unsigned int row = nanddev_pos_to_row(nand, &req->pos); 391 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row); 392 393 return spi_mem_exec_op(spinand->spimem, &op); 394 } 395 396 static int spinand_erase_op(struct spinand_device *spinand, 397 const struct nand_pos *pos) 398 { 399 struct nand_device *nand = spinand_to_nand(spinand); 400 unsigned int row = nanddev_pos_to_row(nand, pos); 401 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row); 402 403 return spi_mem_exec_op(spinand->spimem, &op); 404 } 405 406 static int spinand_wait(struct spinand_device *spinand, u8 *s) 407 { 408 unsigned long timeo = jiffies + msecs_to_jiffies(400); 409 u8 status; 410 int ret; 411 412 do { 413 ret = spinand_read_status(spinand, &status); 414 if (ret) 415 return ret; 416 417 if (!(status & STATUS_BUSY)) 418 goto out; 419 } while (time_before(jiffies, timeo)); 420 421 /* 422 * Extra read, just in case the STATUS_READY bit has changed 423 * since our last check 424 */ 425 ret = spinand_read_status(spinand, &status); 426 if (ret) 427 return ret; 428 429 out: 430 if (s) 431 *s = status; 432 433 return status & STATUS_BUSY ? -ETIMEDOUT : 0; 434 } 435 436 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf) 437 { 438 struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf, 439 SPINAND_MAX_ID_LEN); 440 int ret; 441 442 ret = spi_mem_exec_op(spinand->spimem, &op); 443 if (!ret) 444 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN); 445 446 return ret; 447 } 448 449 static int spinand_reset_op(struct spinand_device *spinand) 450 { 451 struct spi_mem_op op = SPINAND_RESET_OP; 452 int ret; 453 454 ret = spi_mem_exec_op(spinand->spimem, &op); 455 if (ret) 456 return ret; 457 458 return spinand_wait(spinand, NULL); 459 } 460 461 static int spinand_lock_block(struct spinand_device *spinand, u8 lock) 462 { 463 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock); 464 } 465 466 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status) 467 { 468 struct nand_device *nand = spinand_to_nand(spinand); 469 470 if (spinand->eccinfo.get_status) 471 return spinand->eccinfo.get_status(spinand, status); 472 473 switch (status & STATUS_ECC_MASK) { 474 case STATUS_ECC_NO_BITFLIPS: 475 return 0; 476 477 case STATUS_ECC_HAS_BITFLIPS: 478 /* 479 * We have no way to know exactly how many bitflips have been 480 * fixed, so let's return the maximum possible value so that 481 * wear-leveling layers move the data immediately. 482 */ 483 return nand->eccreq.strength; 484 485 case STATUS_ECC_UNCOR_ERROR: 486 return -EBADMSG; 487 488 default: 489 break; 490 } 491 492 return -EINVAL; 493 } 494 495 static int spinand_read_page(struct spinand_device *spinand, 496 const struct nand_page_io_req *req, 497 bool ecc_enabled) 498 { 499 u8 status; 500 int ret; 501 502 ret = spinand_load_page_op(spinand, req); 503 if (ret) 504 return ret; 505 506 ret = spinand_wait(spinand, &status); 507 if (ret < 0) 508 return ret; 509 510 ret = spinand_read_from_cache_op(spinand, req); 511 if (ret) 512 return ret; 513 514 if (!ecc_enabled) 515 return 0; 516 517 return spinand_check_ecc_status(spinand, status); 518 } 519 520 static int spinand_write_page(struct spinand_device *spinand, 521 const struct nand_page_io_req *req) 522 { 523 u8 status; 524 int ret; 525 526 ret = spinand_write_enable_op(spinand); 527 if (ret) 528 return ret; 529 530 ret = spinand_write_to_cache_op(spinand, req); 531 if (ret) 532 return ret; 533 534 ret = spinand_program_op(spinand, req); 535 if (ret) 536 return ret; 537 538 ret = spinand_wait(spinand, &status); 539 if (!ret && (status & STATUS_PROG_FAILED)) 540 ret = -EIO; 541 542 return ret; 543 } 544 545 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from, 546 struct mtd_oob_ops *ops) 547 { 548 struct spinand_device *spinand = mtd_to_spinand(mtd); 549 struct nand_device *nand = mtd_to_nanddev(mtd); 550 unsigned int max_bitflips = 0; 551 struct nand_io_iter iter; 552 bool enable_ecc = false; 553 bool ecc_failed = false; 554 int ret = 0; 555 556 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout) 557 enable_ecc = true; 558 559 mutex_lock(&spinand->lock); 560 561 nanddev_io_for_each_page(nand, from, ops, &iter) { 562 ret = spinand_select_target(spinand, iter.req.pos.target); 563 if (ret) 564 break; 565 566 ret = spinand_ecc_enable(spinand, enable_ecc); 567 if (ret) 568 break; 569 570 ret = spinand_read_page(spinand, &iter.req, enable_ecc); 571 if (ret < 0 && ret != -EBADMSG) 572 break; 573 574 if (ret == -EBADMSG) { 575 ecc_failed = true; 576 mtd->ecc_stats.failed++; 577 ret = 0; 578 } else { 579 mtd->ecc_stats.corrected += ret; 580 max_bitflips = max_t(unsigned int, max_bitflips, ret); 581 } 582 583 ops->retlen += iter.req.datalen; 584 ops->oobretlen += iter.req.ooblen; 585 } 586 587 mutex_unlock(&spinand->lock); 588 589 if (ecc_failed && !ret) 590 ret = -EBADMSG; 591 592 return ret ? ret : max_bitflips; 593 } 594 595 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to, 596 struct mtd_oob_ops *ops) 597 { 598 struct spinand_device *spinand = mtd_to_spinand(mtd); 599 struct nand_device *nand = mtd_to_nanddev(mtd); 600 struct nand_io_iter iter; 601 bool enable_ecc = false; 602 int ret = 0; 603 604 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout) 605 enable_ecc = true; 606 607 mutex_lock(&spinand->lock); 608 609 nanddev_io_for_each_page(nand, to, ops, &iter) { 610 ret = spinand_select_target(spinand, iter.req.pos.target); 611 if (ret) 612 break; 613 614 ret = spinand_ecc_enable(spinand, enable_ecc); 615 if (ret) 616 break; 617 618 ret = spinand_write_page(spinand, &iter.req); 619 if (ret) 620 break; 621 622 ops->retlen += iter.req.datalen; 623 ops->oobretlen += iter.req.ooblen; 624 } 625 626 mutex_unlock(&spinand->lock); 627 628 return ret; 629 } 630 631 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos) 632 { 633 struct spinand_device *spinand = nand_to_spinand(nand); 634 struct nand_page_io_req req = { 635 .pos = *pos, 636 .ooblen = 2, 637 .ooboffs = 0, 638 .oobbuf.in = spinand->oobbuf, 639 .mode = MTD_OPS_RAW, 640 }; 641 642 memset(spinand->oobbuf, 0, 2); 643 spinand_select_target(spinand, pos->target); 644 spinand_read_page(spinand, &req, false); 645 if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff) 646 return true; 647 648 return false; 649 } 650 651 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs) 652 { 653 struct nand_device *nand = mtd_to_nanddev(mtd); 654 struct spinand_device *spinand = nand_to_spinand(nand); 655 struct nand_pos pos; 656 int ret; 657 658 nanddev_offs_to_pos(nand, offs, &pos); 659 mutex_lock(&spinand->lock); 660 ret = nanddev_isbad(nand, &pos); 661 mutex_unlock(&spinand->lock); 662 663 return ret; 664 } 665 666 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos) 667 { 668 struct spinand_device *spinand = nand_to_spinand(nand); 669 struct nand_page_io_req req = { 670 .pos = *pos, 671 .ooboffs = 0, 672 .ooblen = 2, 673 .oobbuf.out = spinand->oobbuf, 674 }; 675 int ret; 676 677 /* Erase block before marking it bad. */ 678 ret = spinand_select_target(spinand, pos->target); 679 if (ret) 680 return ret; 681 682 ret = spinand_write_enable_op(spinand); 683 if (ret) 684 return ret; 685 686 spinand_erase_op(spinand, pos); 687 688 memset(spinand->oobbuf, 0, 2); 689 return spinand_write_page(spinand, &req); 690 } 691 692 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs) 693 { 694 struct nand_device *nand = mtd_to_nanddev(mtd); 695 struct spinand_device *spinand = nand_to_spinand(nand); 696 struct nand_pos pos; 697 int ret; 698 699 nanddev_offs_to_pos(nand, offs, &pos); 700 mutex_lock(&spinand->lock); 701 ret = nanddev_markbad(nand, &pos); 702 mutex_unlock(&spinand->lock); 703 704 return ret; 705 } 706 707 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos) 708 { 709 struct spinand_device *spinand = nand_to_spinand(nand); 710 u8 status; 711 int ret; 712 713 ret = spinand_select_target(spinand, pos->target); 714 if (ret) 715 return ret; 716 717 ret = spinand_write_enable_op(spinand); 718 if (ret) 719 return ret; 720 721 ret = spinand_erase_op(spinand, pos); 722 if (ret) 723 return ret; 724 725 ret = spinand_wait(spinand, &status); 726 if (!ret && (status & STATUS_ERASE_FAILED)) 727 ret = -EIO; 728 729 return ret; 730 } 731 732 static int spinand_mtd_erase(struct mtd_info *mtd, 733 struct erase_info *einfo) 734 { 735 struct spinand_device *spinand = mtd_to_spinand(mtd); 736 int ret; 737 738 mutex_lock(&spinand->lock); 739 ret = nanddev_mtd_erase(mtd, einfo); 740 mutex_unlock(&spinand->lock); 741 742 return ret; 743 } 744 745 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs) 746 { 747 struct spinand_device *spinand = mtd_to_spinand(mtd); 748 struct nand_device *nand = mtd_to_nanddev(mtd); 749 struct nand_pos pos; 750 int ret; 751 752 nanddev_offs_to_pos(nand, offs, &pos); 753 mutex_lock(&spinand->lock); 754 ret = nanddev_isreserved(nand, &pos); 755 mutex_unlock(&spinand->lock); 756 757 return ret; 758 } 759 760 static const struct nand_ops spinand_ops = { 761 .erase = spinand_erase, 762 .markbad = spinand_markbad, 763 .isbad = spinand_isbad, 764 }; 765 766 static const struct spinand_manufacturer *spinand_manufacturers[] = { 767 &gigadevice_spinand_manufacturer, 768 ¯onix_spinand_manufacturer, 769 µn_spinand_manufacturer, 770 &toshiba_spinand_manufacturer, 771 &winbond_spinand_manufacturer, 772 }; 773 774 static int spinand_manufacturer_detect(struct spinand_device *spinand) 775 { 776 unsigned int i; 777 int ret; 778 779 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) { 780 ret = spinand_manufacturers[i]->ops->detect(spinand); 781 if (ret > 0) { 782 spinand->manufacturer = spinand_manufacturers[i]; 783 return 0; 784 } else if (ret < 0) { 785 return ret; 786 } 787 } 788 789 return -ENOTSUPP; 790 } 791 792 static int spinand_manufacturer_init(struct spinand_device *spinand) 793 { 794 if (spinand->manufacturer->ops->init) 795 return spinand->manufacturer->ops->init(spinand); 796 797 return 0; 798 } 799 800 static void spinand_manufacturer_cleanup(struct spinand_device *spinand) 801 { 802 /* Release manufacturer private data */ 803 if (spinand->manufacturer->ops->cleanup) 804 return spinand->manufacturer->ops->cleanup(spinand); 805 } 806 807 static const struct spi_mem_op * 808 spinand_select_op_variant(struct spinand_device *spinand, 809 const struct spinand_op_variants *variants) 810 { 811 struct nand_device *nand = spinand_to_nand(spinand); 812 unsigned int i; 813 814 for (i = 0; i < variants->nops; i++) { 815 struct spi_mem_op op = variants->ops[i]; 816 unsigned int nbytes; 817 int ret; 818 819 nbytes = nanddev_per_page_oobsize(nand) + 820 nanddev_page_size(nand); 821 822 while (nbytes) { 823 op.data.nbytes = nbytes; 824 ret = spi_mem_adjust_op_size(spinand->spimem, &op); 825 if (ret) 826 break; 827 828 if (!spi_mem_supports_op(spinand->spimem, &op)) 829 break; 830 831 nbytes -= op.data.nbytes; 832 } 833 834 if (!nbytes) 835 return &variants->ops[i]; 836 } 837 838 return NULL; 839 } 840 841 /** 842 * spinand_match_and_init() - Try to find a match between a device ID and an 843 * entry in a spinand_info table 844 * @spinand: SPI NAND object 845 * @table: SPI NAND device description table 846 * @table_size: size of the device description table 847 * 848 * Should be used by SPI NAND manufacturer drivers when they want to find a 849 * match between a device ID retrieved through the READ_ID command and an 850 * entry in the SPI NAND description table. If a match is found, the spinand 851 * object will be initialized with information provided by the matching 852 * spinand_info entry. 853 * 854 * Return: 0 on success, a negative error code otherwise. 855 */ 856 int spinand_match_and_init(struct spinand_device *spinand, 857 const struct spinand_info *table, 858 unsigned int table_size, u8 devid) 859 { 860 struct nand_device *nand = spinand_to_nand(spinand); 861 unsigned int i; 862 863 for (i = 0; i < table_size; i++) { 864 const struct spinand_info *info = &table[i]; 865 const struct spi_mem_op *op; 866 867 if (devid != info->devid) 868 continue; 869 870 nand->memorg = table[i].memorg; 871 nand->eccreq = table[i].eccreq; 872 spinand->eccinfo = table[i].eccinfo; 873 spinand->flags = table[i].flags; 874 spinand->select_target = table[i].select_target; 875 876 op = spinand_select_op_variant(spinand, 877 info->op_variants.read_cache); 878 if (!op) 879 return -ENOTSUPP; 880 881 spinand->op_templates.read_cache = op; 882 883 op = spinand_select_op_variant(spinand, 884 info->op_variants.write_cache); 885 if (!op) 886 return -ENOTSUPP; 887 888 spinand->op_templates.write_cache = op; 889 890 op = spinand_select_op_variant(spinand, 891 info->op_variants.update_cache); 892 spinand->op_templates.update_cache = op; 893 894 return 0; 895 } 896 897 return -ENOTSUPP; 898 } 899 900 static int spinand_detect(struct spinand_device *spinand) 901 { 902 struct device *dev = &spinand->spimem->spi->dev; 903 struct nand_device *nand = spinand_to_nand(spinand); 904 int ret; 905 906 ret = spinand_reset_op(spinand); 907 if (ret) 908 return ret; 909 910 ret = spinand_read_id_op(spinand, spinand->id.data); 911 if (ret) 912 return ret; 913 914 spinand->id.len = SPINAND_MAX_ID_LEN; 915 916 ret = spinand_manufacturer_detect(spinand); 917 if (ret) { 918 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN, 919 spinand->id.data); 920 return ret; 921 } 922 923 if (nand->memorg.ntargets > 1 && !spinand->select_target) { 924 dev_err(dev, 925 "SPI NANDs with more than one die must implement ->select_target()\n"); 926 return -EINVAL; 927 } 928 929 dev_info(&spinand->spimem->spi->dev, 930 "%s SPI NAND was found.\n", spinand->manufacturer->name); 931 dev_info(&spinand->spimem->spi->dev, 932 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n", 933 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10, 934 nanddev_page_size(nand), nanddev_per_page_oobsize(nand)); 935 936 return 0; 937 } 938 939 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section, 940 struct mtd_oob_region *region) 941 { 942 return -ERANGE; 943 } 944 945 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section, 946 struct mtd_oob_region *region) 947 { 948 if (section) 949 return -ERANGE; 950 951 /* Reserve 2 bytes for the BBM. */ 952 region->offset = 2; 953 region->length = 62; 954 955 return 0; 956 } 957 958 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = { 959 .ecc = spinand_noecc_ooblayout_ecc, 960 .free = spinand_noecc_ooblayout_free, 961 }; 962 963 static int spinand_init(struct spinand_device *spinand) 964 { 965 struct device *dev = &spinand->spimem->spi->dev; 966 struct mtd_info *mtd = spinand_to_mtd(spinand); 967 struct nand_device *nand = mtd_to_nanddev(mtd); 968 int ret, i; 969 970 /* 971 * We need a scratch buffer because the spi_mem interface requires that 972 * buf passed in spi_mem_op->data.buf be DMA-able. 973 */ 974 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL); 975 if (!spinand->scratchbuf) 976 return -ENOMEM; 977 978 ret = spinand_detect(spinand); 979 if (ret) 980 goto err_free_bufs; 981 982 /* 983 * Use kzalloc() instead of devm_kzalloc() here, because some drivers 984 * may use this buffer for DMA access. 985 * Memory allocated by devm_ does not guarantee DMA-safe alignment. 986 */ 987 spinand->databuf = kzalloc(nanddev_page_size(nand) + 988 nanddev_per_page_oobsize(nand), 989 GFP_KERNEL); 990 if (!spinand->databuf) { 991 ret = -ENOMEM; 992 goto err_free_bufs; 993 } 994 995 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand); 996 997 ret = spinand_init_cfg_cache(spinand); 998 if (ret) 999 goto err_free_bufs; 1000 1001 ret = spinand_init_quad_enable(spinand); 1002 if (ret) 1003 goto err_free_bufs; 1004 1005 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0); 1006 if (ret) 1007 goto err_free_bufs; 1008 1009 ret = spinand_manufacturer_init(spinand); 1010 if (ret) { 1011 dev_err(dev, 1012 "Failed to initialize the SPI NAND chip (err = %d)\n", 1013 ret); 1014 goto err_free_bufs; 1015 } 1016 1017 /* After power up, all blocks are locked, so unlock them here. */ 1018 for (i = 0; i < nand->memorg.ntargets; i++) { 1019 ret = spinand_select_target(spinand, i); 1020 if (ret) 1021 goto err_free_bufs; 1022 1023 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED); 1024 if (ret) 1025 goto err_free_bufs; 1026 } 1027 1028 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE); 1029 if (ret) 1030 goto err_manuf_cleanup; 1031 1032 /* 1033 * Right now, we don't support ECC, so let the whole oob 1034 * area is available for user. 1035 */ 1036 mtd->_read_oob = spinand_mtd_read; 1037 mtd->_write_oob = spinand_mtd_write; 1038 mtd->_block_isbad = spinand_mtd_block_isbad; 1039 mtd->_block_markbad = spinand_mtd_block_markbad; 1040 mtd->_block_isreserved = spinand_mtd_block_isreserved; 1041 mtd->_erase = spinand_mtd_erase; 1042 1043 if (spinand->eccinfo.ooblayout) 1044 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout); 1045 else 1046 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout); 1047 1048 ret = mtd_ooblayout_count_freebytes(mtd); 1049 if (ret < 0) 1050 goto err_cleanup_nanddev; 1051 1052 mtd->oobavail = ret; 1053 1054 return 0; 1055 1056 err_cleanup_nanddev: 1057 nanddev_cleanup(nand); 1058 1059 err_manuf_cleanup: 1060 spinand_manufacturer_cleanup(spinand); 1061 1062 err_free_bufs: 1063 kfree(spinand->databuf); 1064 kfree(spinand->scratchbuf); 1065 return ret; 1066 } 1067 1068 static void spinand_cleanup(struct spinand_device *spinand) 1069 { 1070 struct nand_device *nand = spinand_to_nand(spinand); 1071 1072 nanddev_cleanup(nand); 1073 spinand_manufacturer_cleanup(spinand); 1074 kfree(spinand->databuf); 1075 kfree(spinand->scratchbuf); 1076 } 1077 1078 static int spinand_probe(struct spi_mem *mem) 1079 { 1080 struct spinand_device *spinand; 1081 struct mtd_info *mtd; 1082 int ret; 1083 1084 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand), 1085 GFP_KERNEL); 1086 if (!spinand) 1087 return -ENOMEM; 1088 1089 spinand->spimem = mem; 1090 spi_mem_set_drvdata(mem, spinand); 1091 spinand_set_of_node(spinand, mem->spi->dev.of_node); 1092 mutex_init(&spinand->lock); 1093 mtd = spinand_to_mtd(spinand); 1094 mtd->dev.parent = &mem->spi->dev; 1095 1096 ret = spinand_init(spinand); 1097 if (ret) 1098 return ret; 1099 1100 ret = mtd_device_register(mtd, NULL, 0); 1101 if (ret) 1102 goto err_spinand_cleanup; 1103 1104 return 0; 1105 1106 err_spinand_cleanup: 1107 spinand_cleanup(spinand); 1108 1109 return ret; 1110 } 1111 1112 static int spinand_remove(struct spi_mem *mem) 1113 { 1114 struct spinand_device *spinand; 1115 struct mtd_info *mtd; 1116 int ret; 1117 1118 spinand = spi_mem_get_drvdata(mem); 1119 mtd = spinand_to_mtd(spinand); 1120 1121 ret = mtd_device_unregister(mtd); 1122 if (ret) 1123 return ret; 1124 1125 spinand_cleanup(spinand); 1126 1127 return 0; 1128 } 1129 1130 static const struct spi_device_id spinand_ids[] = { 1131 { .name = "spi-nand" }, 1132 { /* sentinel */ }, 1133 }; 1134 1135 #ifdef CONFIG_OF 1136 static const struct of_device_id spinand_of_ids[] = { 1137 { .compatible = "spi-nand" }, 1138 { /* sentinel */ }, 1139 }; 1140 #endif 1141 1142 static struct spi_mem_driver spinand_drv = { 1143 .spidrv = { 1144 .id_table = spinand_ids, 1145 .driver = { 1146 .name = "spi-nand", 1147 .of_match_table = of_match_ptr(spinand_of_ids), 1148 }, 1149 }, 1150 .probe = spinand_probe, 1151 .remove = spinand_remove, 1152 }; 1153 module_spi_mem_driver(spinand_drv); 1154 1155 MODULE_DESCRIPTION("SPI NAND framework"); 1156 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>"); 1157 MODULE_LICENSE("GPL v2"); 1158